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Outline


•  GCU	hardware	status	and	@me	schedule	
•  Firmware	Overview	
•  Management	SoGware	Overview	
•  IPBUS	and	Remote	Debugging	-	Xilinx	Virtual	Cable	
•  Trigger	Overview	
•  Timing	and	Clock	Synchroniza@on	
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Hardware Status


•  PCBs	arrived	on	2nd	of	November	
•  Now	being	assembled	at	an	

external	company	
•  Delivery	foreseen	for	this	week	
•  Wai@ng	for	a	picture	…	

•  Power	on	tests	will	start	next	week	
•  Complete	test	with	custom	

firmware	immediately	aGer	



14-16	November	2016	 JUNO	workshops	Brussels	 4	

Hardware Status
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Hardware Status
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Firmware Block Diagram
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ADCs I/F and Data Readout
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Data Readout

Data	 Readout	 is	 performed	 via	 IPBUS.	 The	 data	 rate	 achieved	 is	 ~90	 Mbit/sec	 with	 block	 data	 transfers	 (the	 IPBUS	
efficiency	 increases	with	the	payload).	Accepted	events	are	stored	in	the	cache	wai@ng	to	be	pulled	out	by	soGware	 in	
bunch	of	5	in	5.	
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TsingHua ADC Test SetUp
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Data Package Structure
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Data Buffer Capability


•  L1	Cache		=>	Ring	buffer		
•  Maximum	trigger	latency:	20us	
•  Cache1	size	=	16Gbps	x	20us	=	320kbits	

•  L2	Cache		=>	internal	ram	&	DDR3	
For	internal	ram	(normal	event)	
•  Readout	window	width:	90	ns	
•  Event	size	:	128	bit	header	+	16bit	x	90	samples	~	1600	bits		
•  Event	cache	capability	20	events	=	32Kbit	

									For	DDR3	(Supernova) 		
•  Readout	window	width:	1s	
•  Event	size	:	128	header	+	16	x	1G	=	2GB	
•  Event	cache	capability	1events	=	2GB	
	

All	the	calcula@on	is	without	data	compression.	
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Data rate


•  The	raw	data	rate	generated	by	ADC	is	16	Gbps/1ch	
•  FMC	to	FPGA	bandwidth	is	32	Gbps(2	TsingHua	ADC).	
•  AGer	selec@ng	one	out	of	two	chips:	16	Gbps	

•  DDR3	write	bandwidth	is	800	MHz	x	16bits	x	2	x	85%(efficiency)	
=	21.76	Gbps	

•  Max	Ethernet’s	bandwidth	(IPBus)	is	~	90	Mbps	
•  Normal	mode	(event	valida@on),	1600b	x	1KHz	=	1.6	Mb/s	
•  In	Autotrigger	mode	:	40	samples	x	16	bit	x	50	KHz	=	32Mb/s	
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DAQ Readout tests(1)


Ø  IPBUS Readout works in pull mode, e.g. Server 
retrieves data from GCUs memory 

Ø  Test code reads many times from blockram 
istantiated in Kintex7 as IPBUS slave  

Ø  A C++ routine reads back 10000 times a 
variable size buffer and measure elapsed time 

Ø  Link speed forced to 100BaseTx 
Ø  Topology: 1 ipbus client (PC) → 1 target 

(KC705) ( no control hub)  
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DAQ Readout tests(2)


Buffer Size = 16Kbit 
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DAQ Readout tests(3)

Details for smallests buffer sizes 
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Remote debugging – Virtual JTAG over IPBUS(1)


l  Xilinx Debug & Programming tools (Impact™ and Chipscope™, also 
Vivado™) are able to  connect to a TCP port service named 
xilinx_xvc  

l   A Tcp server implementing this xvc protocol and able to perform 
ipbus operations ( uhal library).  

l  IPBUS slave on Spartan6 ( named JTAG TAP) drives TDI-TMS-TCK-[TDO] 
of the kintex7)  

Virtual	JTAG	components	
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Remote debugging – Virtual JTAG over IPBUS(2)


l  Trivial configuration from the tools side: just 
specify the protocol and the address: 
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Remote debugging – Virtual JTAG over IPBUS(3)


