

Outline

- LHC and CMS detector
- Alignment and Physics
- Alignment Strategy
- Validation of an Alignment
- Readiness
- Conclusion

CMS Detector

38 Countries, 183 Institutes, 3000 scientists and engineers (including 400 students)

TRIGGER, DATA ACQUISITION \& OFFLINE COMPUTING
Austria, Brazil, CERN, Finland, France, Greece,
Hungary, Ireland, Italy, Korea, Lithuania, New Zealand, Poland, Portugal, Switzerland, UK, USA

RETURN YOKE
Barrel: Estonia, Germany, Greece, Russia Endcap: Japan*, USA

TRACKER

Austria, Belgium, CERN, Finland, France, Germany, Italy, Japan*, Mexico, New Zealand, Switzerland, UK, USA

CRYSTAL ECAL

Belarus, CERN, China, Croatia, Cyprus, France, Italy, Japan*, Portugal, Russia, Serbia, Switzerland, UK, USA

PRESHOWER Armenia, CERN, Greece, India, Russia, Taiwan

SUPERCONDUCTING MAGNET
All countries in CMS contribute to Magnet financing in particular: Finland, France, Italy, Japan*, Korea, Switzerland, USA

Total weight
Overall diameter
Overall length
Magnetic field
: 12500 T
: 15.0 m
: 21.5 m
: 4 Tesla

HCAL

Barrel: Bulgaria, India, Spain*, USA
Endcap: Belarus, Bulgaria, Georgia, Russia,
Ukraine, Uzbekistan
HO: India

MUON CHAMBERS
Barrel: Austria, Bulgaria, CERN, China, Germany, Hungary, Italy, Spain,
Endcap: Belarus, Bulgaria, China, Colombia, Korea, Pakistan, Russia, USA

CMS Tracker

Specifications:

- High resolution on isolated high momentum tracks
- Transverse impact parameter resolution better than $35 \mu \mathrm{~m}$ for $\mathrm{pT}>10 \mathrm{GeV}$
- 50\% b-tagging efficiency with a mistag rate of the order to percent

Sub-system:

- Vertex detector (Silicon pixel)
- 2 Layers subdetectors (SiStrip)
- Disks for EndCap (SiStrip)
$\Rightarrow \mathbf{2 0 7} \mathbf{m}^{\mathbf{2}}$ of silicon sensors
$\rightarrow \mathbf{1 0 . 6}$ million silicon strips
$\Rightarrow 65.9$ million pixels $\boldsymbol{\sim} \mathbf{1 . 1} \mathrm{m}^{2}$

CMS Tracker Status

Cables and services

Pixels: 1440 Modules $100 \mu \mathrm{~m} \times 150 \mu \mathrm{~m}$ $r \varphi$ and z resolution: $\sim 15 \mu \mathrm{~m}$

Tracker channel status at the end of August

Strip Tracker
TOB ${ }^{(1)}$: 98\% TIB/TID ${ }^{(2)}$: 96.6\%
TEC+: 99.2\%
TEC-(3) : 97.8%
Pixels
Barrel pixels : 99.1\% Forward pixels ${ }^{(4)}$: 94.0\%
(1) 0.6% recovered since August
(2) 1% at least recoverable
(3) 1.7% recovered since Augusts
(4) 5% recovered during shutdown
(power cables repair), 0.5% still
recoverable

Strips: 15148 Modules

Pitch: $\mathbf{8 0} \mu \mathrm{m}$ to $180 \mu \mathrm{~m}$
Hit Resolution: $\mathbf{2 0} \mu \mathrm{m}$ to $\mathbf{5 0 \mu m}$

Why do we have to align?

Alignment impact on dimuon invariant mass resolution:
\rightarrow critical for high pT muons

B-tagging relies completely on tracking performance: all b-tag algorithms are sensitive to alignment -both positions and errors are important

- Flight distance significance and hence b-tag efficiency
\rightarrow improves with accumulation of statistics for alignment

Alignment

Define a Global Track X2 function:

CMS Alignment Strategy

Tracker alignment is one of the crucial factors in reaching the design resolution of the CMS detector
The challenge is to determine at $\mathbf{O}(10 \mu \mathrm{~m})$ the corrections for the 6 d.o.f (3 rotations +3 translations) for each of the $>16 \mathrm{k}$ modules of CMS tracker - Complex system of equations: 16.5k modules x 6 d.o.f. $=100 \mathrm{k}$ unknowns - Fast and robust algorithms are deployed in the CMS framework.

