GCU Firmware Trigger and Timing

M. Bellato, A. Bergnoli, R. Brugnera, D. Corti, A. Garfagnini, J. Hu,
R. Isocrate, I. Lippi, D. Pedretti

INFN and University of Padova

)
7 INEN

/

2y

ot

| L

'{'f? >,
N\ N
G-

UNIVERSITA
| DEGLI STUDI
DI PADOVA

14-16 November 2016 JUNO workshops Brussels

Outline

* GCU hardware status and time schedule

* Firmware Overview

 Management Software Overview

* |PBUS and Remote Debugging - Xilinx Virtual Cable
* Trigger Overview

* Timing and Clock Synchronization

14-16 November 2016 JUNO workshops Brussels

Hardware Status

* PCBs arrived on 2" of November
* Now being assembled at an

external company
* Delivery foreseen for this week

* Waiting for a picture ...
* Power on tests will start next week

* Complete test with custom
firmware immediately after

14-16 November 2016 JUNO workshops Brussels

e pr?
Lt atd
.l».uuf

B i | & .‘ g
[} o} @ (B !
- . 3 et s Fr s
. . i - M..».yo.,‘
- 3 xaaa,,vw),yt
3 e
. $as el pat
% .w,aa.l!.uq-l
e2302: ummu.xmmw
. .wu)« 4.,%«.”4»,“‘2‘4‘“:‘“4
A d;ao&*gdi o 1.&1.4&44&4 ’"“‘;; 3%
« . e, mmﬁ; i
= - JAAAJI!I‘ .&-NJJJ it AJ'J
1 aaia 22 '::x::f:"“:f:“ o
‘Ar"l o Jll‘l(ﬁ'l
yu,&u-«,a«c 5ae
- mmw,
e e
’r 2

v
)
e et
,uu;.‘uuv -
,s.na.:u.au;
u.u.-u-uu
4'11014-0‘111“ 3
u.:uuu:u.u -
] uu.uu.uuu
i u,euu‘:,ﬁ ';':"ﬁ‘
4:4.,&,};4‘:”:"‘
uuua 2
e s
u,u/:

5.‘.‘.}:'
, I !
sty

wee

.
nnme

0 -

¥

i .
\.O .::-:-.I. B E
e

&
s -,--...l'.:. I -
: e

H

00

YRR

00000

&R

00000
00000

R1E
ek ¢

Qo

=t
>
i
=d
= .
Om
S
7
<
=1
w
o
o

1389

civs
»

o -
gy .

a
g

AR
SR

b

.
3

&%
i

b

m,,,.%,,
R

‘«u. dﬂmﬁ%ﬂ.‘u&f
o
S
% S

3
X
i

\

§
e
»

0
e
Ww/
N
¥ ,,.JW,,

3

&

i

A

R

i
;