Kintex7 

Spartan6 

ETH 
switch 

GCU 

MII 

MII 

- Xilinx tools  
- xvc server 
- uhal library → ipbus 

Cat6  

JTAG wires 
TDI 
TDO 
TMS 
TCK 

Small Spartan6 FPGA acts as Xilinx remote cable,  IPBus slave (JTAG TAP) lives here 

Virtual JTAG cable 

Component on PC: 
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Remote debugging – Virtual JTAG over IPBUS(4)


Current status: 
l  Kc705 board successfully programmed with 

Impact (running on PC)  + Xvc server (running 
in a small sigle board PC) able to mimic JTAG 
with onchip GPIO [ takes several minutes]; 

l  Ongoing developement on IPBUS JTAG slave; 
simple bitbanged GPIO is very slow →  The 
buffering defined in the XVC protocol should be 
exploited.  
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GCU Trigger Interface Overview
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•  Synchronous	 upstream	 trigger	 request	
channel.	

•  Downstream	 trigger	 valida@on	 command:	
asynchronous	 (max	 latency);	 the	 trigger	
valida@on	 command	 is	 tagged	 with	 the	 @me	
windows.	

•  Synch	 links	 bandwidth	 requirement:	 250	
Mbps.	

•  The	 sync	 links	 downstream	 and	 upstream	
should	 not	 carry	 informa@on	 only	 on	 trigger	
but	 we	 need	 to	 encode	 asynchronous	 and	
synchronous	commands.	

•  To	open	the	possibility	to	send	to	all	the	GCU	
synchronous	 command	 all	 the	 blocks	marked	
with	*	must	have	a	fixed	latency.	

•  The	 Downstream	 protocol	 is	 based	 on	 CERN	
TTCrx/tx.	

•  Upstream	 we	 have	 to	 accommodate	 48	
decoders	 in	 the	 BEC	 FPGA;	 	 simple	 protocol.	
BEC	FPGA	resources	issue.	

•  Level	 trigger.	 Trigger	 request	 informa@on	 is	
updated	every	16	ns.	

•  Both	TTC	RX	as	well	as	the	upstream	encoder	
incorporate	 programmable	 coarse	 delay	 to	
compensate	 for	 the	 electronics	 and	 cable	
propaga@on	delays.		
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TTCrx/tx Overview


System	Clock	

Encoder		
&		

Mul@plexer	

CHB	 CHA	

Channel	Encoder	
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TTC	TX	
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Hamming	Decoder	
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62.5	MHz	

L1A_Time	

Supernova	

Event	Counter	Reset	

Local	Time	Reset	

Test	Pulse	

Two	 communica@on	 channels	 are	 Time	
Division	 Mul@plexed	 and	 channel	 B	 is	
encoded	using	the	Hamming	code	scheme.	

Data	stream	is	BiPhase	Mark	Encoded	(BMC)	
before	 to	 be	 transmived	 over	 the	 physical	
channel.	

More	info	about	the	data	framing	at:	
hvp://vc.web.cern.ch/TTC/	

CHA	low	latency	

CHB	broadcast		
commands	
(short	frame)	

System	clock	recovered	by	the	CDR	

Synch	
Delay	 CHB	individual	addressed	

commands	(long	frame)	

TTC	 TX	 and	 TTC	 RX	 are	 endowed	
with	 a	 coarse	 programmable	
delay;	 up	 to	 128	 ns	 (~	 25	 m)	 of	
cable	mismatch	compensa@on.	

Time_req	

Stop/start	acquisi@on	

Stop/start	acquisi@on	

CHA	

CHB	
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TTC – TDM and BMC


•  Transi@on	on	every	rising	clock	edge,	
•  Data	=	1	à	bi-phase,	
•  Data	=	0	à	constant	level	during	Tck	

Pro	and	cons:	
+	DC	balanced	
+	self-clocking	
-	Half	channel	bandwidth	available		

Bi-phase	Mark	Code:	

Time	Division	Mul@plexed:	

All	this	does	not	come	for	free!	We	cannot	fit	many	TTC	RX	in	a	single	FPGA	therefore	for	the	upstream	channel	we	
need	a	simpler	protocol.		
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Upstream Trigger Protocol

•  The	upstream	trigger	request	link,	from	the	GCU	to	the	TRG,	must	be	synchronous	(fixed	latency).	
•  Trigger	on	the	level.	
•  Trigger	request	is	updated	every	16	ns.	
•  Not	only	trigger;	we	need	to	send	to	the	BEC	synchronous	commands.	Likewise	TTC,	the	trigger	request	(T)	is	Time	

Division	Mul@plexed	with	the	data/command	frame	bits	(D):	
	

•  Data	framing:	1	start	bit	+	8	bit	of	data	+	1	parity	bit	(op@onal)	+	1	stop	bit.	

