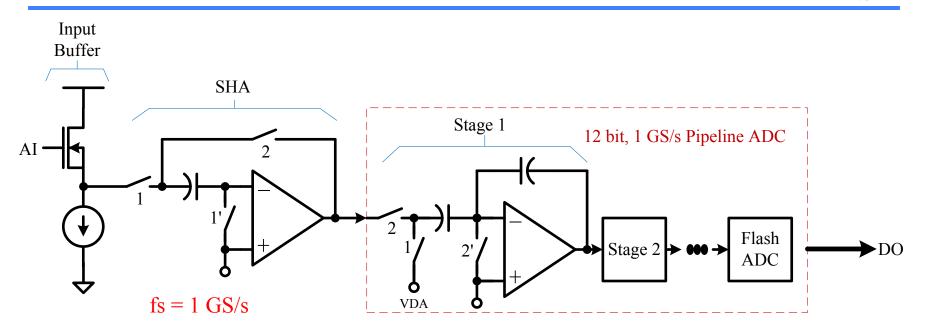


Progress of the Tsinghua ADC and Packaging

Wei W., Li F.L., Yan X.B., Hu J.

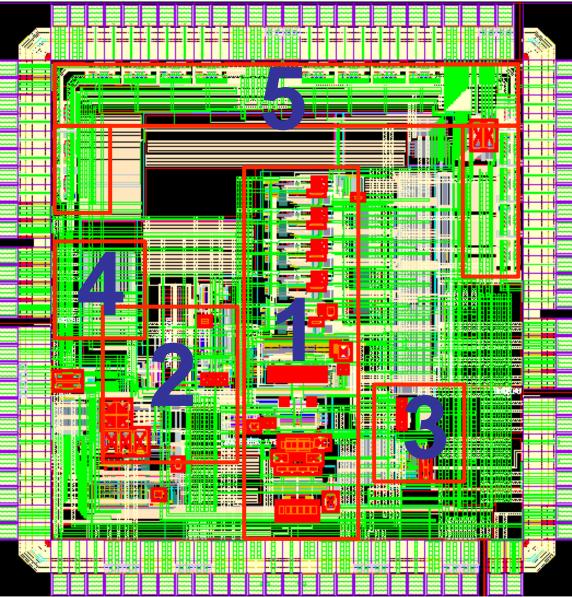
Institute of High Energy Physics, CAS State Key Laboratory of Particle Detection and Electronics On behalf of Fule's team


2016-11-14

Outline

- Progress of the Tsinghua ADC
 - General overview
 - Test results of the 2nd version
 - Improvement of the 3rd version
- Status of the advanced packaging R&D
 - General ideas
- Plans

General overview of the Tsinghua ADC



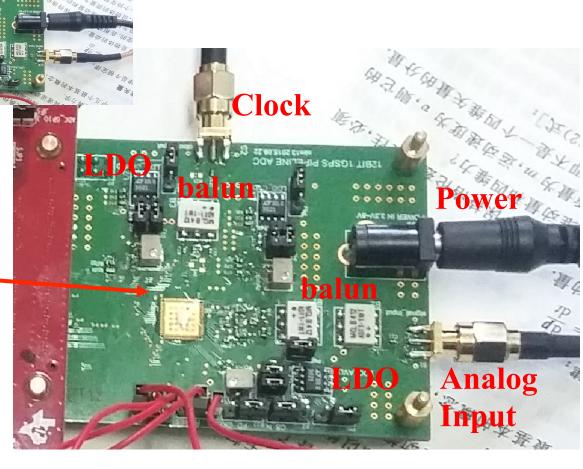
- Single channel realization for the sampling rate up to 1 GS/ s, no time-interleaving calibration required
- On-chip reference generator
- LVDS output @ 1 GS/s

Chip Layout

- 1. AD_CORE
- 2. Bandgap, Reference buffer
- 3. Clock amplifier and generator
- **4. SPI**
- 5. LVDS buffer, LDO
- Total chip size: 2mm*2mm
- The 2nd version taped out on 23 Feb. 2016