i

R
4ﬂ ‘“

Ty
)
X

Y

AR

AR
a

L

Firmware Block Diagram

42 bits
—_— bl

XC7K160T-1FBG676l

EEPROM

GCU_ID 16 bits
MAC

SIAIUS P
HV UART N
ALARMS
- CONFSIEXSEAT'ON TRIGGER LOST SPARTAN 6
POWER BOARD y INTERFACE -
mem overflow }*4{ -
g SPARTAN 6
IPBUS SLAVE
TPBUS CORE
KSZ8864CNXCA e | L1 oo
7 w 5
) « mg_slmhe Ll = R DDR3 CONTROLLER DDR3 WES 800MHZ
ethernet switch = IR g B
17 ipb_wdata 5,] DAQ MIG X 15 (26GB)
§ 2 ipb_rdata i " AXI4 BUS RD sz:i :’::
@ ipb_ack z 125 MHz READ PORT DATA RATE: ST
> ipb_em [16 bits x 1 KHz x 50 samples [DDR3 LD
e ipb_req -, DOR3 BA
= Iph_grant * OOR3 A 1y, sewme]
25 MHz SUPFRNOVA DDR3 DO
oDR3
62.5 MHz 125 MHz WR DDR3 CLKEN |
i 125 MHz WRITE PORT DATA RATE: DDR3 QDT
§ares 16 x 2 x 500 MHz DDR3 UDOS O
arh R EE scli-125 | ooR3.ubgs# o
R DDR3 LOQS ©
DDR3_LDQS# O
“on board - e
/ oscillator — =y 0x0008041F L2 CACHE
~825 Mz (AL PACKAGER
= | 5CIK base
e DUAL PORT
BLOCK RAM
s clk 125 2125 MHZ 4
o QSRR LOCAL R (8
cdrinno o A TIME, ;
w\miﬂj 625 e | COUNTER .%
. 48 bit SAMPLE =3
e B o EVENT AT 3
AT e /B — LIA_TIME g
clk_ct 625 Mz, .H - I‘ LICACHE 0x00080100) GCU 1D H
s = o s event i | COUNTER 20 us deep
Ck_cdp
FMC ADC INTERFACE
" vERRLOW
WRITE [[OVERFLOW =l Reister FMC
<—— HANDLER space
ADN2817ACPZ) e
B S event is: INT selftest pulse wertest croit
e 5 vime 125 MH> .
CDR o=) f : S —‘1 e u |
s b e — & 08 s 1 ‘
e dataoul ol L DRI Sl COMMAND ¥ 1 So0r cLk ADC AMP
o - Sih v DECODER K syne — ADC
L L == e _ Y
TRIGGER el Mux
GENERATOR £[[€] € 128 3 125 VHz
12¢ |- CDR - 2||3] 2
Threshold —~&Hs| 5 &
corares INIT o scousmon, HIEE
S5 S 128 @ 125 MH.
e 318l 8 . TAG
Trigger TX .| IRIGGLR_RQST 2 le| & . =
sk e A 5
DS shikrepo = :‘ I ADU INTERFACE SO0MHS
wos Smircpo €] encoder = <
synchronization DATA VULCAN
s —Toc s clk 25 mmr TRIGGER
sl o : -
e controller HW 1588 PTP 62.5 Wiz el
wewo Round trp
:l = time. synch
Mt l measurement

14-16 November 2016

JUNO workshop

s Brussels

ADCs I/F and Data Readout

DDR3 controller(MIG)

PACKAGER
FSM

|

AXI_DATAMOVER:

transfer AXl4

(address map) to AXI4 streams.
AXIS INTERCONNECT: arbitrate
multiple AXI4S ports.

AXI4S

—> AX_FIFO

READ
@Local time-20us

14-16 November 2016

WRITE
@Local time

JUNO workshops Brussels

-------- >
DAQ
AXIS_ AX14S
INTERCONNECT [2| Egress Data
AE (To IPBuS)
Ll
O
<t
7
WRITE «—| 2 < ADC
HANDLER G
P
>
(Vp)]

Data Readout

Data Readout is performed via IPBUS. The data rate achieved is ~90 Mbit/sec with block data transfers (the IPBUS
efficiency increases with the payload). Accepted events are stored in the cache waiting to be pulled out by software in
bunch of 5in 5.

GCU
FPGA
32 bi Address = DWORD address
o L its
fast IPBUS w
{7) w| Slave0
ethernet core 2 IPBUS S| e
z 5 Configuration
< > < >< > (7] Status
‘S N\ ‘:’; Space
= on| oxoo000000
o & to
— 0x000000ff DDR3
: MIG
GCU ID e 0x00000100
MAC /\<:> Controller to
IP L Slavel 0x000800ff
< paQ AX14
— —"
S| 0x00000100
2 q t
Each GCU is assigned gﬂ OX000804F
with an unique device- Cache
ID, MAC and IP 32 bits V<:> 0x00080100
addresses and must g to
. Slave 2 0x000804ff
match with the wl >0
information stored in the "/ <G| Configuration
q ﬁ| (75} Status
connection file <:> n| space
= | oxo0080500
o to
| 0x00080513