•  Command	table:	
	

•  Channel	encoding:	Manchester	 (PE);	 it	 guarantees	no	DC	bias	and	 is	
self-clocking.	The	channel	can	be	AC	coupled.	

•  A	doubled	channel	bandwidth	is	required.	

‘1’	logic	=	0	à	1	transi@on	

‘0’	logic	=	1	à	0	transi@on	
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Synchronous operaUons


CTS	 TRG	

GCU	BUNCH	

programmable	
delay	

fixed	latency	
electronics	delay	

programmable	
delay	

fixed	latency	
electronics	delay	

programmable	
delay	

fixed	latency	
electronics	delay	

programmable	
delay	

fixed	latency	
electronics	delay	

programmable	
delay	

fixed	latency	
electronics	delay	

programmable	
delay	

fixed	latency	
electronics	delay	

GCU		 GCU		

BEC	 BEC	

GCU	BUNCH	

GCU		 GCU		

Global	@me	

Global	@me	

Global	@me	 Global	@me	 Global	@me	 Global	@me	

Global	@me	

White	Rabbit		
network	

•  At	 each	 level	 of	 the	 system	 there	 is	 an	
exact	 copy	of	 the	 global	@me	 therefore	
it	is	possible	to	program	all	the	nodes	to	
execute	synchronous	opera@ons.	

•  Does	 WR	 allow	 sending	 synchronous	
commands	from	TRG	to	all	the	BECs	?	IF	
not,	 the	 synchronous	 opera@ons	 must	
be	 predictable	 and	 programmed	 in	
advance;	 the	 system	 won’t	 be	
responsive	to	non	predictable	events.		

1588	PTP	

The	programmable	delays	open	
the	 possibility	 for	 sending	
s y n c h r onou s	 c ommand s	
between	 BECs	 and	 GCUs.	 The	
cable	 and	 electronics	 delay	
mismatch	 compensa@on	 is	
mandatory;	all	the	downstream	
and	upstream	delays	have	to	be	
aligned	 	 toward	 the	maximum	
latency	in	the	system.	
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Clock alignment 1588 PTP over synch links


BEC	
Global	Time	

GCU	
Local	Time	

synch(t1_g)	

delay(t4_g)	

t1_g	

t2_l	

t1_l	

t3_l	

t4_g	

t5_g	

t6_l	

Ø  t1_g	–	t1_l	=	clock	offset	to	be	compensated		

Ø  At	 t1_g	 BEC	 sends	 a	 synch	message	 to	GCU	 tagged	with	 the	

BEC	global	@me.	

Ø  GCU	records	the	recep@on	@me	t2_l.	

Ø  GCU	computes	t1_g	–	t2_l	=	clock	offset	+	downstream	delay.	

Ø  GCU	 sends	 a	 delay	 request	message	 to	 BEC	 and	 records	 the	

transmission	@me	t3_l.	

Ø  BEC	 records	 the	 recep@on	@me	 t4_g	 and	 sends	 back	 a	 delay	

message	tagged	with	t4_g.	

Ø  GCU	computes	t4_g	–	t3_l	=	upstream	delay.		

Ø  Let’s	assume	t_diff	=	downstream	delay	–	upstream	delay.	

Ø  t_diff	is	mainly	due	to	the	electronics	delay	mismatch	between	

the	downstream	and	upstream	channels;	known	parameter.	

Ø  GCU	can	finally	compute	the	offset:	

	clock	offset	=	t1_g	–	t2_l	–	(t4_g	–	t3_l)	–	t_diff	

This	procedure,	arbitrarily	started	by	BEC	must	be	repeated	periodically	and	does	not	require	the	stop	of	data	acquisi@on	
and	 genera@on	 of	 trigger	 requests.	 Indeed	 these	 synchroniza@on	 messages	 can	 be	 sent	 among	 trigger	 requests	 and	
valida@ons;	 t3_l	 –	 t2_l	 and	 t5_g	 –	 t4_g	 latencies	 are	 allowed	 to	 be	 non-determinis@c	 since	 the	 important	 @mestamp	
informa@on	is	avached	with	the	messages.	
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Clock Alignment Control

BEC	card	must	periodically	monitor	the	clock	alignment	status	of	the	whole	GCU	bunch	and	eventually	individually	repeat	
the	synchroniza@on	procedure	and/or	stop	the	data	acquisi@on	of	a	GCU	resul@ng	non-synchronized.	

BEC	

GCU1	 GCU2	 GCU3	 GCU48	

GCU	bunch	

>me_req	

Ø  BEC	broadcasts	the	>me_req	command	to	all	the	GCU	belonging	to	the	bunch.		
Ø  Each	GCU	records	the	recep@on	@me	and	sends	upstream	the	@mestamp:		
	

Ø  The	@me	informa@on	is	encoded	in	several	frames	(4	bits	each	frame)	depending	on	the	number	of	bit	of	the	local	
@me	counter	(open	point).	

Ø  BEC	checks	if	the	@mestamps	are	aligned	within	16	ns.	If	a	GCU	loses	the	synchroniza@on	it	must	be	asked	to	stop	
the	 data	 acquisi@on	 and	 trigger	 request	 genera@on	 un@l	 a	 new	 alignment	 procedure	 has	 been	 successfully	
performed.		

Ø  This	alignment	check	can	be	done	run@me	without	stopping	the	data	acquisi@on.	
Ø  BEC	 has	 the	 possibility	 to	 start	 and	 stop	 the	 data	 acquisi@on	 and	 subsequent	 trigger	 request	 genera@on	 via	

synchronous	links	using	both	broadcast	commands	or	individual	addressed	commands.	

start	 stop	P	0	 0	 0	1	 D	 D	 D	 D	

All	 the	 downstream	
channels	 have	 the	
same	 latency	 therefore	
all	 the	 GCUs	 receive	
>me_req	 message	 at	
the	same	instant.	

@me	
@me	

@me	
@me	
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Example : Test Pulse


•  The	test	pulse	is	an	example	of	predictable	synchronous	opera@on.	
	
•  Each	GCU	should	start	the	test	pulse	genera@on	at	a	well	defined	@me.	
	
•  It	is	an	important	test	for	calibra@on,	electronics	monitor	and	TRG	training.	
	
•  There	will	be	a	register	reserved	for	the	test	pulse	 in	the	GCU	configura@on	space.	Via	

slow	control	sw	can	write	this	register	with	the	@me	value	at	which	the	opera@on	have	
to	be	executed.	

	
•  All	GCU	may	be	programmed	to	generate	the	test	pulse	at	the	same	@me.	

•  Or	 SW	 can	 program	 the	 BEC	 to	 broadcast	 the	 test	 pulse	 command	 to	 all	 the	 GCU	
belonging	to	that	bunch	at	a	preset	@me.	
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Local Clock Reset and Event Counter Reset


•  The	 local	 @me	 counter	 reset	 opera@on	 is	 synchronous;	 even	 for	 this	 opera@on	 is	 not	
possible	to	send	a	synchronous	reset	message	from	the	CTS	to	all	the	GCUs	but	instead	
CTS,	BECs	and	GCUs	must	all	be	programmed	to	auto-generate	a	synchronous	 internal	
reset	at	a	pre-programmed	@me	t_reset.	

	
•  The	local	clock	reset	can	be	used	to	prevent	the	@me	counter	overflow.	
	
•  The	 event	 counter	 reset	 opera@on	 is	 another	 example	 of	 predictable	 synchronous	

opera@on.	The	BEC	card	can	broadcast	the	event	counter	rest	command	to	all	the	GCU	
belonging	to	that	bunch	via	TTC	system.	
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GCU Firmware Schedule


•  End	2016	-	Q1/2017:	prototype	firmware	for	hardware	test	
•  FMC,	ADC	I/F	
•  DDR3	
•  Cable	drivers/receivers	+	power,	HV	I/F	
•  Ethernet	
•  CPLD	
•  CDR	

•  Q2	2017	:	deployment	firmware	V.	0.0	
•  Needs	ASAP	

•  ADCs	(either	Vulcan	and	Tsinghua)	
•  BEC	
•  Trigger	“processor”	
•  “Final”	cable	
•  Power	Board	
•  Prototype	DAQ	