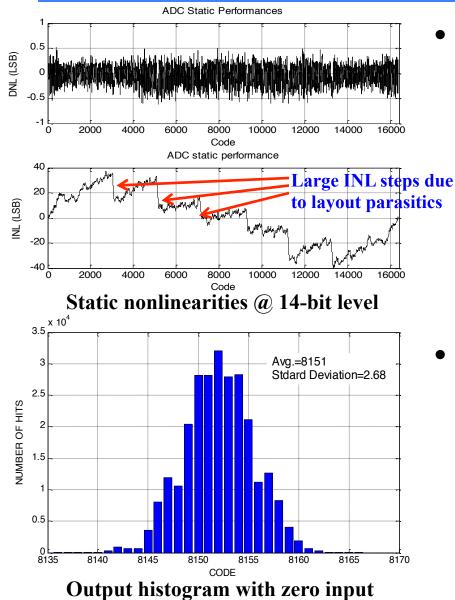
by Li Fule

Test & Data Acquisition Board


Test

Board

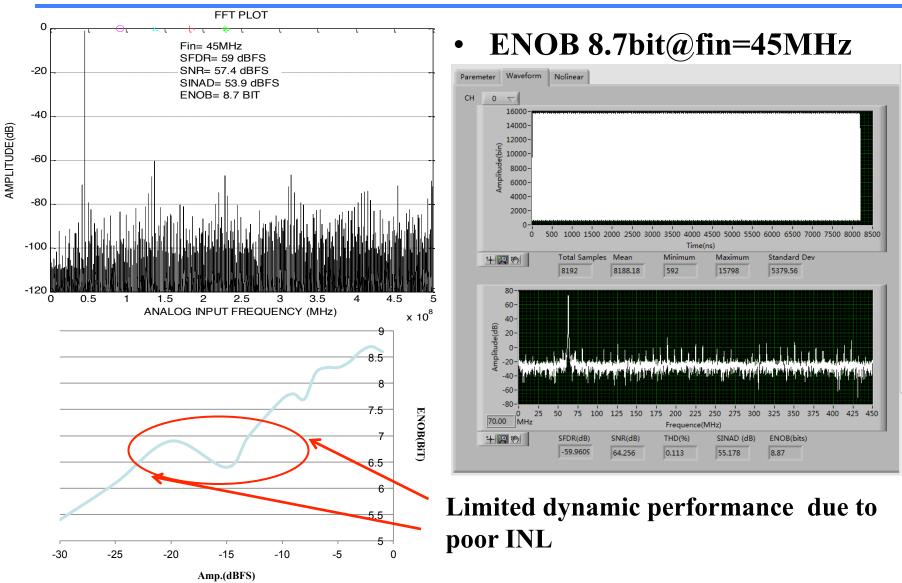
DAQ / FMC


Test Board: **DUT** Eight layer board Output bus is fully differential and has equal length Single ground plane Heat Dissipation

by Li Fule

Test results of the 2nd version

by Li Fule


- Static nonlinearity:
 - The ADC accuracy is very sensitive to layout parasitics.
 - Layout parasitics extraction accuracy is limited.
 - The real measurement results may be different from post-

layout simulation.

 Zero input histogram:
➢ Standard Deviation decreased from 3.4LSB→2.7LSB. Circuit noise is optimized (vs. 1st version).

Dynamic performance

by Li Fule & Hu Jun

Test Summary of the 2nd version

- Successful: Complete 1 GS/s A/D conversion function has been achieved.
- The following incorrect modules in 1st edition have been corrected:

1. SPI

2. LVDS

- Unsuccessful: A/D conversion linearity is worse than that of 1st edition due to increased layout parasitics.
- Solution: Calibrate the effect of parasitics in digital part according to the measured inter-stage gain errors.