14-16 November 2016

JUNO workshops Brussels

TsingHua ADC Test SetUp

e

Ra)
=
o
o0
I
»
@
o
(o}
IS}
=~
Q.
<
=

0-

L7 LNEAR
L TMUG28Y

:
1 [00 O

rnv oo

14-16 November 2016 JUNO workshops Brussels

Data Package Structure

Header I Trailer

N (optiona)

15 14 13 0 15 0
x805A(maker) reserved 14bit ADC Data 0x00
GCU ID : Oxi2
Trigger No. 0x34
Packet size 8bit 0x56
Time stamp 64bit (64 samples; for normal 0x78

1G samples for SN)
Trigger No.

GCU ID

x8069

14-16 November 2016 JUNO workshops Brussels 10

Data Buffer Capability

e L1 Cache => Ring buffer
* Maximum trigger latency: 20us
* Cachel size = 16Gbps x 20us = 320kbits

e |2 Cache =>internal ram & DDR3

For internal ram (normal event)

e Readout window width: 90 ns

* Eventsize : 128 bit header + 16bit x 90 samples ~ 1600 bits
e Event cache capability 20 events = 32Kbit

For DDR3 (Supernova)

* Readout window width: 1s

* Eventsize: 128 header+ 16 x 1G = 2GB
* Event cache capability 1events = 2GB

All the calculation is without data compression.

14-16 November 2016 JUNO workshops Brussels

11

Data rate

* The raw data rate generated by ADC is 16 Gbps/1ch
* FMC to FPGA bandwidth is 32 Gbps(2 TsingHua ADC).
e After selecting one out of two chips: 16 Gbps

 DDR3 write bandwidth is 800 MHz x 16bits x 2 x 85%(efficiency)
= 21.76 Gbps

 Max Ethernet’s bandwidth (IPBus) is ~ 90 Mbps
* Normal mode (event validation), 1600b x 1KHz = 1.6 Mb/s
* |In Autotrigger mode : 40 samples x 16 bit x 50 KHz = 32Mb/s

14-16 November 2016 JUNO workshops Brussels

12

DAQ Readout tests(1)

» IPBUS Readout works in pull mode, e.g. Server
retrieves data from GCUs memory

» Test code reads many times from blockram
Istantiated in Kintex7 as IPBUS slave

» A C++ routine reads back 10000 times a
variable size buffer and measure elapsed time

» Link speed forced to 100BaseTx

» Topology: 1 ipbus client (PC) — 1 target
(KC705) (no control hub)

14-16 November 2016 JUNO workshops Brussels 13

DAQ Readout tests(2)

Bram Readout test

100
90
80]
70)
60

50

Readout Speed [Mbits/s]

0 10000 20000 30000 40000 50000 60000

Buffer size [bytes]

Buffer Size = 16Kbit

14-16 November 2016 JUNO workshops Brussels

DAQ Readout tests(3)

Details for smallests buffer sizes

5
4,5
4
35
3
2,5
2
15

Readout Speed [Mbits/s]

1
0,5
0

14-16 November 2016

20 40 60 80 100
Buffer Size [Bytes]

JUNO workshops Brussels

120

140

15

Remote debugging — Virtual JTAG over IPBUS(1)

Virtual JTAG components

« Xilinx Debug & Programming tools (Impact™ and Chipscope™, also
Vivado™) are able to connect to a TCP port service named
xilinx_xvc

« ATcp server implementing this xvc protocol and able to perform
ipbus operations (uhal library).

