

Progress of cables and connectors

Yunhua Sun Cables group, IHEP

Outline

Progress

- Underwater cables status
 - Demands of JUNO cables
 - Different structures
 - Capable cable structures to choose
- Cables test in deep well
- Connectors

Plan

Demands of JUNO cables

- In the actual use conditions, the network transmission requirements,
- In the actual use conditions, the clock and pulse signal transmission to meet the requirements,
- In the actual use conditions, power and ground impedance to meet the requirements
- The failure rate of the outer skin in pure water to achieve reliability requirements;
- To ensure that the appearance of the skin during the installation does not affect the electrical performance damage;
- The material will not pollution the water
- The fluorescence effect will not affect the physical experiments
- Connector and cable connection to achieve reliability requirements;
- After the outer skin damage, resulting in decreased transmission performance will not cause leakage;
- The watertightness of the waterproof connector meets the requirements
- The reliability of waterproof connectors
- The radioactivity of the cable as a whole
- Maximum bending radius, bending times
- Tensile strength of the outer jacket
- Cable anti-interference
- Anti-high-pressure performance
- Aging scheme
- Screening scheme

Different structures

- S1: Commercial cable + Teflon jacket
 - The most expensive structure
- S2: standard structure
 - jackets materials could be Teflon and PE
 - the foil is aluminum

Different structures

- S3: wire braid is added to S2
 - Braid makes the cable strength
- S4: quite like S3
 - PE tape is added
 - PE tape can keep the twisted wires in the right direction
 - Weight(S3/S4): about 6kg/100m
 - Price(S3/S4): almost same
- S4 is a better choice

New design: Double outer jackets

cable

- S5: Double HDPE jackets
 - offer additional resistance to water pressure
- Gel tape between the two jackets: block the water

New design: Double outer jackets

cable

- S6: one difference compare with S5
- Filled with expanded PE inside
 - Keep the twisted pairs in the right direction
 - offer additional resistance to water pressure
- Difficult to separate the conductor and expanded PE
- S5/S6 Weight: about 8kg/100m

New design : $4\Omega DC$ Resistance for one conductor

- > conductor : 20AWG(0.8mm)
- > outer diameter(OD) : 10mm
- Weight : about10kg/100m
- No standard plug to fit
- Theoretical minimum bend radius :
 10×OD
- Very hard to bend

Capable cable structures to choose

- Capable cable structure:S2/S4/S5/S6
 - S2: simple structure and good price
 - Problem: the water pressure
 - S4/S5/S6: more stable structure and acceptable price
- Sample cables to produce
 - HDPE jacket
- Ground
 - Use the wire braid as a separate ground
 - Low impedance

14/11/16

JUNO Electronics Workshop at Brussels

Purpose of the experiment in the well

- If cables impedance and electrical performance change with different depth water.
- If different structures have different changes.
- Which structure is the good for JUNO
 - More Stable
 - Electrical performance
 - Mechanical performance

Electrical test with BEC board

Cables test block diagram

14/11/16

JUN

Test with BEC board

- Clock jitter
 - original jitter of BEC board: j₀
 - jitter with the cable transmission: j₁

• Cables jitter J=
$$\sqrt{j_1^2 - j_0^2}$$

Use two computers to test network bandwidth.

Cables test in the well

14/11/16

JUNO Electronics Workshop in Brussels

TDR Test

Agilent 861000C

We used a 20cm long coaxial cable to connect the Agilent and JUNO_Cables .

•JUNO Electronics Workshop in Brussels

•14/11/16

JUNO Electronics Workshop at Brussels

JUNO Electronics Workshop at Brussels

JUNO Electronics Workshop in Brussels

TDR test(when cables broken)

Exposed twisted wires to water

✓ When the cable was damaged, the impedance change can be obversed.

JUNO Electronics Workshop in Brussels

Test with BEC board

- Damaged cable
 - performance test of clock jitter.
 - The jitter changed with time , but bandwidth not
 - Not got the stable status when we end the experiment.

2016/11/04						
BECvoltage: 3.42V BECcurrent: 3.71A						
POEvoltage: 23.98V POEcurrent: 0.51A						
No	water (m)	时间	OUT (ps)	IN (ps)	Jitter	bandwidth (MHz)
16	good	09:00	36	76	61.2454	
BEC voltage: 3.42V BEC current: 3.70A						
POE voltage: 23.99V POEcurrent: 0.51A						
No	water (m)	time	OUT (ps)	IN (ps)	Jitter	bandwidth (MHz)
17	34m(damaged)	10:02	37	180	174.284	
18		10:16	33	400	397.461	
		10:22		63	44.0908	94.6
19		10:36	39	236	231.67	94. 5
20		11: 02	32	198	192.819	94.6
21	36. 8	11:38	45	102	91.5369	94. 5
22	38. 2	12:13	51	180	174.284	94.4
23	37.2	12:48	44	86	73.2871	94. 5
24		15:34	44	123	114.473	94. 5
25	water pumping	16:30	42	247	242.866	94. 4
26	36.4	17:48	48	150	143.091	94. 3
27	37	20:25	41	256	252.014	94. 5
28		22:30	46	247	242.866	94. 5
2016/11/05						
BEC voltage: 3.42V BEC current: 3.69A						
POE voltage: 23.98V POE current: 0.51A						
No.	water (m)	time	OUT (ps)	IN (ps)	Jitter	bandwidth (MHz)
29	29.9	08:51	40	177	171.184	94.5
30	water pumping	09:57	55	177	171.184	94.5
31	39	11:44	57	177	171.184	94.4
32	38.8	14:53	55	210	205.122	94. 3
33	39.4	16:54	38	64	45.5082	94.5
34		21:13	43	113	103.653	94.4
35		22:22	50	89	76.7854	94.6

JUNO cables

- S4/S5/S6 structures are much more stable than S2.
- Commercial cables performance in the well are not good enough as they work on the ground, and worse than the cables we custom-made for JUNO.

Connector

- Considered the high reliability of JUNO, using connectors should be a good idea.
- Make a study of underwater connectors
 - Have got some conception design
 - Attempt to make prototypes and test

Plan

- More performance test in the water
- Prepare cables for the prototype
- Final design of cable
- Cable aging
- connectors test
 - Electronical performance
 - Reliability

Thank you! Questions and comments are welcome!