Discussion for the Interface between PMT base and HV, electronics

Zhimin Wang 2016-11-08 Brussel, Belgium Gain: output gain on load resistor

HV base current

HV unit: 300uA@3000V

MCP

HAMAMAZU

HV base connections

- Possible installation procedure
 - 1. PMT base
 - 1.5 potting bottom structure located.
 - 2. signal, ground, HV cables soldered to PMT base PCB onsite, and HV unit screwed PMT base PCB with HV cable soldered. (all the connection should cables or pins with length tolerance. Do we need separate grounding for HV and signal? Or only need signal grounding?)
 - 3. PMT base PCB soldered to PMT pins
 - 4. isolation PCB screwed to PMT base PCB, and cables get through
 - 5. electronics PCB (ADC board) screwed and soldered with cables, and HV power and control cable get through out
 - GCU board screwed, control, signal cable and HV power and control cable soldered. GCU cable

- 7. potting

Electrostatic Discharge (ESD) From Juin J.

...is the a sudden transfer of charges between 2 objects at different static potentials. It's caused by direct contact or induced by an electric field.

Electrical Overstress (EOS) in General

ESD

High voltage $(1V \sim 15 \text{ kV})$ Short duration (nano~microseconds) Very low power (several μ J) Fast rise time (0.2 ns~10 ns)

1. 700

EOS Specific

Low voltage (30 V) Longer duration (last several μ s to ms) High power (10⁶ μ J) Long rise time (>1000 ns)

Lightning

Extremely high voltage Extremely high power

TIME IN SECONDS (Log Scale)

图 1 各种电浪涌脉冲宽度(或频谱)分布

Electrostatic Charge Generated on Human Body

Triboelectrification process Source

< 25% RH 65-90% RH

7

Walking across carpet	35,000 V	1,500 V
Walking across vinyl tile	12,000 V	250 V
Worker at bench	6,000 V	100 V
Poly bag picking up from bench	20,000 V	1,200 V
Chair w/ urethane foam	18,000 V	1,500 V

V = Q/C, so for a small capacitance, the voltage can be very high even if the amount of charge is small.

The danger of ESD is everywhere!

Various ESD Events on Microchips

Human Body Model (HBM)

Machine Model (MM)

Charged Device Model (CDM) is increasingly important!

IC Shipping Tubes

Die Picking

Conveyor Belt

 An IC becomes charged by sliding down a plastic shipping tube and then a corner pin discharges to a grounded bench mat.

- Most documented CDM damage in IC manufacturing.
- Die separates from tape places charge on die and inductively charges tape.
- Discharge from die to collet

 Charged by friction – discharged to conductor

ESD Standards

Models	Rise Time (ns)	Decay Time (ns)	Voltage Level (V)	Standard Waveform Load	Ipeak for Short (A)
Human Body Model (HBM)	2 - 10	130 - 170	250 - 15k	Short/ 500Ω	0.60-0.74 at 1kV
Machine Model (MM)	6 - 7.5	66 - 90 (Ring period)	100 - 400	Short/ 500Ω	5.80-8.00 at 400V
Charged Device Model (CDM)	< 0.2 - 0.4	0.4 - 2 (Oscillations)	250 - 2k	brass disc	9.78-13.22 at 1kV
International Electrotechnical Commission (IEC)	0.7 - 1	80	2k - 15k	Air gap/ Discharge 50MΩ-100MΩ	-

Comparison of 1kV CDM, HBM and MM discharges

- The CDM discharge is 50x faster than HBM or MM.
- The peak current of CDM can be 20x that of HBM pulse.
- The severeness of ESD is determined by the current, not the voltage.

By JEDEC standard

ESD Testing Classification

Class Voltage Range

Class C1 <125 volts

- Class C2 125 volts to < 250 volts
- Class C3 250 volts to < 500 volts
- Class C4 500 volts to < 1,000 volts
- Class C5 1,000 volts to < 1,500 volts
- Class C6 1,500 volts to < 2,000 volts
- Class C7 =>2,000 volts

Charged Device Model

Class	Voltage Range
Class M1	< 100 volts
Class M2	100 volts to < 200 volts
Class M3	200 volts to < 400 volts
Class M4	> or = 400 volts

Machine Model

Class	Voltage Range
Class 0	< 250 volts
Class 1A	250 volts to < 500 volts
Class 1B	500 volts to < 1,000 volts
Class 1C	1000 volts to < 2,000 volts
Class 2	2000 volts to < 4,000 volts
Class 3A	4000 volts to < 8000 volts
Class 3B	> = 8000 volts

Human Body Model

Boldfaces are the typical ESD protection levels found in commercial microchips

SNO HV divider and protection

From SNO Peter Skensved

Requirements of JUNO HV divider

- ESD protection for following electronics
 - MM, CDM
 - Should located at electronics board
- EOS: signal clamping
 - 0~-160mA (tolerance to ~200mA)
 - Or <u>0~-7.5V@50ohm</u>
 - Located at HV divider
- No distortion to PMT raw signal or non-linearity effect
 - Signal bandwidth <200MHz

	RF Interface							
	(参考判据:50Ω系统,端口驻波系数由1退化到1.5)							
Frequency	C _p (近似值)	Frequency	C _p (近似值)					
100MHz	≤16pF	1.8GHz	≤0.9 pF					
450MHz	≤3.5pF	2.1GHz	≪0.7pF					
800MHz	≤2pF	3GHz	≤0.5pF					
1GHz	≤1.5pF	5GHz	≤0.33pF					

Ideas for JUNO

Ordered several diodes and coils, preliminary test shows few types of Zener diode can clamp the PMT output signal less than 7~8V@50ohm (max to ~9V) with tiny waveform distortion. More detailed effect still under test.

Zener Diode test

Diode test

- Fairchild Semiconductor BZX85C8V2 1 Zener Diode 8.2V 5% 1 W •
- Test with MCP PMT maximum signal to 28V, real output is clamped to 7.7V~9.5V.

Absolute Maximum Ratings * T_A = 25°C unless otherwise noted

value	Units
500	mW
4.0	mW/°C
-65 to +200	°C
	500 4.0 -65 to +200

Electrical Characteristics TA=25°C unless otherwise noted

Device	Zener Voltage (Note 1)			Z _Z @ I _Z (Ω)	Leakage	Current	T _C (mV / °C)		C (pF)	
Device	Min.	Max.	I _Z (mA)	Max.	I _R (μΑ)	V _R (V)	Min.	Max.	V _Z = 0, f = 1MHz	
BZX79C2V4	2.2	2.6	5	100	100	1	-3.5	0	255	
BZX79C2V7	2.5	2.9	5	100	75	1	-3.5	0	230	
BZX79C3V0	2.8	3.2	5	95	50	1	-3.5	0	215	
BZX79C3V3	3.1	3.5	5	95	25	1	-3.5	0	200	
BZX79C3V6	3.4	3.8	5	90	15	1	-3.5	0	185	
BZX79C3V9	3.7	4.1	5	90	10	1	-3.5	+0.3	175	
BZX79C4V3	4	4.6	5	90	5	1	-3.5	+1	160	
BZX79C4V7	4.4	5	5	80	3	2	-3.5	+0.2	130	
BZX79C5V1	4.8	5.4	5	60	2	2	-2.7	+1.2	110	
BZX79C5V6	5.2	6	5	40	1	2	-2	+2.5	95	
BZX79C6V2	5.8	6.6	5	10	3	4	0.4	3.7	90	
BZX79C6V8	6.4	7.2	5	15	2	4	1.2	4.5	85	
BZX79C7V5	7	7.9	5	15	1	5	2.5	5.3	80	
BZX79C8V2	7.7	8.7	5	15	0.7	5	3.2	6.2		
BZX79C9V1	8.5	9.6	5	15	0.5	6	3.8	7		

Tolerance = 5%

DO-35 Glass case COLOR BAND DENOTES CATHODE

But has a big influence to pulse timing, a little bit to pulse charge measurement.

Linearity test

ESD7321

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
Vc	Clamping Voltage @ IPP
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V_{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current

*See Application Note AND8308/D for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}				7.0	V
Breakdown Voltage	V_{BR}	I _T = 1 mA (Note 1)	8.0			V
Reverse Leakage Current	I _R	V_{RWM} = 7.0 V, I/O to GND			200	nA
Clamping Voltage	Vc	I _{PP} = 8 A − (IEC61000−4−2 Level 2 Equivalent (±4 kV Contact, ±8 kV Air))		18		V
ESD Clamping Voltage	V _C	Per IEC 61000-4-2	See	Figures 1 a	and 2	
Junction Capacitance	CJ	V _R = 0 V, f = 1 MHz			0.5	pF
Dynamic Resistance	R _{DYN}	TLP Pulse		1		Ω

ESD08V32D-LC

ELECTRICAL CHARACTERISTICS PER LINE (@ 25 Unless Otherwise Specified)										
PART		V _{RWM}	V _B		Vc	V _c V _c V _c		I _R	Ст	
		(V)	(V)	₽Ţ	@1A			(µA)	(pF)	
NOWBER	EMARKING	(max.)	(min.)	(mA)	(max.)	(max.)	(@A)	(max.)	(typ.)	
ESD03V32D-LC	CC	3.0	4.0	1	5.15	13.9	8	20	1.2	
ESD05V32D-LC	AC	5.0	6.0	1	9.80	18.3	8	5	1.2	
ESD08V32D-LC	BC	8.0	8.5	1	13.40	18.5	8	2	1.2	
ESD12V32D-LC	DC	12.0	13.3	1	19.00	28.6	6	1	1.2	
ESD15V32D-LC	EC	15.0	16.7	1	24.00	31.8	5	1	1.2	
ESD24V32D-LC	HC	24.0	26.7	1	43.00	56.0	3	1	1.2	

Thanks