. IPBUS slave on Spartan6 (named JTAG TAP) drives TDI-TMS-TCK-[TDO]
of the kintex7)

14-16 November 2016 JUNO workshops Brussels

16

Remote debugging — Virtual JTAG over IPBUS(2)

o Trivial configuration from the tools side: just
specify the protocol and the address:

Cable Communication Setup

Platform Cable USB/II ’ /,._\ \
=

Digilent USB JTAG Cable y

ChipScope Pro

TCK Speed/Baud Rate:

® Parallel Cable 11l

Parallel Cable IV

Port:

4

-
v

pScope Pro Analyzer [new project] Open Plug-in

@ Local

Host Name El Plug-in Parameters
xilinx_xvc host=192.168.0.11:2542 disableversioncheck=true

Remote

able Plug-in

¥| Open Cable Plug-in. Select or enter a Plug-in frot

xilinx_xvc host=192168.0.11:2542 disableversi v

‘ OK Cancel Help

14-16 November 2016 JUNO workshops Brussels

17

Remote debugging — Virtual JTAG over IPBUS(3)

Component on PC:

- Xilinx tools
- XVC server
- uhal library — ipbus

Kintex7

JTAG wires
Virtual JTAG cable TDI
ssv-::tgh e
Cat6 TMS
TCK

Spartan6

Small Spartan6 FPGA acts as Xilinx remote cable, |PBus slave (JTAG TAP) lives here

14-16 November 2016 JUNO workshops Brussels 18

Remote debugging — Virtual JTAG over IPBUS(4)

Current status:
« Kc705 board successfully programmed with

Impact (running on PC) + Xvc server (running
in a small sigle board PC) able to mimic JTAG
with onchip GPIO [takes several minutes];

« Ongoing developement on IPBUS JTAG slave;
simple bitbanged GPIO is very slow — The
buffering defined in the XVC protocol should be
exploited.

14-16 November 2016 JUNO workshops Brussels 19

GCU Trigger Interface Overview

14-16 November 2016

CTS TRG
A
White 1
Rabbit
Slow
IPBUS | control WR node BEC
4 FPGA
v Gl b‘I'T' Y
obal Iime

Internal 48b/8b

»> logic encoder
\ b A

8 o
ot

b E i
2 8 gl S g
E_Ij o s} —% 3
o OO E
= % TTC TX o,% =

v Res
sk TTCFANOUT *

4
* *
TTC RX TTC RX *
GCU 48
GCU 1

JUNO workshops Brussels

Synchronous upstream trigger request
channel.

Downstream trigger validation command:
asynchronous (max latency); the trigger
validation command is tagged with the time
windows.

Synch links bandwidth
Mbps.

The sync links downstream and upstream
should not carry information only on trigger
but we need to encode asynchronous and
synchronous commands.

To open the possibility to send to all the GCU
synchronous command all the blocks marked
with * must have a fixed latency.

The Downstream protocol is based on CERN
TTCrx/tx.

Upstream we have to accommodate 48
decoders in the BEC FPGA; simple protocol.
BEC FPGA resources issue.

Level trigger. Trigger request information is
updated every 16 ns.

Both TTC RX as well as the upstream encoder
incorporate programmable coarse delay to
compensate for the electronics and cable
propagation delays.

requirement: 250

20

TTCrx/tx Overview

CHA

v

CHB

v

System Clock

v

TTCTX

Encoder
&
Multiplexer

'

Channel Encoder

Two communication channels are Time
Division Multiplexed and channel B is
encoded using the Hamming code scheme.

Data stream is BiPhase Mark Encoded (BMC)
before to be transmitted over the physical
channel.

A\ 4

More info about the data framing at:

TTC TX and TTC RX are endowed
with a coarse programmable
delay; up to 128 ns (~ 25 m) of
cable mismatch compensation.

FANOUT http://ttc.web.cern.ch/TTC/
e I
TTC RX 625MHz__ gystem clock recovered by the CDR
L1A_Time L
BMC Decoder Supernova :
& Test Pulse - CHB broadcast
Demultiplexer Event Counter Reset g commands
‘Mmqmm_; (short frame)
CHBl CHA Time reg .

14-16 November 2016

Local Time Reset

Hamming Decoder

v
.

