6

Extra Dimensions and other Exotic Searches with Jets in CMS

Marco CARDACI Universiteit Antwerpen

Outline

A short introduction to the models

- Graviton from the ADD model of Extra-Dimensions
- Dijet Resonances from various BSM models
- Contact Interactions from Quark Compositeness

Jets with CMS

- The CMS Detector
- Jet reconstruction and correction in CMS

Searches with Dijet events

- Inclusive Jet rate vs. Jet p_{T} : Contact Interactions
- Dijet Rate vs. Dijet Mass: Resonances
- Dijet Ratio: Resonances and Contact Interactions

Searches with Monjet events

- Counting experiment
- Z(vv) + Jets data driven background estimate
- Other background data driven estimates

Conclusions

- Discovery potential and exclusion limits

A short introduction to the models

The ADD model of Extra-Dimensions

Solution to a SM problem

 A hierarchy problem occurs between the Electroweak (~10²GeV) and the Plack (~10¹⁹GeV) scales

- The Arkani-Hamed, Dimopoulos, Dvali model solves the h. p. by introducing δ extra spatial dimensions
- In the simplest case the extra dimensions are compactified over a torus and all have the same radius R
- The Planck scale become an effective scale, related to the fundamental scale via the relation: $M_D^{\delta+2} R^{\delta} \sim M_P^{2}$

Sketch of compactification on a torus

ADD signatures

Consequences of the ADD model

- Extra dimensions can be 'macroscopic' for TeV-ish M_p scales and be tested at colliders
- Gravitons interact 'weakly' with ordinary SM particles and escape detection

Two clear ADD signatures (among others)

- The Jet and Photon + MET signatures (direct graviton production)

Cross-sections in pb

	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$
$M_D = 1$ TeV	279.11	171.79	109.98	70.50	44.45
$M_D = 2$ TeV	33.03	17.41	10.64	6.92	4.58
$M_D = 3$ TeV	7.28	3.02	1.57	0.93	0.58

$M_{\rm D}/n$	n = 2	n = 4	n = 6
$M_{\rm D} = 1.0 \; {\rm TeV}$	$58.0~{\rm fb}$	86.8 fb	$90.1~{\rm fb}$
$M_D = 3.0 \text{ TeV}$	$2.43~\mathrm{fb}$	$2.21~{\rm fb}$	$1.82~{\rm fb}$
$M_D = 5.0 \text{ TeV}$	$0.35~{\rm fb}$	$0.16~{\rm fb}$	$0.09~{ m fb}$

We will focus on the Monojet signature which has a larger cross-section

Dijet resonances

- In a model where the symmetry group SU(3) of QCD is replaced by the chiral symmetry SU(3)_L × SU(3)_R, there are axial vector particles called Axigluons which decay to quark-antiquark pairs
- The flavor-universal coloron model also embeds the SU(3) of QCD in a larger gauge group, and predicts the presence of a Color-octet Coloron which decays to quark-antiquark pairs
- If quarks are composite particles then excited states are expected, and we search for mass degenerate Excited quarks q* that decay to quark-gluon pairs
- Grand unified theory based on the E6 gauge group predicts the presence of Scalar Diquarks D and D^e which decay to antiquark and quark pairs
- The Randall-Sundrum model of extra dimensions predicts massive Gravitons which decay to quark-antiquark and gluon pairs
- Models which propose new gauge symmetries often predict New Gauge Bosons W' and Z' which decay to quark-antiquark pairs

Dijet Angular Distributions

In this plot resonance angular distributions are compared to the t-channel term which dominates the QCD background. Compared to the irreducible QCD background all these angular distributions are relatively isotropic: pretty flat in $\cos \vartheta^*$

