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the radius of curvature of the geometry is large 12
=) Conformal field theory described by dual classical gravity
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Holography 1: temperature and black holes
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conformal strongly coupled 3d QFT
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Holography 3: transport properties

Real time dynamics and transport very sensitive to interactions R
m) [Holographic methods are often our only handle at strong coupling
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Real time dynamics and transport very sensitive to interactions B =)
=) are often our only handle at strong coupling
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from equilibrium

] RESPONSE 5000 _ A kw0
AS = /d ON) qbo 5(0) — —G"*(w,k)dpo(w, k) = iwxddo

RETARDED GREEN'S FUNCTION TRANSPORT COEFFICIENT

S We can compute retarded Green's functions by solving
# equations of motion of perturbations ¢ in charged black hole background
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Holography gives universal value for viscosity / entropy density
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| Holographic superconductors |

Superconductivity is spectacular application of )
U(1) spontaneous symmetry breaking
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Holographic superconductors

Superconductivity is spectacular application of )
U(1) spontaneous symmetry breaking

m Vanishing resistance at low temperatures

=) Expulsion of magnetic field (//cissner effect)

Conventional superconductors are well explained by BCS theory
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- - Conventional superconductors are well explained by BCS theory

Supercohductivity <P condensation of Cooper pairs of electrons due to phonons
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U(1) spontaneous symmetry breaking

m Vanishing resistance at low temperatures

=) Expulsion of magnetic field (//cissner effect)

Conventional superconductors are well explained by BCS theory

Superconductivity <= condensation of Cooper pairs of electrons due to phonons

Non-conventional High - T,. superconductors are inherently
strongly coupled and defy theoretical explanation m» Holographic methods? .
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Non-relativistic systems

ouantum criticar | Recall that at a quantum critical point N
sl | ENERGY A~ (g—gc)”* LENGTH §~(9—gc) "~
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Example: Fermions at unitarity
(experimentally realized in
trapped cold atoms) realize
Schrédinger algebra (z = 2)
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(experimentally realized in
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Algebra arises from conformal algebra | Holographic dual obtained as transformation
in one higher dimension of (asymptotically) 5d Anti-de Sitter space
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Can construct asymptotically Schrédinger (charged) black hole )
and compute thermodynamics, transport, ...
with results appropriate for a
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Conclusions

In summary...

m) Quantum critical systems relevant for
condensed matter physics are described by
strongly coupled conformal field theories

=) They the usual paradigms of quasiparticles and order parameters
)

The holographic gauge/string duality can be used to study
equilibrium and real-time dynamical properties of these systems

m) Holographic methods may be relevant for the understanding of
phenomena such as superconductivity and fermions at unitarity
that have important
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