CHA low latency

JUNO workshops Brussels

Synch
Delay CHB individual addressed
Stop/start acquisition commands (long frame)

21

TTC—TDM and BMC

Time Division Multiplexed:

P 16 ns
™~

N
-~
X CHA X_ X

Bi-phase Mark Code:

B : : : : Transition on every rising clock edge,
h 4 ~ 4 .
clk 125 MHz Data = 1 = bi-phase,
: : : : : Data = 0 = constant level during Tck

data 1 0 : 0 1 . 1

Pro and cons:
+ DC balanced
+ self-clocking
- Half channel bandwidth available

encoded data

All this does not come for free! We cannot fit many TTC RX in a single FPGA therefore for the upstream channel we
need a simpler protocol.

Device Utilization Summary (estimated values) ‘ -1
Logic Utilization Used Available Utilization
Number of Slice Registers 162 202800 0%
Number of Slice LUTs 258 101400 0%
Number of fully used LUT-FF pairs 116 304 Q38%
Number of bonded 10Bs 53 400 13%
Number of BUFG/BUFGCTRLs 2 32 6%

14-16 November 2016 JUNO workshops Brussels

Upstream Trigger Protocol

* The upstream trigger request link, from the GCU to the TRG, must be synchronous (fixed latency).
* Trigger on the level.

* Trigger request is updated every 16 ns.
* Not only trigger; we need to send to the BEC synchronous commands. Likewise TTC, the trigger request (T) is Time
Division Multiplexed with the data/command frame bits (D):

, 16ns , 16ns , 16ns
/ 7 7 7
XD X T X b X1t X1 X_ T X
frame bitn -1 trigger frame bit n trigger frame bit n +1 trigger

* Dataframing: 1 start bit + 8 bit of data + 1 parity bit (optional) + 1 stop bit.

[bit number 1 2 3 4 5 6 7 8 9 10 11
Start H H H H D D D D p Stop
* Command table: « Channel encoding: Manchester (PE); it guarantees no DC bias and is
self-clocking. The channel can be AC coupled.
HHHH DDDD command : : : : :
0000 0000 COMMA clk 125 MHz 1 [¢ [¢ [¢ [¢ |
0001 XX XX BACK_PRS_ON : : : : :
0010 XXXX BACK_PRS_OFF -
0011 XXXX DELAY REQ data | 1 D S L
0100 DDDD TIME _ : : : :
0101 0101 IDLE encoded data : | : | ‘1" logic = 0 = 1 transition
0110 2,8, 108 —i— : ' ‘0’ logic = 1 = 0 transition
TDB

* A doubled channel bandwidth is required.

14-16 November 2016 JUNO workshops Brussels 23

Global time

Synchronous operations

TRG

At each level of the system there is an
exact copy of the global time therefore
it is possible to program all the nodes to
execute synchronous operations.

Does WR allow sending synchronous
commands from TRG to all the BECs ? IF
not, the synchronous operations must
be predictable and programmed in
advance; the system won’t be
responsive to non predictable events.

The programmable delays open
the possibility for sending
synchronous commands
between BECs and GCUs. The
cable and electronics delay

mismatch compensation is

mandatory; all the downstream

and upstream delays have to be

aligned toward the maximum

GCU latency in the system.

14-16 November 2016

White Rabbit
network
BEC BEC
Global time Global time
fixed latency | sdeesssssssessssssssssssssssss e fixed latency
electronics delay electronics delay
programmable programmable
delay delay
programmable programmable programmable programmable
delay
fixed latency fixed latency fixed latency
electronics delay | |77 electronics delay electronics delay | | ™77 electronics delay
Global time Global time Global time Global time
GCU GCU GCU
| |
GCU BUNCH GCU BUNCH

JUNO workshops Brussels

24

Clock alignment 1588 PTP over synch links

» t1 g—tl1_|=clock offsetto be compensated

Globzl_i?rime Loc(aslc'ﬁme » At t1 g BEC sends a synch message to GCU tagged with the
BEC global time.
tl g t1 | » GCU records the reception time t2_|.