Resonances properties

L I						~ ~ ~			
						Cross S	ection (pb)		
				M=0.	7 TeV	M=2.	0 TeV	M=5.	0 TeV
7	Model	J	Color	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$	$ \eta < 1$	$ \eta < 1.3$
	q*	1/2	Triplet	7.95×10^2	1.27×10^{3}	9.01	1.36×10^{1}	1.82×10^{-2}	2.30×10^{-2}
	A,C	1	Octet	3.22×10^2	5.21×10^{2}	5.79	8.82	1.55×10^{-2}	2.04×10^{-2}
	D	0	Triplet	8.11×10^{1}	1.26×10^{2}	4.20	5.97	4.65×10^{-2}	5.75×10^{-2}
	G	2	Singlet	3.57×10^{1}	5.47×10^{1}	1.83×10^{-1}	2.60×10^{-1}	2.64×10^{-4}	3.19×10^{-4}
	W'	1	Singlet	1.46×10^{1}	2.37×10^{1}	3.49×10^{-1}	5.31×10^{-1}	8.72×10^{-4}	1.17×10^{-3}
	Z'	1	Singlet	8.86	1.44×10^{1}	1.81×10^{-1}	2.77×10^{-1}	5.50×10^{-4}	7.26×10^{-4}
S	SI pin 2	pin 1	(qq,	$gg \rightarrow A \text{ or } C$ dN/d cose	$g \rightarrow A \text{ or } C; q\bar{q} \rightarrow Z'; q_1\bar{q}_2 \rightarrow W')$ dN/d cosθ [*] ~ 1+ cosθ ^{2*}			-channel (QCD) Spin 1/2 → qg (q*) Spin 1→ q q (Z') Spin 2 → q q ,gg (G)	
	$(qq \rightarrow G \rightarrow qq) dN/d \cos\theta^* \sim 1 - 3 \cos^2\theta^* + 4 \cos^4\theta^*$								
	$(gg \rightarrow G \rightarrow gg) dN/d \cos\theta^* \sim 1 + 6 \cos^2\theta^* + \cos^4\theta^*$								
$(\mathbf{qq} \rightarrow \mathbf{G} \rightarrow \mathbf{gg}, \mathbf{gg} \rightarrow \mathbf{G} \rightarrow \mathbf{qq})$ dN/d cos $\theta^* \sim 1 - \cos^4 \theta^*$									
			(QCD) dN	$/d\cos\theta^* \sim 1/$	/(1 – cosθ*)²		10 ⁻¹ 0	0.5	
	-	Marco CARDACI. 02/10/09. Bruxelles							COS

Contact Interactions

Three nearly identical generations suggests quark compositeness.

- Compositeness is also historically motivated.
 - Molecules \rightarrow Atoms \rightarrow Nucleus \rightarrow Protons & Neutrons \rightarrow Quarks \rightarrow Preons ?
- Scattering probes compositeness.
- In 1909 Rutherford discovered the nucleus inside the atom via scattering.
 - Scattered α particles off gold foil.
 - Too many scattered at wide angles to the incoming α beam
 - Hit the nucleus inside the atom!
- A century later, we can discover quark compositeness in a similar way !
 - Rate: more jets at high p_T than QCD.
 - Angle: more dijets in center of the CMS barrel than at the edge. Measured with dijet ratio (more later)
 - Today we model quark compositeness with contact interactions.

Contact Interactions

Quark compositeness (scale Λ):

 $\Lambda < \sqrt{s} \Rightarrow$ Narrow resonant states of excited fermions on shell $\Lambda >> \sqrt{s} \Rightarrow$ Effective 4 fermions Contact Interaction:

$$L_{qqqq} = A (g^2/2\Lambda^2_{LL})q_{L}\gamma^{\mu}q_{L}q_{L}\gamma^{\mu}q_{L}$$

In the following we will use:

A= +1 destructive interference sign; $g^2 = 4\pi$

New physics at a scale Λ above the mass of the final state is effectively modeled as a Contact Interaction

- Contact Interactions produce a rise in rate relative to QCD at high dijet mass or high inclusive jet p₊
- They can also produce observable effects in the dijet angular distributions, which benefit from much smaller measurement systematic uncertainties

Jets with CMS

Particle detection in CMS

Jet reconstruction in CMS

In CMS various algorithms are in use:

- Iterative Cone (IC), Midpoint Code (MC), SISCone, Kt, AntiKt, etc

The ideal jet algorithm must:

- be IRC-safe
- have good energy and position resolution, good efficiency, etc
- allow to correct for contamination originating from the primary interaction by Pile Up (PU) activity
- CPU efficient
- suitable for any PU conditions through the lifetime of the CMS experiment

AntiKt is the most suitable of the algorithms

- IRC-safe :-)
- but produce circular cone shaped jets :-)
- very stable vs $\boldsymbol{p}_{_{\!T}}$
- optimal response in presence of UE and PU: expected smearing of transverse momenta of 200 GeV leading jets in QCD dijet sample induced by adding high-lumi (25) PU to the event

Preliminary studies in CMS show that AntiKt has the best $p_{_{T}}$ and η resolution

- AntiKt will be the first algo to be supported in CMS at start-up

Jet corrections in CMS

Jet energy measured in the detector has to be corrected to the energy of final state particle or parton Method to correct jets adopted in CMS is factorized and multilevel independent

- L1 Offset: removal of pile-up and residual electronic noise
- L2 Relative (η): variations in response with η relative in control region
- L3 Absolute (p_{T}): correction to particle level versus jet p_{T} in control region
- L4 EM fraction: correct for scale variation as a function of EMF
- L5 Flavor: correction to particle level for different types of jet (b, τ , etc)
- L6 Underlying Event: luminosity independent spectator energy in the event
- L7 Parton: correction to parton level

The first 3 levels of corrections are required, while the others are optional

- in order to measure offset energy
- Corrected vs $\boldsymbol{\eta}$

 $c(\eta, \langle p_T^{probe} \rangle) = \frac{1}{r(\eta, \langle p_T^{probe} \rangle)}$

 $p_T^{dijet} = \frac{p_T^{probe} + p_T^{barrel}}{2}$ $B = \frac{p_T^{probe} - p_T^{barrel}}{p_T^{dijet}}$

$r = rac{2 + \langle B angle}{2 - \langle B angle}$

γ, Z jet

L3 Absolute:

- Flatten absolute response vs p_{τ}
- Balance in transverse plane
- γ + jet: used for large p_{τ} corrections
- Z + jet: used for smaller systematics at low p₁

Searches with Dijet events

Dijet reconstruction and selection

Standard jet reconstruction Cone algorithm R=0.5 Midpoint & iterative cone indistinguishable at high p_T Standard jet kinematics Jet E = ΣE_i , Jet $\vec{p} = \Sigma \vec{p_i}$ $\theta = \tan^{-1}(p_y/p_x)$ $E_T = E \sin\theta$, $p_T = \sqrt{p_x^2 + p_y^2}$

Standard MC jet corrections Scales Jet (E,p_x,p_y,p_z) by ~1.5 at $E_T = 70$ GeV ~1.1 at $E_T = 3$ TeV for jets in barrel region Dijet is two leading jets $m = \sqrt{(E_1 + E_2)^2 - (p_1 + p_2)^2}$

Barrel jets have uniform response & sensitive to new physics Jet response changes smoothly and slowly up to | jet η | = 1.3 CaloTowers with $|\eta| < 1.3$ are in barrel with uniform construction CaloTowers with 1.3 < $|\eta| < 1.5$ are in barrel / endcap transition region

Some of our analyses use | jet η | < 1.3, others still use | jet η | < 1

All are migrating to | jet η | < 1.3 which is optimal for dijet resonances

Measure relative response vs. jet η in data with dijet balance

Data will tell us what is the region of response we can trust

Analysis strategies

- Use jets in the Barrel which are sensitive to New Physics
- Cut on MET/ ΣE_{T} to reject catastrophic noise/beam halo/cosmics rays
- Inclusive Jet Rate vs Jet p_T: Contact Interactions (Large rate compared to QCD)
- Dijet Rate vs Dijet Mass: Resonances
 - Simple bump hunting in Dijet Spectra
- Dijet Ratio = N (η < 0.7) / N (0.7 < η < 1.3): both searches
 - Simple measure of angular distribution vs dijet mass

MET / ΣE_T for QCD Dijet and cut

Inclusive Jet p_T

Inclusive jet p_T is a QCD measurement that is sensitive to new physics

- Counts all jets inside a p_T bin and I interval, and divides by bin width and luminosity
- Corrected CaloJets agree reasonably well with GenJets
 - CaloJets jets before corrections shifted to lower E_T than GenJets
 - Ratio between corrected CaloJets and GenJets is "resolution smearing": small at high p_T
- Simple correction for resolution smearing in real data is to divide rate by this ratio

Inclusive Jet p_T and Contact Interactions

- Contact Interactions create large rate at high p_T and immediate discovery possible
 - Error dominated by Jet Energy Scale (~10%) in early running (10 pb⁻¹)
 - $\Delta E \sim 10\%$ not as big an effect as $\Lambda^+=3$ TeV for $p_T>1$ TeV
 - PDF "errors" and statistical errors (10 pb⁻¹) smaller than E scale error
- With 10 pb⁻¹ we can see new physics beyond Tevatron exclusion of Λ^+ up to 2.7 TeV

Dijet Resonance Mass Peaks

GenJets peak at right mass values
Long tail to low mass due to radiation
Low mass tail is pronounced for 5 TeV due to pdf effects on tail
CaloJets peak at lower mass than GenJets
Due to calorimeter response
Corrected Jets are similar to GenJets

Dijet Resonances in Rate vs Dijet Mass

- Measure rate vs Corrected Dijet Mass and look for resonances
 - Use a smooth parameterized fit or QCD prediction to model background
- Strongly produced resonances can be seen
 - Convincing signal for a 2 TeV excited quark in 100 pb⁻¹
 - ➡ Tevatron excluded up to 0.87 TeV

Resonances: n cut & mass resolution

- QCD cross section rises dramatically with $|\eta|$ cut due to t-channel pole
 - − Z' signal only gradually increases with |η| cut \Rightarrow optimal value at low |η|
- Optimal cut is at $|\eta| < 1.3$ for a 2 TeV dijet resonance
 - Optimization uses Pythia Z' angular distribution for the resonance

- Gaussian core of resolution for $|\eta| < 1$ and $|\eta| < 1.3$ is similar
- Resolution for Corrected Jets
 - 9% at 0.7 TeV
 - 4.5% at 5 TeV

Resonances: η cut & mass resolution

- QCD cross section rises dramatically with |η| cut due to t-channel pole
 - − Z' signal only gradually increases with |η| cut \Rightarrow optimal value at low |η|
- Optimal cut is at $|\eta| < 1.3$ for a 2 TeV dijet resonance
 - Optimization uses Pythia Z' angular distribution for the resonance

- Gaussian core of resolution for $|\eta| < 1$ and $|\eta| < 1.3$ is similar
- Resolution for Corrected Jets
 - 9% at 0.7 TeV
 - 4.5% at 5 TeV

Dijet Ratio from QCD & Contact Interactions

Dijet Ratio = N(|η|<0.7) / N(0.7<|η|<1.3):

- Number of events in which each leading jet has $|\eta| < 0.7$ divided by the number of events in which each leading jet has $0.7 < |\eta| < 1.3$
- Dijet Ratio is a simple measure of the dijet angular distribution vs Dijet Mass
- Numerator is sensitive to New Physics, denominator is dominated by QCD
- QCD background has flat dijet ratio = 0.5 up to Dijet Mass = 6 TeV
- Contact interactions increase the Dijet Ratio at high mass
- CMS can discover Λ^+ = 4, 7 & 10 TeV with 10, 100 & 1000 pb⁻¹

Dijet Ratio

Dijet Resonances with Dijet Ratio

Conclusions

Inclusive jet p_T analysis gives a convincing signal for a Contact Interaction scale $\Lambda^+ = 3$ TeV in 10 pb⁻¹

Rate vs. Dijet mass gives a convincing signal for a 2 TeV q* with 100 pb⁻¹

Dijet Ratio can discover $\Lambda^{+} \sim 4, 7$ and 10 TeV for 10 pb⁻¹, 100 pb⁻¹ and 1 fb⁻¹

Dijet Ratio can discover or confirm a dijet resonance, and eventually measure its spin

CMS Collaboration, CMS SBM-07-001

Searches with Monojet events

Values in pb

The direct graviton production associated to a parton produce a distinctive signature

- Leading jet with high pt, at low η and back to back with the MET vector
- Secondary jet almost collinear with primary
- Bulk of the events with at most 2 high pt jets
- No leptons

Signal samples, with M_p ranging from 2 to 7 TeV and δ = 2 to 4 were produced with Sherpa (CTEQ5L and parton $p_{\tau} > 250$ GeV) and simulated with CMS Fast Simulation

Current limits

CDF^[1]

Jet + MET analysis with 1.1 fb⁻¹ γ + MET analysis with 2.0 fb⁻¹ $D \bigotimes^{[2]}$

 γ + MET with 1.05 fb⁻¹

	LEP	DØ		CDF		
δ	$\gamma + E_{\mathrm{T}}^{\mathrm{miss}}$	$jet+E_T^{miss}$	$\gamma + E_{\mathrm{T}}^{\mathrm{miss}}$	$jet+E_T^{miss}$	$\gamma + E_{\mathrm{T}}^{\mathrm{miss}}$	combined
2	1.600	0.99	0.921	1.310	1.080	1.400
3	1.200	0.80	0.877	1.080	1.000	1.150
4	0.940	0.73	0.848	0.980	0.970	1.040
5	0.770	0.66	0.821	0.910	0.930	0.980
6	0.660	0.65	0.810	0.880	0.900	0.940

95% C.L. exclusion limits

[1] CDF Collaboration, 0807.3132v1[hep-ex], Phys. Rev. Lett. **101**, 181602 (2008)
[2] DØ Collaboration, Phys. Rev. Lett. **101**, 011601, (2008)

Background to Jet + MET

Backgrounds to ADD Jet + MET signal are: Z(vv) + Jets, W(Iv) + Jets, QCD and top production (produced with CMS Full Simulation)

Selection for background rejection

- Only jets with $p_{_{T}}$ > 40 GeV and $|\eta|$ < 3.0 were considered
- MET > 400 GeV
- Lepton cleaning: JEMF < 0.9 and no isolated tracks with p_{τ} > 15 GeV
- Leading jet with $p_{_{T}}$ > 350 GeV and $|\eta|$ < 1.7
- Jet multiplicity < 3
- $\Delta \phi$ (leading jet, MET) > 2.8
- $\Delta \phi$ (secondary jet, MET) > 0.5

Selection efficiencies

	tī	$Z(\nu\nu)$ +jets	QCD	W(ev)+jets	$W(\mu\nu)$ +jets	$W(\tau v)$ +jets
Trigger	3860	1280	$4.92 \cdot 10^{5}$	1199	1617	1488
$E_{\mathrm{T}}^{\mathrm{miss}} > 400\mathrm{GeV}$	36.6	54.8	17.9	19.5	63.7	36.3
<i>JEMF</i> < 0.9	32.0	52.4	17.2	8.8	60.6	32.0
TIV < 0.1	12.2	46.3	14.2	4.3	5.9	13.0
$p_T(\text{jet }1) > 350 \text{GeV},$	9.8	36.6	11.8	3.3	4.5	9.9
$ \eta(jet1) < 1.7$						
Number of jets < 3	2.2	28.9	4.6	2.3	2.8	6.9
$\Delta \phi$ (jet 1, $E_{\mathrm{T}}^{\mathrm{miss}}$) > 2.8,	0.5	25.7	< 0.6	2.0	2.0	5.5
$\Delta \phi(\text{jet 2}, E_{\text{T}}^{\text{miss}}) > 0.5$						

Tables figures are for 100 pb⁻¹

JEMF and TIV are used to reject W(Iv)+Jets Jet multiplicity is used to reduce QCD and top production

 $\Delta \varphi \text{'s}$ are used to further reduce QCD

	δ =	= 2	$\delta = 4$	
	$M_D = 2$ TeV	$M_D = 6$ TeV	$M_D = 2$ TeV	$M_D = 6$ TeV
Trigger	3060	54.4	1190	7.98
$E_{\rm T}^{\rm miss} > 400 { m GeV}$	691	12.1	244.7	3.05
JEMF < 0.9	658.6	11.6	231.8	2.9
TIV < 0.1	539.2	9.5	185.2	2.2
$p_T(\text{jet }1) > 350 \text{GeV},$	343.1	6.5	117.1	1.6
$ \eta(jet1) < 1.7$				
Number of jets < 3	286.8	5.4	98.3	1.2
$\Delta \phi$ (jet 1, $E_{\mathrm{T}}^{\mathrm{miss}}$) > 2.8,	261.5	4.9	90.1	1.1
$\Delta \phi(\text{jet 2}, E_{\text{T}}^{\text{miss}}) > 0.5$			$ \land < $	

Irreducible background data driven estimate

Z(vv) + Jets can be estimated from a ~ pure $W(\mu v)$ + Jets sample

- Z(vv) + Jets and W(μ v) + Jets ratio is constant at high boson p_r and PDF variations are within 1%
- A control W($\mu\nu$) + Jets sample is obtained asking:
- A single muon trigger
- An isolated muon with $p_{T} > 20 \text{ GeV}$
- Selections as in the signal region

Selection	$W(\mu\nu)$ +jets	$W(\tau \nu)$ +jets	tĪ
Single isolated μ	453009	16374	7924
$E_{\rm T}^{\rm miss} > 400 { m GeV}$	40.8	6.8	9.6
JEMF < 0.9, TIV < 0.1	34.5	5.8	7.3
$p_T(\text{jet 1}) > 350 \text{GeV},$	26.6	4.5	5.1
$ \eta(\text{jet 1}) < 1.7$			
Number of jets < 3	21.9	3.6	2.5
$\Delta \phi$ (jet 1, $E_{\rm T}^{\rm miss}$) > 2.8	20.0	3.3	2.0
$\Delta \phi(ext{jet 2}, E_{ ext{T}}^{ ext{miss}}) > 0.5$			

- The control sample can be rescaled by:
 - The ratio factor
 - The trigger and isolation efficiencies
- The W($\tau\nu$) + Jets contamination is estimated using Br($\tau \rightarrow \mu\nu\nu$)
- The top pair contamination can be treated as a systematic contribution

 $N(Z(\nu\nu) + \text{jets})^{Sig} = 21.9 \pm 4.9 \text{ (stat.)}^{+2.1}_{-1.4} \text{ (syst.)}$

Discovery and exclusion

Sources of systematic uncertainties

Source	Effect on number
	of signal events (%)
Hard process scale	+11 -13
Background modeling	5.0
PDF	+8.7 -6.7
Jet energy scale (10%)	-0.8 -4.0
$E_{\mathrm{T}}^{\mathrm{miss}}$	+17.5 -15.9
Total theoretical uncertainty on signal	+14.9 -15.5
Total instrumental uncertainty on signal	+16.7 -19.9
Luminosity with 100 pb^{-1}	10.0

Sources of background in the signal region:

- $Z(\nu\nu)$ + Jets is estimated from the control region
- QCD contribution is negligible
- W($\tau\nu$) + Jets from control region, rescaling by efficiencies and trigger factors
- W(e/ $\mu\nu$) + Jets is estimated from the W($\tau\nu$) + Jets by applying MC ratio factors
- Top production is considered as systematic contribution

 $N_B = 30.7 \pm 6.8 \text{ (stat.)}^{+2.7}_{-1.5} \text{ (syst.)}$ events

CMS Collaboration, CMS PAS EXO-08-011

Selections at 10 TeV

MHT, the vectorial sum of the jet transverse momenta, the lepton cleaning, the angular variables and the jet multiplicity are very effective on signal to background discrimination

$$MHT = \left| \sum_{p_{\mathrm{T}}(\mathrm{jet}) > \mathrm{p}_{\mathrm{T}}^{0}} \vec{p}_{T}(j) \right|$$

Selection for background rejection

- Only jets with $p_{_{T}}$ > 50 GeV and $|\eta|$ < 3.0 were considered
- MHT > 250 GeV
- Lepton cleaning: 0.1 < JEMF < 0.9 and no isolated tracks with p₁ > 20 GeV
- Leading jet with $p_{_{T}}$ > 200 GeV and $|\eta|$ < 1.7
- Jet multiplicity < 3
- $\Delta \phi$ (leading jet, MHT) > 2.8
- $\Delta \phi$ (secondary jet, MHT) > 0.5

distributi

Data-driven Z invisible MHT spectra at 10 TeV

Also in this case:

 $Z(\nu\nu)$ + Jets can be determined from data, using a control region selecting $W(\mu\nu)$ + Jets, after rescaling by cross-section ratio and muon reconstruction efficiency

Discovery and exclusion limits at 10 TeV

 M_D lower than 3.1(2.3) TeV for δ = 2(4) can be excluded at 95% C.L. and M_D = 3(2) TeV for δ = 2(4) can be discovered with 11 pb⁻¹(5 pb⁻¹)

CMS Collaboration, CMS EXO-09-013

Conclusions

CMS potential in the ADD Jet + MET channel

- Discovery reach up to $M_D = 3.25 / 2.75 / 2.25$ TeV for $\delta = 2 / 3 / 4$ after O(10 pb⁻¹) (at 10 TeV same sensitivity achievable with 68 / 85 / 90 pb⁻¹)
- Discovery reach up to 3.58 (2.62) TeV for $\delta = 2$ (4) after O(100 pb⁻¹)
- Exclusion limit up to 4.61 (3.46) TeV for δ = 2 (4) after O(100 pb⁻¹)

https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults