Reliability How-To

Jochen Steinmann – Florian Lenz Thomas Müller

RWTH Aachen University

JUNO Electronics Workshop

14.11.2016

Reliability of the PMT-Electronics of JUNO

- Decided last year October in Padova to share reliability 50:50 between Electronics and PMT (incl. base)
 - Overall reliability goal / requirement

1% failures in 6 years Reliability contribution ■ PMT + Base Electronics 0.5% failures in 6 years 95 95 $FIT = 95 / 10^9 h$ electronics only in 10⁹ h

How can we meet this goal?

- We need to know the reliability estimate / limit of every board
 - 1. HV
 - 2 GCU
 - Power-Board
 - 4. Cable (up to surface)
- Common mission goal:

Everything should work the same way it has been installed

- Very conservative estimation of the lifetime
- If something fails, the board may still be good enough for physics
 - Analysis of all failure modes and the possible consequences is too much effort
- This means, all parts have to be included in the reliability analysis!

How to calculate the reliability ...

Lessons we learned in Aachen ...

- The data inside the MIL-HDBK is outdated
 - We are using the data from the manufacturer
 - If the manufacturer does not provide data, we replaced those with one which does!

Important is the part stress

- Use the right voltage / power rating
 - This means evaluation of every part in the schematic
 - Critical points are capacitors

Recipe to calculate the reliability for one part:

- 1. Calculate the part operating conditions
- 2. Compare with the rated conditions
- 3. Look-up the FIT value

Recipe to calculate the reliability for one board:

- 1. Sum all FIT values of the used parts
- 2. Add the estimation for the board itself (e.g. from FIDES)

Thank you!