Synch(tl\g} » GCU computes t1_g—t2 | = clock offset + downstream delay.
t2_| » GCU sends a delay request message to BEC and records the
t3_| transmission time t3 /.

de\a\l/‘ea » BEC records the reception time t4 g and sends back a delay

", message tagged with t4 g.
5 g » GCU computes t4 g —t3 | =upstream delay.
B de/al’(t 4 » Let’s assume t_diff = downstream delay — upstream delay.
| » t_diff is mainly due to the electronics delay mismatch between
the downstream and upstream channels; known parameter.
| ‘L » GCU can finally compute the offset:

clock offset=t1_g-t2 |- (t4_g-t3_l) - t_diff

This procedure, arbitrarily started by BEC must be repeated periodically and does not require the stop of data acquisition
and generation of trigger requests. Indeed these synchronization messages can be sent among trigger requests and
validations; t3_| — t2_| and t5_g — t4_g latencies are allowed to be non-deterministic since the important timestamp
information is attached with the messages.

14-16 November 2016 JUNO workshops Brussels 25

Clock Alignment Control

BEC card must periodically monitor the clock alignment status of the whole GCU bunch and eventually individually repeat

the synchronization procedure and/or stop the data acquisition of a GCU resulting non-synchronized.

BEC 7
_ KX All the downstream
time
fime — time channels have the
- _ same latency therefore
me-red all the GCUs receive
time_req message at
the same instant.
GCUl GCU2 GCU3 ... GCU48 3
\ J
|
GCU bunch

» BEC broadcasts the time req command to all the GCU belonging to the bunch.
» Each GCU records the reception time and sends upstream the timestamp:

start 0 1 0 0 D D D D P stop

» The time information is encoded in several frames (4 bits each frame) depending on the number of bit of the local
time counter (open point).

» BEC checks if the timestamps are aligned within 16 ns. If a GCU loses the synchronization it must be asked to stop
the data acquisition and trigger request generation until a new alignment procedure has been successfully
performed.

» This alignment check can be done runtime without stopping the data acquisition.

» BEC has the possibility to start and stop the data acquisition and subsequent trigger request generation via
synchronous links using both broadcast commands or individual addressed commands.

14-16 November 2016 JUNO workshops Brussels

26

Example : Test Pulse

* The test pulse is an example of predictable synchronous operation.

e Each GCU should start the test pulse generation at a well defined time.

* Itisanimportant test for calibration, electronics monitor and TRG training.

 There will be a register reserved for the test pulse in the GCU configuration space. Via
slow control sw can write this register with the time value at which the operation have
to be executed.

e All GCU may be programmed to generate the test pulse at the same time.

e Or SW can program the BEC to broadcast the test pulse command to all the GCU
belonging to that bunch at a preset time.

14-16 November 2016 JUNO workshops Brussels

27

Local Clock Reset and Event Counter Reset

 The local time counter reset operation is synchronous; even for this operation is not
possible to send a synchronous reset message from the CTS to all the GCUs but instead
CTS, BECs and GCUs must all be programmed to auto-generate a synchronous internal
reset at a pre-programmed time t_reset.

* The local clock reset can be used to prevent the time counter overflow.
e The event counter reset operation is another example of predictable synchronous

operation. The BEC card can broadcast the event counter rest command to all the GCU
belonging to that bunch via TTC system.

14-16 November 2016 JUNO workshops Brussels

28

GCU Firmware Schedule

 End 2016 - Q1/2017: prototype firmware for hardware test
 FMC, ADC I/F

 DDR3

* Cable drivers/receivers + power, HV I/F
 Ethernet

* CPLD

* CDR

e Q22017 : deployment firmware V. 0.0
* Needs ASAP

e ADCs (either Vulcan and Tsinghua)
* BEC
* Trigger “processor”
* “Final” cable
e Power Board
* Prototype DAQ

14-16 November 2016 JUNO workshops Brussels

29

