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C. Herzog, Lectures on holographic superfluidity and superconductivity,
arXiv:0904.1975

J. McGreevy, Holographic duality with a view toward many-body physics,
arXiv:0909.0518
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The phase transition
Given m2L2 = −2 (above the BF bound), we can choose a scalar
in the field theory with scaling dimension one or two.
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Figure: The value of the condensate as a function of temperature for the
two different boundary conditions: a) from bottom to top, the various
curves correspond to q = 1, 3, 6, and 12; b) from top to bottom, the
curves correspond to q = 3, 6, and 12. Note that Tc ∼

√
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• If the gap is 2∆ then we found that

Re σ(ω → 0) ∼ e−α∆/T .

• α = 1 as q →∞, as in BCS theory, weakly coupled?
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Conclusions

In summary...
                           Quantum critical systems relevant for

condensed matter physics are described by
strongly coupled conformal field theories

The holographic gauge/string duality can be used to study
equilibrium and real-time dynamical properties of these systems

They elude the usual paradigms of quasiparticles and order parameters

Holographic methods may be relevant for the understanding of
phenomena such as superconductivity and fermions at unitarity
that have important experimental applications