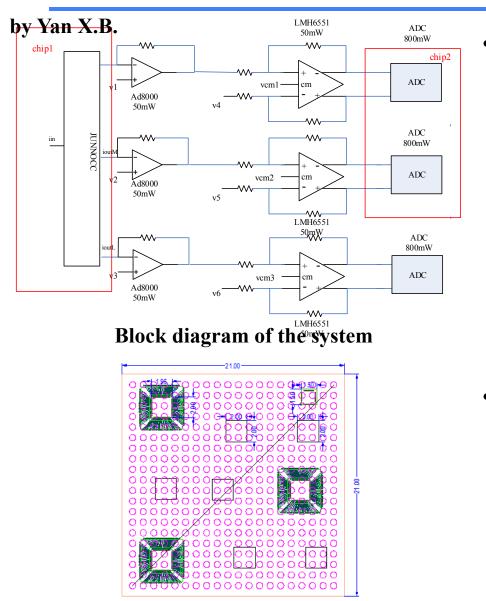
Main optimization points in the 3rd version

• According to the test results, to optimize the circuit and layout as follows

Num.	Description
1	Adjusting the output data sampling edge to make the output timing more reasonable
2	Adding output mode to calibrate linearity errors via SPI
3	Optimizing circuit design to break the existing speed bottleneck
4	Shielding the critical nodes to decrease the gain error due to layout parasitic
5	Strengthening internal power supply and signal routing to relieve IR drop and parasitic effect
6	Improving internal signal driving ability and decoupling
000	0 0 0
	Tapeout on 12 Oct. 2016 200~400 chips will be available for reliability test in Dec. 2016

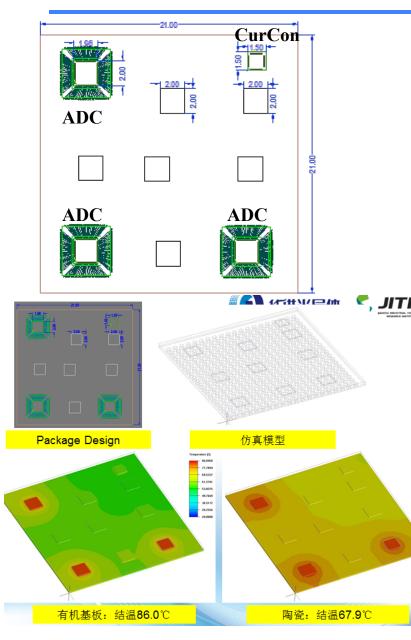
according to the plan (in Hu Jun's & Ning Zhe's talk)

by Li Fule


Ideas of Multiple chips in one package

- Problems of current design if using conventional package
 - 2 Tsinghua ADCs per PMT
 - ➢ QFN68 with 8mm*8mm size
 - > 14 pairs of high speed LVDS with equal length requirement
 - > Area consuming in PCB design, limited space in the PMT house
 - Conventional packages are not heat optimized
 - > Most are plastic package, not good for heat dissip.
 - > TIA and ADC are both power consuming devices
 - Multiple packages lower down the reliability
 - > Possibilities of multiple points failure
- Trying to integrated FEC (by Xiongbo) & 2/3 Tsinghua ADCs in one package (System-in-Package, SIP)
 - Must be highly reliable package
 - Heat optimized
 - Help for high speed performance and interconnection

Ideas of SIP



1st floorplan of the SIP

- System architecture: **FEC+ADC**
 - Current conveyor (100mW) + TIA (50mW) + Sing.-to-Diff. (50mW) + Tsinghua ADC (800mW)
 - ➤ 2 gain range for PMT
 - TBD: 1 spare ADC for redundancy for the small signal range
 - TIA (AD8000) and Sing.-to-Diff. amplifiers are bare dies from commercial devices
- For SIP
 - Co-design with the top level packaging company
 - All 10 dies(max.) are packed in one BGA package(21mm*21mm)
 - Interconn. on organic/ceramic substrate

Ideas of SIP

- High reliability
 - Multiple points failure \rightarrow single point
 - All interconn. based on mature IC technology
- Ease the PCB design, help for performance
 - All interconn. as short as possible
 - All interconn. on substrate, less LC than in PCB
 - Single BGA package on PCB, less area, less fanout
- Heat simulatation as the 1st step
 - Junc. temp. 86.0°C for organic and 67.9°C for ceramic substrate as simulated
 - Further optimization on-going
 - Can junc. temp. be as low as 30 $^{\circ}C?$

Thank you !