Tracker Inner Barrel (TIB)
Tracker Inner Disk (TID)

Tracker Endcap (TEC)
Tracker Outer Barrel (TOB)

Different Source of Alignment

Input to CMS Tracker alignment algorithms:

- Laser Alignment System
- optical survey
- tracks from cosmic muon runs \rightarrow ultimate precision

Laser Alignment System (LAS):
Connect large structures (8 sectors in φ): TIB - TOB - TEC

- Cosmic runs for commissioning: standalone $\boldsymbol{\sim 1 0 0 \mu m}$, relative $\mathbf{\sim} \mathbf{2 0 \mu m}$
- Tracker geometry: note 2D (100 mrad strip angle) and 1D modules

Use previous measurement to control and constraint the cosmic one

Barrels:
PXB - modules (2D only) TIB - modules and up TOB - barrel

Endcaps:

PXF - modules and up
TID - modules and up
TEC - disks and endcap
survey

r(cm)

design

$r(\mathrm{~cm})$

Track Based Alignment

Alignment Algorithms

Local Iterative Method: "Hit and Impact Points"

CMSNote 2006/018

Tracks + Surveys
to fix all the
alignable
degrees of
freedom
$\Delta p_{m}=\left[\sum_{i} J_{l}^{\top} V^{-1} J_{i}\right]^{-1}\left[\sum_{i} J_{l}^{\top} V^{-1} r_{i}\right] ; \quad J_{i}=\partial r_{l} / \partial p_{m}$

Pros: use same tracking algorithm than CMS, simple implementation, all d.o.f.
Cons: ignore correlations in one iteration iterations, large CPU with many

Global Method: "Millepede II"
NIM A 566, 52006
Linearize track model $f_{i j}\left(p, q_{j}\right)$ as a function of the corrections to alignment parameters a
$x^{2}(p, q)=\sum_{i}^{\text {tracks }} \sum_{i} \sum_{i} \frac{\left(y_{i j}-f_{i j}\left(p_{0}, q_{j 0}\right)+\frac{\partial f_{i j}}{\partial p} a+\frac{\partial f_{i j}}{\partial q_{j}} \delta q_{i}\right)^{2}}{\sigma_{i j}^{2}}$
Minimization leads to the matrix equation which has to $\mathbf{C} \mathbf{a = b}$ be solved to extract a

Pros: include module correlations, less CPU with one or few iterations Cons: simple helix trajectory model, large matrix may limit total \mathbf{N} of alignables

CRAFT: Cosmic Run At Four Tesla

Numerous global runs with CMS detector have been performed.
2 main period of 3 weeks of continuous data taking \rightarrow CMS has recorded 300 Millions cosmics events with magnetic field ON each time.

First data for alignment

Best data for alignment of CMS Tracker: fall 2008 ("CRAFT08") [CRAFT09 studies are on going]
~ 4M cosmic tracks for Tracker alignment (with B-field = 3.8T)
account for multiple scattering, $\mathrm{p}>\mathbf{4} \mathbf{~ G e V} / \mathrm{c}$

- Require good quality tracks and hits:
clean hits, outlier hit rejection, X^{2} cut, min hits, 2D hits accept all good tracks (statistics limited): only 3\%+1.5\% in Pixels

Multiple steps alignment

Multi-step approach by both algorithms to address CMS geometry:

- large structure movement: coherent v alignment of 1D modules
- alignment of two sides of 2D strip modules (units=stereo): $\mathbf{w}_{\mathbf{w}}^{\prime}, w, Y$
- Global method:
$\rightarrow 3$ steps from "design"
(1) large structures (6 dof) \& units (3 dof)
(2) module alignment: add α, β for TIB; 6 dof for PXB
(3) repeat (1); note above: keep $<46,300$ parameters, use pre-sigma
- Local method:
$\rightarrow 5$ steps from survey; ~50 iterations each
(1) large structures (u, v, w, y)
(2),(3) Strip: modules (6 dof) with survey; units (3 dof)
(4),(5) Pixels: ladders (6 dof); modules (6 dof)

Merging Algorithms

- Combined method
(1) run global method
\rightarrow solve global correlations efficiently
(2) run local method
\rightarrow solve locally to match track model in all dof

All three results are compatible, but combined is the best also compare to "not aligned"

Low Level Validation: unbiased residuals

Computed at the same time as $\mathbf{X 2}$ /ndof unbiased as the hit on the module under investigation is removed from the re-fit of the track shown as function of the local coordinates x^{\prime} and y^{\prime}

Pixel Residuals

Residuals \rightarrow multiple scattering + hit errors + alignment errors (random) (random) (systematic)
$r \Phi$ pixel hit errors $\boldsymbol{\sim} 19 \mu \mathrm{~m}$ here

Median of Residuals

Alignment performance : $\mathrm{Pt} \boldsymbol{>} \mathbf{4 G e V} / \mathrm{c}$, 1 entry per module with Nhits>30
Measure for remaining misalignment:

- Module-wise information, distribution of median of the residuals DMR regarded.
- Medians of several modules plotted.
- Spread gives lower limit for misalignment (for sufficient statistics).
- Used to estimate misalignment corrections to intrinsic hit errors.

Cosmic data causes asymmetric module illumination different regions reach different alignment quality.

 Performance close to Simulation

High Level Validation: Cosmic Track Splitting

Consider the point of closest approach (PCA) to the nominal beamline
Re-fit separately top and bottom legs and compare the 5 track parameters at the PCA Track selection: pT>4 GeV/c, X2/dof<100 Nhit ≥ 10, N2Dhit ≥ 2, NPXLhit ≥ 2 PCA in the volume of the pixel
Each split track: Nhit ≥ 6 ~50k evts selected

In the following: absolute residuals:

$$
\frac{x_{\text {top }}-x_{\text {bottom }}}{\sqrt{2}}
$$

normalized residuals:
$x=d x y, d z, \varphi, \theta, 1 / p T$

$$
\frac{x_{\text {top }}-x_{\text {bottom }}}{\sqrt{\sigma_{x_{\text {top }}}^{2}+\sigma_{x_{\text {botom }}}^{2}}}
$$

Original track

Bottom half track

Cosmic track splitting absolute residuals

absolute residuals	DATA combined meth. r.m.s.	MC ideal r.m.s.
$\Delta p_{T}(\mathrm{MeV} / \mathrm{c})$	193	193
$\Delta d_{x y}(\mu \mathrm{~m})$	44	37
$\Delta d_{z}(\mu \mathrm{~m})$	59	47
$\Delta \phi(\mu \mathrm{rad})$	425	406
$\Delta \theta(\mu \mathrm{rad})$	639	511

PT mainly sensitive to the alignment in the strips: close to the ideal performance for cosmics-like track topology. dxy and dz mainly sensitive to the alignment in the pixels

Cosmic track splitting normalized residuals

normalized	DATA combined meth.	MC ideal
residuals	σ	σ
$\Delta p_{T} / \sigma\left(p_{T}\right)$	0.99	0.95
$\Delta d_{x y} / \sigma\left(d_{x y}\right)$	1.15	1.07
$\Delta d_{z} / \sigma\left(d_{z}\right)$	0.94	0.91
$\Delta \phi / \sigma(\phi)$	1.14	1.05
$\Delta \theta / \sigma(\theta)$	0.97	0.96

Checks of the geometry

Deformations leaving the track $\mathbf{x} 2$ unchanged not caught by low level validation (X2,DMR)

Compare geometries from two methods: case study: local meth. vs global meth. geometries in PXB (2D measurements, small lever arm) Effects can be much larger (x10) when dealing with structures of size $\mathbf{O}(1 \mathrm{~m})$!

Compare the "real" (from combined meth.) to the design geometry
TIB: 5 mm shift of the two HalfBarrels along \mathbf{z}-axis (two halves shifted apart) confirmed by optical survey remaining scatter: indication of "skew"?

Sensitivity to weak modes from cosmic: skew

"skew" Δz vs φ
Systematic misalignment added to the geometry from the global method Re-align (global method) using DATA starting from the systematically misaligned geometry

In the plots: shifts w.r.t starting alignment geometry (flat horizontal line at zero if the mode is recovered)
Skew is not recovered in the barrel!

Towards data taking

Currently, as running on cosmics, all events are recorded.
Aim: alignment as prompt as possible to perform physics searches \rightarrow Need to ensure large statistics of events in a short period of time

Events selected on the physics HLT menu
Express Stream will include events selected for alignment and calibration
Event reconstruction:

Express reconstruction:
production of AICaReco (keep a few object to improve iterative algorithms)
Prompt reconstruction:
buffer all the data to disk, execute subset of alignment and calibration tasks in \mathbf{O} ($\mathbf{2 4} \mathbf{~ h}$) using (semi-) automated tools
Use alignment/calibration results for prompt reconstruction
Complete workflow (with buffer disk for data) has been exercised successfully over CRAFT09

Conclusion

Start up of experiment \rightarrow Commissioning phase Alignment and calibration of the different subdetector should be determined precisely to reach the desigh performance of GMS detectors

Trackr alig mentis a complex task wio to the number of Im

Tracker ionmentstre of is is, detic and used all previous available information ancoconpementities of two algorithms.

Results obtained using GRAFT08 data show alignment precision close to ideal geometry (better than expected)

Full workilow has been exercised:

