Back-of-the-envelop trigger calculations

Ivano Lippi - INFN Padova

Questions

What is the limit of the multiplicity trigger ?

i.e.

What is the minimum effective threshold with less than 1 KHz noise rate and 100% efficiency ?

and

What determines the limit and how can improve ?

- N_{pmt} is the total number of PMTs (18000)
- f is the dark noise rate of each PMT (50 KHz)
- τ is the trigger window width (300 ns)

The average number of PMTs with a hit in each trigger window is $N_0 = N_{pmt} \times f \times \tau$ (270) The distribution ρ of the number N of PMTs with a hit in each trigger window is a Gaussian:

The trigger rate R with multiplicity threshold N_{thr} is given by the sampling rate τ^{-1} (3.33 MHz) times the probability to get multiplicity $N > N_{thr}$ (the Gaussian distribution integral)

Trigger Efficiency

A physical event with energy deposition E(MeV) generates $N_E = 1200 \times E$ photoelectrons At small energies we can assume the corresponding PMTs multiplicity given by N_E The N_E effect is to shift the average PMTs multiplicity: $N_0 \rightarrow N_0 + N_E$ The trigger efficiency ε is given by the integral of the $\rho(N)$ distribution with $\mu = N_0 + N_E$

¹⁴C Background

¹⁴C concentration (baseline) = $10^{-17}(gg^{-1}) \rightarrow Q = 2 \times 10^{-7}g$ in Juno (20 kt)

Isotope mass u and Avogadro number $A \rightarrow N = A \times Q / u = 8.6 \times 10^{15}$ atoms in Juno

Lifetime $\tau = 8267 \ years = 2.6 \times 10^{11} \ s \rightarrow \text{decay rate } R = N/\tau = 33 \ KHz$

Very roughly, to get rid of the ¹⁴C :

- $0.16 \text{ MeV} \rightarrow 192 \text{ PMTs}$ multiplicity
- $N_{thr} = 326 + 192 = 518$
- Trigger rate $R \approx 0$
- Efficiency curve shifted by 0.16 MeV

¹⁴C Effects on Trigger

Convoluting the ¹⁴C energy spectrum with the PMTs dark noise fluctuations we get a more refined estimate. The ¹⁴C decay rate can be reduced from 33 KHz to 1 KHz rate with multiplicity threshold $N_{thr} = 441$ With this threshold, the 99 % of the 3.33 MHz sampling rate, gives dark noise trigger rate $R \approx 0$ The corresponding efficiency curve shift is less than 0.1 MeV with $\varepsilon > 99\%$ at .175 MeV

Bottom line: physical energy threshold $E_{thr} \approx 0.2 MeV$ efficiency $\varepsilon = 1$ noise rate $R \ll 1 KHz$

Conclusions

I tried to determine the lower effective physical threshold with a sustainable background rate:

The trigger limit is given by the ${}^{14}C$ β decay process

The result is:

- Effective physical energy threshold $E_{thr} \leq 0.2 MeV$
- Efficiency $\varepsilon = 1$ already at the threshold
- Overall dark noise and ¹⁴C background rate $R \ll 1 \ KHz$ (all from ¹⁴C β decay)

There is no room for significant improvements:

- The dark noise rate contributes only through statistical fluctuations ($\sim \sqrt{N}$)
- The ¹⁴C concentration contributes quasi-logarithmically
- The vertex correlation trigger cannot filter the point-source ${}^{14}C \beta$ decay