Few introductory remarks on GCU synchronisation

M. Bellato, R. Brugnera, F. Dal Corso, S. Dusini, A. Garfagnini, R. Isocrate, I. Lippi, G. Meng, D. Pedretti

INFN and University of Padova

Trigger Synchronisation

The Trigger Data is a continuous bit stream at Reference Clock rate (1 bit / 16 ns).

We must guarantee a constant transmission time:

a constant delay between the Event Input at the GCU, and the trigger decision output Data Request of the TRG.

 T_{GCU} T_{BEC} T_{Proc} : Can be kept constant through a careful firmware design. To be measured and verified during the qualification stages.

- T_{Cable}: Cut the 48 cables connected to the same BEC at the same length (16 ns ~ 2.5 m). A delay at the BEC uplink compensates the different cable lengths. Measured during calibration once for all.
- T_{Link} : Choose the electronic links to guarantee a constant delay within the 16 ns tolerance.

Data Synchronisation

The *Data Request*, generated by the trigger decision, is delivered to all GCUs for event readout. It consists in a message like: *"Give me all data from clock no.* CK_0 *for* N_{CK} *clocks"*

All GCU clock counters measuring the global time must be synchronous, i.e. must have the same value at each time, and must be synchronous with a reference Central clock counter

We have to be able to:

- start a run with all the counters set at the same global time value
- monitor the counters misalignment
- recover dynamically the counters alignment

Three synchronisation tools:

- A downward *Synch* signal from the BEC to the GCU.
- A clock counter system measuring the global time in the GCU.
- An upward Technical Trigger signal from the GCU to the BEC.

All the BECs are supposedly synchronised with the Central Clock and Trigger systems through the *White Rabbit* connection.

As an alternative, the same system should be implemented.

A Schematic Description

DCS

The downward *Synch* signal can be autonomously generated by the BEC or can be triggered by the Central Clock & Trigger System or the DCS.

Upon *Synch* reception, the GCU clock counter stores its value and delivers the *Technical Trigger* to the BEC. It can load a programmed value or adjust with a programmed offset.

Upon Technical Trigger reception, the BEC stores its clock counter value.

A Good Schematic Description

The setting of the GCU clock counter value is time critical

When you set a clock value you want to be sure when it will be loaded. We can embed the counter value or the offset to be loaded, into the *Synch* signal.

Also the clock counter value can be embedded into the Technical Trigger.

A synchronisation procedure could run continuously under the control of the Central System

Few introductory remarks on GCU synchronisation