Pixel detector developments

Dr. Maria Elena Martin Albarran

CP3- Université catholique de Louvain

October 2, 2009

æ

→ Ξ → < Ξ →</p>

Introduction

Particle Physics and Experimental Methods Technology Review (HAPSvsMAPS)

SOI pixel project: TRAPPISTe Technological Details Simulations

NA62: Measurement of rare decay

Characteristics ASIC development for the readout electronics of the GTK

4 B K 4 B K

Ċ

Particle Physics and Experimental Methods Technology Review (HAPSvsMAPS)

Particle Physics and Experimental Methods Technology Review (HAPSvsMAPS)

HAPS Hybrid Active Pixel Sensor

Monolithic Pixel Detectors

Sensor and FE chip connected through Include amplifying, logic and detecting

Bump bonding, flipchip

Architecture used:

C,

- LHC-collider :ALICE, ATLAS, CMS and LHCb
- Fixed target: NA60, BTev

sensors as one entity Non-standard CMOS on high resistivity bulk CMOS with epi-layer, CMOS on SOI, Amorphous silicon on standard CMOS ASIC, DEPFET, Deep n-well sensor, 3D packaging

・ロト ・ 日 ・ ・ ヨ ト

Technological Details Simulations

R,

TRAPPISTe-1 (TRAcking Particle for Physics Instrumentation in SOI Technology)

 R&D project for the study of the feasibility to build a Monolithic Active Pixel Sensor (MAPS) with Silicon On Insulator (SOI)

・ロト ・同ト ・ヨト ・ヨト

 First prototype has been built with a 2µm technology in SOI production facility in Louvain-la-Neuve

Technological Details Simulations

Ċ

A hole is created in the buried oxide layer to dope the bulk layer P-type bulk with n+ region Not covered in metal to allow top illumination

Area_{prototype}= $3150 \times 3150 \mu$ m, with matrix of 8×8 pixels with a size of $300 \times 300 \mu$ m An external ring of pixels will be grounded for a better isolation

Image: A matrix

Technological Details Simulations

Layout of the detector pixel:

- 10µm width p+-type guard ring
- ► 60×60µm centered n-type implant for the detector in the p-type bulk.

The readout circuitry used is based on the 3-transistor architecture commonly used in MAPS, modified to allow for a pipelined readout

Technological Details Simulations

- ► Depleted region⇒carrier drift
- Non-depleted region⇒carrier diffusion
- Always trapping and recombination

An initial rough estimate of the current signal (thickness of 100μ m and a resistivity of $5000\Omega/cm$.)

Dr. Maria Elena Martin Albarran

Rare Kaon Decays program at CERN, Measurement of ${\rm K^+} \rightarrow \pi^+ \nu \nu$

æ

イロト イヨト イヨト イヨト

Characteristics ASIC development for the readout electronics of the GTK

UCI

- ▶ 3 stations with area \sim 12 cm² each \rightarrow 18000 pixels/station and 2 rows \times 5 columns pixels/station
- ▶ Pixel dimensions $300 \times 300 \mu m \rightarrow 1800$ pixels/chip
- ► Radiation levels expected 10⁵ Gy and the 1Mev neutron equivalent fluence ~ 2×10¹⁴ cm⁻²/year.
- Very low material budget of 0.45 %X_o
- Thickness \rightarrow ASIC: 100 μ m, silicon sensor: 150-200 μ m
- ► Analogue FE sensitivity discrimination threshold ~0.5fC.

Ultra fast analogue FE with t_{peaking} ~3-5ns

イロト イポト イヨト イヨト

Specifications of this detector:

- Time resolution of GTK(rms)150ps, of one station(rms)200ps
- Particle rate/station 800 MHz, Particle rate/chip 130MHz
- Average particle intensity/station 0.5 MHz/mm², Peak hit rate of 50 Mhits/cm²/s

• One order of magnitude faster than pixel LHC ASIC

- Latency $> 1\mu$ s up to 1ms, with trigger window ≥ 10 ns
- ▶ Dead time due to read out 1% (2% in beam center)
- Power dissipation per station $\leq 2W/cm^2$, 32 W
- Operating temperature vacuum < 0 °C

The research for pixel cell design and the readout architectures are following two approaches

R,

- End-of-Column, a classical pixel cell approach (i.e. in ALICE, ATLAS and CMS experiment)
 - Hit signals of TOT discriminator are transmitted via TL
 - Avoids high speed clock in the active pixel array
 - Separation of the EOC digital signals from the analog FE, minimize digital crosstalk

- On pixel TDC
 - More expected crosstalk

Signal shaping of 5 ns peaking time (saturation velocity) After radiation, charge characteristics degraded Ballistic effect might affect SNR of channel.

Input stage with cascode-stage (40 μ A) and a R_{feedback}=200kOhm TL (GHz bandwidth) drived with current mode pre-emphasis I_{Bias analogue pixel channel}=120 μ A and I_{Bias TL driver}=80 μ A Gain_{FE amplifier} ~70mV/fC, V_{offset, simulated mismatch} ~6mVrms(~0.1fC signal), TW_{comparator}(Q_{threshold}=0.7fC)=11.5ns between 1 and 4fC signal

イロト イヨト イヨト イヨト

R,

Characteristics ASIC development for the readout electronics of the GTK

Logic level +- 50μ A on 250μ A bus bias current; right lossy transmission lines driven with pre-emphasis

Timing precision of low power signal transmission down to the EOC circuits, with 45 TL(driven in current mode)

- I_{driver} is differential switch with equalization
- \blacktriangleright V_{sensing at far-end}=0mV for R_{receiver input}{=}100\Omega

► R_{line for 1-45 pixel distance}=6-30 Ω , with V_{max drop}=3×V_{sensing} Far end amplitude does not change with receiver distance Receiver:

- ▶ Input stage circuit to sense $I_{differential}$, $I_{static} \sim 250 \mu A$
- Broadband differential to single ended amplifier stage
- Generates pulses edges of 50ps to TDC inputs.

Characteristics ASIC development for the readout electronics of the GTK

End of column circuitry: Receiver bank, TDC bank, Address encoding circuits and Digital logic for processing the hit data ready for transmission off chip. 32-bit DLL and one PLL providing a 320MHz clock signal for the DLL are common to all end of line circuits.

Each TDC presents 2 32-bit hit registers

- ▶ Leading and trailing edge of the hit ⇒double time stamping
- Time stamps encoded into 5-bit binary words, stored in a line buffer, serialized and sent off chip

