



#### 28th October 2016







#### Introduction

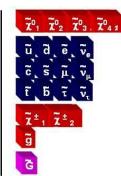
- Supersymmetry is the leading theoretical extension to the Standard model of particle physics.
- ▶ It predicts a number of additional particles which are the subject of many searches by the general purpose experiments at the LHC.
- Today I will discuss some of the ATLAS searches for strongly produced R-parity conserving supersymmetric particles.
- It isn't possible to cover all of the ATLAS searches for SUSY with the Run II data (it would also become a boring list).
- ▶ Therefore I will concentrate on 4 searches which I am either more connected with and/or I think would be interesting to this audience.

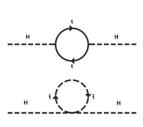




#### **Outline**

- ► The outline of my talk is:
  - ► Introduction to SUSY
  - Introduction to ATLAS
  - ▶ 0-lepton *m*<sub>eff</sub> search
  - 0-lepton high jet multiplicity search
  - ightharpoonup Z+(jets+) $E_{
    m T}^{
    m miss}$  search
  - ▶ Stop search with 1-lepton
  - Conclusions




#### Introducing SUSY

- Supersymmetry postulates that every Standard Model particle has a supersymmetric partner differing in spin by a 1/2.
- This solves the hierarchy problem associated with the Higgs boson as the top loop is cancelled by the loop of it's partner.
- The partners with the same quantum numbers mix to form mass eigenstates.



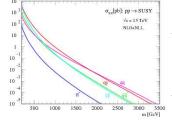


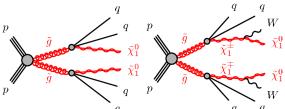






#### **R-Parity Conservation**

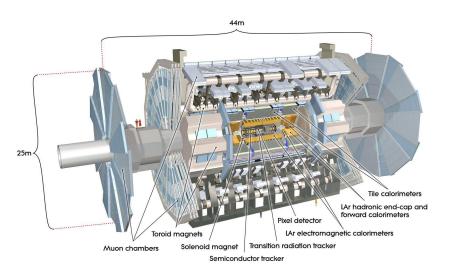

- ▶ To prevent proton decay it is common to introduce a conservation law known as R-parity where all supersymmetric particles have -1 and Standard Model particles have +1.
- This means that the lightest supersymmetric particle is stable and all supersymmetric particles need to be produced in pairs.
- As the lightest supersymmetric particle (LSP) is stable we usually consider it to be the lighest neutralino  $(\tilde{\chi}^0_1)$  as we haven't observed any coloured or charged stable massive particles.
- This will lie at the end of any chain of decay of produced SUSY particles and will pass through the detector undetected.
- ▶ This gives a characteristic signal for the models that we are searching for.
- ▶ It also makes the LSP a suitable dark matter candidate!






#### SUSY Particle Production and Decay

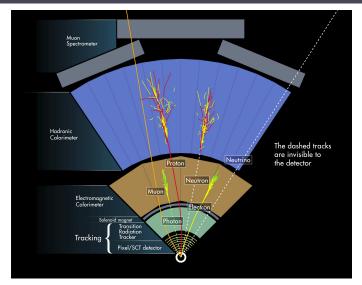
- ▶ The SUSY particles with the highest cross-section are those which carry colour-charge; the partners of the gluon; the gluino  $(\tilde{g})$ , and the quarks; the squarks  $(\tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b})$ .
- ► The searches described here are targeting the gluino and the stop.
- These are pair produced and then decay to SM particles and the LSP.
- There are a variety of ways that they can decay which depend on the masses of the different SUSY particles.
- In the models we consider here we pick single decay modes to set limits on the different models.











#### The ATLAS Detector







#### **Object Reconstruction**







#### **Object Reconstruction**

- Using a combination of the inner detector and the muon spectrometer we reconstruct muons.
- Using a combination of the EM calorimeter and the inner detector we reconstruct electrons and photons.
- Jets are formed from calorimeter energy deposits.
- At the analysis level there is an overlap removal which ensures that electrons (which leave deposits in the calorimeter) aren't also counted as jets.
- Tau identification uses a combination of the inner detector track information as well as the shape of the showers in the calorimeter.
- ▶ These form the basic objects upon which the analyses are based.





### Missing Transverse Energy: $E_{\rm T}^{\rm miss}$

- ▶ The conservation of momentum means that in the transverse plane to the beam all the particles momenta should balance.
- If we have a particle which doesn't interact with the detector then an imbalance will be observed and this 2-vector is referred to as E<sup>miss</sup><sub>T</sub>.
- ▶ The ATLAS  $E_{\mathrm{T}}^{\mathrm{miss}}$  reconstruction uses all the calibrated objects described on the previous slide including jets down to 20 GeV.
- ▶ For central jets with  $20 < p_T < 60 \,\text{GeV}$  we require that they are associated with the primary vertex.
- For soft-activity below this threshold neutral particles are ignored and with tracks from the primary vertex not associated with hard objects are used.







### **0**-lepton $m_{\rm eff}$ search

# SEARCHING AND LEARNING IS WHERE THE MIRACLE PROCESS ALL BEGINS

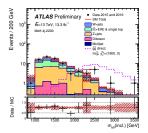
JIM ROHN
PICTURE QUOTES . com.

PICTUREQU®TES





#### **0**-lepton $m_{\rm eff}$ search: Intro.


- ▶ The first search I will talk about is the traditional 0-lepton  $m_{\rm eff}$  based search (link)
- ▶ This search has maintained the same methodology for many years and forms one of the key components of the ATLAS search for SUSY.
- During LS1 there was an effort to see how well we covered the more general SUSY parameter space and for models with "bino" LSP 89% of the models excluded by ATLAS could be excluded by this search alone.
- ▶ The motivation behind the search is that in the Standard model only  $Z \to \nu \nu$  produces real  $E_{\rm T}^{\rm miss}$  without the presence of leptons such that by vetoing leptons and then requiring many hard jets the standard model background is much reduced while maintaining large signal acceptance.





#### **0-lepton** $m_{\rm eff}$ search: Variables

- ▶ The primary variable is  $m_{\rm eff}$  which is defined as the scalar sum of all the jets in the event along with the  $E_{\rm T}^{\rm miss}$ .
- This is motivated by the mass of the two produced SUSY particles being significantly greater than the SM background.
- ▶ Cuts on the angle between the  $E_{\rm T}^{\rm miss}$  and jets, along with the ratio between  $E_{\rm T}^{\rm miss}$  and  $m_{\rm eff}$  reduce the QCD background from jet mis-measurement to negligible levels.
- Requiring the jets to be relatively central and the event shape to be "rounder" reduces the backgrounds from V+jets.

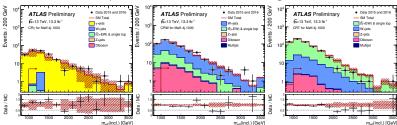






### **0-lepton** $m_{\rm eff}$ search: Variables

| Requirement                                                                    | Signal Region |              |              |              |              |              |  |  |  |
|--------------------------------------------------------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|--|--|--|
|                                                                                | Meff-4j-1000  | Meff-4j-1400 | Meff-4j-1800 | Meff-4j-2200 | Meff-4j-2600 | Meff-5j-1400 |  |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] >                                       |               | 250          |              |              |              |              |  |  |  |
| $p_T(j_1)$ [GeV] >                                                             |               | 200 500      |              |              |              |              |  |  |  |
| $p_T(j_4)$ [GeV] >                                                             |               | 100 150      |              |              |              |              |  |  |  |
| $p_T(j_5)$ [GeV] >                                                             | =             |              |              |              |              | 50           |  |  |  |
| $ \eta(j_{1,2,3,4})  <$                                                        | 1.2 2.0       |              |              |              | -            |              |  |  |  |
| $\Delta \phi(\text{jet}_{1,2,(3)}, E_{\text{T}}^{\text{miss}})_{\text{min}} >$ | 0.4           |              |              |              |              |              |  |  |  |
| $\Delta \phi(\text{jet}_{i>3}, E_{T}^{\text{miss}})_{\text{min}} >$            | 0.4           |              |              |              |              | 0.2          |  |  |  |
| Aplanarity >                                                                   | 0.04 -        |              |              |              |              |              |  |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(N_{\mathrm{j}}) >$            | 0.25          |              |              | 0.2          | 0.3          |              |  |  |  |
| $m_{\rm eff}({\rm incl.})~{\rm [GeV]}>$                                        | 1000          | 1400         | 1800         | 2200         | 2600         | 1400         |  |  |  |

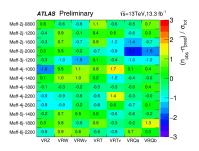

| Targeted signal                                                       | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ |              |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------|--|--|
| Requirement                                                           | Signal Region                                                             |              |  |  |
| rtequirement                                                          | Meff-6j-1800                                                              | Meff-6j-2200 |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV] >                                        | 250                                                                       |              |  |  |
| $p_T(j_1)$ [GeV] >                                                    | 200                                                                       |              |  |  |
| $p_T(j_6)$ [GeV] >                                                    | 50                                                                        | 100          |  |  |
| $ \eta(j_1,,6)  <$                                                    | 2.0                                                                       | -            |  |  |
| $\Delta \phi(\text{jet}_{1,2,(3)}, E_T^{\text{miss}})_{\text{min}} >$ | 0.4                                                                       |              |  |  |
| $\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$     | 0.2                                                                       |              |  |  |
| Aplanarity >                                                          | 0.08                                                                      |              |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(N_{\mathrm{j}}) >$   | 0.2                                                                       | 0.15         |  |  |
| $m_{\text{eff}}(\text{incl.}) [\text{GeV}] >$                         | 1800                                                                      | 2200         |  |  |





#### **0**-lepton $m_{\rm eff}$ search: Background Estimation

- ▶ The primary backgrounds to the search are  $Z \to \nu \nu + \text{jets}$ ,  $W \to l \nu + \text{jets}$ , and  $t\bar{t}$  (including  $t\bar{t} + V$  and single top).
- Those featuring leptons usually make it to the signal region either because the lepton is a hadronic  $\tau$  or because it failed the ID or  $p_T$  criteria.
- ▶ The  $Z \rightarrow \nu \nu$  background is estimated from a photon sample.
- ▶ The  $W \rightarrow l\nu$ +jets, and  $t\bar{t}$  backgrounds are estimated from regions requiring a lepton and are separated by the requirement of a b-tagged jet.
- ► The ratios between the "control regions" and the SR are taken from MC.
- ► A simultaneous fit is performed across the different regions.

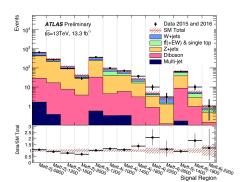







### **0**-lepton $m_{\rm eff}$ search: Results and Interpretation

- ▶ Validation regions with tightened criteria (or  $Z \rightarrow II$ ) are used to test the background estimate close to the SR.
- The yields in all the signal regions are consistent with the background estimation (lowest p-value 0.06).
- Therefore limits are set on the various models taking the best signal region at each point in the parameter space.

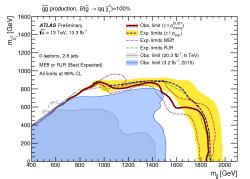


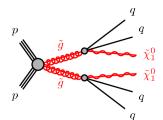





#### **0-lepton** $m_{\text{eff}}$ search: Results and Interpretation

- Validation regions with tightened criteria (or Z → II) are used to test the background estimate close to the SR.
- ► The yields in all the signal regions are consistent with the background estimation (lowest p-value 0.06).
- Therefore limits are set on the various models taking the best signal region at each point in the parameter space.






#### **0**-lepton $m_{\rm eff}$ search: Results and Interpretation

- Validation regions with tightened criteria (or Z → II) are used to test the background estimate close to the SR.
- ► The yields in all the signal regions are consistent with the background estimation (lowest p-value 0.06).
- Therefore limits are set on the various models taking the best signal region at each point in the parameter space.









### 0-lepton high jet multiplicity search



Maybe you are searching among the branches, for what only appears in the roots.

~ Rumi ~

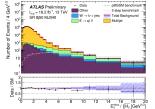


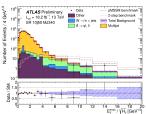




#### 0-lepton high jet multiplicity search: Intro

- The next search is another 0-lepton search but targetting longer decay chains (link).
- Mhen more particles are involved in the decay the available energy for the LSP is reduced and therefore so is the  $E_{\mathrm{T}}^{\mathrm{miss}}$ .
- ▶ This search therefore counts jets up to very high multiplicity and has a much softer cut on  $E_{\rm T}^{\rm miss}$ .
- Mhile the  $t\bar{t}$  and EW backgrounds are estimated in the same way as the first search a major component of the background is now QCD multi-jets which requires a specific data-driven approach.
- The analysis also employs a cut on the sum of the masses of large radius jets to take advantage of the "accidental substructure" present in these signals.


| Signal region                                                                                    | 8j 50                             | 9j50          | 10j 50 |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------|---------------|--------|--|--|
| $R = 0.4 \text{ jet }  \eta $                                                                    |                                   | < 2.0 for all | SRs    |  |  |
| $R = 0.4 \text{ jet } p_T$                                                                       | > 50 GeV for all SRs              |               |        |  |  |
| $N_{j et}$                                                                                       | ≥8                                | ≥9            | ≥10    |  |  |
| MΣ                                                                                               | > 340 GeV or> 500 GeV             |               |        |  |  |
| $\begin{array}{l} N_{j \text{ et}} \\ M_{J}^{\Sigma} \\ E_{T}^{miss} / \sqrt{H_{T}} \end{array}$ | > 4GeV <sup>1/2</sup> for all SRs |               |        |  |  |

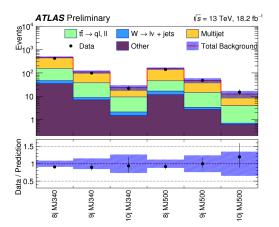





### **0-lepton high jet multiplicity search: Background Estimation**

- ▶ This search is designed for the determination of the multijet background.
- ▶  $E_{\rm T}^{\rm miss}/\sqrt{H_T}$ , where  $H_T$  is the scalar sum of jet  $p_{\rm T}$ , is an estimator of the significance of the  $E_{\rm T}^{\rm miss}$  from jet measurements.
- This means that for high jet multiplicities the shape of this distribution is invariant under changes in jet multiplicity.
- A template of the shape of this distribution is taken using 6-jet events, and then applied to the signal region multiplicities ( $\geq 8$ ).
- ▶ Intermediate jet multiplicities and value of  $E_{\rm T}^{\rm miss}/\sqrt{H_T}$  are used to validate the method.



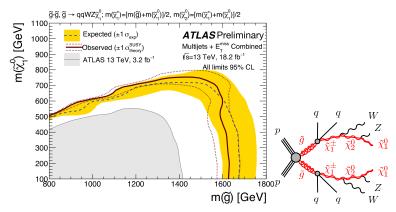







### 0-lepton high jet multiplicity search: Results

- Again good agreement is seen in all the signal regions with the SM background estimation.
- Limits are set using the best expected signal region.

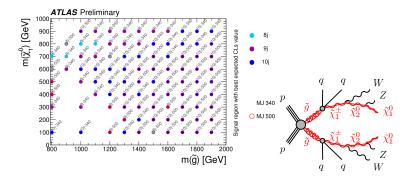







#### 0-lepton high jet multiplicity search: Results

- Again good agreement is seen in all the signal regions with the SM background estimation.
- Limits are set using the best expected signal region.








### 0-lepton high jet multiplicity search: Results

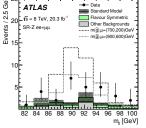
- Again good agreement is seen in all the signal regions with the SM background estimation.
- Limits are set using the best expected signal region.

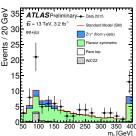






### $\overline{Z+(jets+)E_{T}^{miss}}$ search






### $Z+(jets+)E_T^{miss}$ search: Intro

- ► This search has given some interesting results in the recent past.
- ▶ The 2012 dataset yielded 29 events on an expected background of  $10.6 \pm 3.2$  a 3 sigma excess (arXiv:1503.03290).
- $\blacktriangleright$  With the 2015 data the search was repeated with  $\sim$ the same selection.
- $\blacktriangleright$  21 events were observed compared to the expectation of 10.3  $\pm$  2.3 a 2.2 sigma excess (ATLAS-CONF-2015-082)
- CMS saw no excess with the Run I data or in 2015.
- ▶ Now I will discuss the results with 14.7fb<sup>-1</sup>of 2015+2016 data.



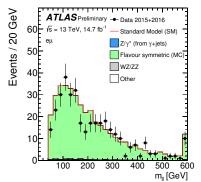






### $\overline{Z+(jets+)}E_{\mathrm{T}}^{\mathrm{miss}}$ search: Backgrounds

A series of different regions are used to estimate and validate the background estimation.

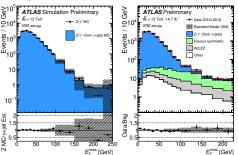

| On-shell Z regions | E <sub>T</sub> <sup>miss</sup><br>[G eV ] | H <sup>incl</sup><br>[G eV ] | n <sub>jets</sub> | m∵<br>[G eV ]           | SF/DF  | Δφ(jet <sub>12</sub> ,p miss) | m <sub>T</sub> (`3, E <sub>T</sub> <sup>miss</sup> )<br>[GeV ] | n <sub>b-jets</sub> |
|--------------------|-------------------------------------------|------------------------------|-------------------|-------------------------|--------|-------------------------------|----------------------------------------------------------------|---------------------|
| Signal region      |                                           |                              |                   |                         |        |                               |                                                                |                     |
| SRZ                | > 225                                     | > 600                        | ≥ 2               | 81 < m·· < 101          | SF     | > 0.4                         | _                                                              | -                   |
| Control region     | ns                                        |                              |                   |                         |        |                               |                                                                |                     |
| CRZ                | < 60                                      | > 600                        | ≥ 2               | 81 < m·· < 101          | SF     | > 0.4                         | _                                                              | _                   |
| CR-FS              | > 225                                     | > 600                        | ≥ 2               | 61 < m⋅⋅ < 121          | DF     | > 0.4                         | -                                                              | _                   |
| CRT                | > 225                                     | > 600                        | ≥ 2               | > 40, m · · ∉ [81, 101] | SF     | > 0.4                         | _                                                              | _                   |
| CRγ                | -                                         | > 600                        | ≥ 2               | -                       | 0`, 1γ | _                             | -                                                              | -                   |
| Validation re      | gions                                     |                              |                   |                         |        |                               |                                                                |                     |
| VRZ                | < 225                                     | > 600                        | ≥ 2               | 81 < m⋅ < 101           | SF     | > 0.4                         | -                                                              | _                   |
| VRT                | 100-200                                   | > 600                        | ≥ 2               | > 40, m · · ∉ [81, 101] | SF     | > 0.4                         | _                                                              | _                   |
| VR-S               | 100-200                                   | > 600                        | ≥ 2               | 81 < m⋅ < 101           | SF     | > 0.4                         | _                                                              | _                   |
| VR-FS              | 100-200                                   | > 600                        | ≥ 2               | 61 < m⋅⋅ < 121          | DF     | > 0.4                         | -                                                              | _                   |
| VR-WZ              | 100-200                                   | _                            | _                 | _                       | 3`     | -                             | < 100                                                          | 0                   |
| VR-ZZ              | < 100                                     | _                            | _                 | _                       | 4`     | -                             | _                                                              | 0                   |
| VR-3L              | 60-100                                    | > 200                        | ≥ 2               | 81 < m·· < 101          | 3`     | > 0.4                         | -                                                              | -                   |





### $Z+(jets+)E_{T}^{miss}$ search: Backgrounds - $t\bar{t}++$

- The flavour symmetric background is taken from an opposite flavour selection with a slightly widened m<sub>il</sub> window.
- Efficiency factors are applied to account for the differences in reconstruction, identification and trigger between electrons and muons.
- This estimation is checked in the region outside the Z peak in the SF selection.



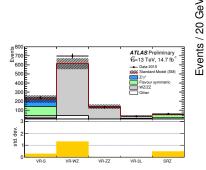


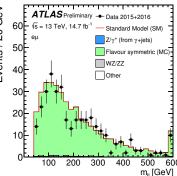



### $Z+(jets+)E_T^{miss}$ search: Backgrounds - Z+jets

- ► The Z+jets background comes from using a photon sample.
- ightharpoonup The photon sample is used to model the hadronic part of the  $E_{
  m T}^{
  m miss}$ .
- ▶ The difference in the resolution between reconstructed Z bosons and photons is then added to the events by smearing the photon  $p_T$ .
- ▶ The  $\gamma p_T$  is then re-weighted.
- ▶ The correlation between  $m_{\parallel}$  and the photon smearing is considered.
- ightharpoonup Contamination from  $\gamma + V$  in the CR is also considered.






### $Z+(jets+)E_T^{miss}$ search: Results

- Validation regions at intermediate E<sub>T</sub><sup>miss</sup> are used to x-check the background estimation.
- Additional VRs with multiple leptons check the MC modelling of the di-boson background.

 All regions (including the Signal Region!) show good agreement with the prediction.

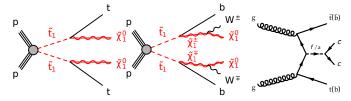








### Stop search with 1-lepton


"What is coming is better than what is gone."





#### Stop search with 1-lepton: Intro.

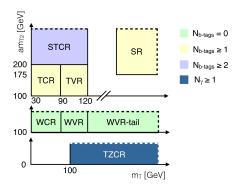
- ▶ The stop  $(\tilde{t})$  particle has a much lower x-section than the  $\tilde{g}$ , and often looks similar to  $t\bar{t}$  production (link)
- Therefore the searches for the stop are much more targetted and make greater use of kinematic variables.
- ▶ Three different models are considered in this analysis.
- Several signal regions are optimised for different mass points of these models.







### Stop search with 1-lepton: Signal Regions

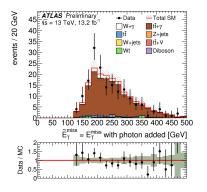

| Common event selection                                                        |                                                                                                                        |                                                                              |                 |  |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Trigger                                                                       | $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger                                                                               |                                                                              |                 |  |  |  |  |
| Lepton                                                                        | exactly one signal lepton $(e, \mu)$ , no additional baseline leptons                                                  |                                                                              |                 |  |  |  |  |
| Jets                                                                          | at least two signal jets, and $ \Delta \phi(\text{jet}_i, \vec{p}_T^{\text{miss}})  > 0.4 \text{ for } i \in \{1, 2\}$ |                                                                              |                 |  |  |  |  |
| Hadronic $\tau$ veto*                                                         | veto events wit                                                                                                        | veto events with a hadronic $\tau$ decay and $m_{T2}^{\tau} < 80 \text{GeV}$ |                 |  |  |  |  |
| Variable                                                                      | SR1                                                                                                                    | tN_high                                                                      |                 |  |  |  |  |
| Number of (jets, b-tags)                                                      | $(\ge 4, \ge 1)$                                                                                                       | $(\ge 4, \ge 1)$                                                             |                 |  |  |  |  |
| $\text{Jet } p_T > [\text{GeV}]$                                              | (80 50 40 40)                                                                                                          | (120 80 50 25)                                                               |                 |  |  |  |  |
| $E_T^{miss}$ [GeV]                                                            | > 260                                                                                                                  | > 450                                                                        |                 |  |  |  |  |
| $E_{T,\perp}^{\text{miss}}$ [GeV]                                             |                                                                                                                        | > 180                                                                        |                 |  |  |  |  |
| $H_{T,sig}^{mlos}$                                                            | > 14                                                                                                                   | > 22                                                                         |                 |  |  |  |  |
| $m_T$ [GeV]                                                                   | > 170                                                                                                                  | > 210                                                                        |                 |  |  |  |  |
| $am_{T2}$ [GeV]                                                               | > 175                                                                                                                  | > 175                                                                        |                 |  |  |  |  |
| topness                                                                       | > 6.5                                                                                                                  |                                                                              |                 |  |  |  |  |
| $m_{\text{top}}^{\chi}$ [GeV]                                                 | < 270                                                                                                                  |                                                                              |                 |  |  |  |  |
| $\Delta R(b, \ell)$                                                           | < 3.0                                                                                                                  | < 2.4                                                                        |                 |  |  |  |  |
| Leading large-R jet p <sub>T</sub> [GeV]                                      |                                                                                                                        | > 290                                                                        |                 |  |  |  |  |
| Leading large-R jet mass [GeV]                                                |                                                                                                                        | > 70                                                                         |                 |  |  |  |  |
| $\Delta \phi(\vec{p}_{T}^{miss}, 2^{nd} large-R jet)$                         | -                                                                                                                      | > 0.6                                                                        |                 |  |  |  |  |
| Variable                                                                      | bC2x_diag                                                                                                              | bC2x_ned                                                                     | bCbv            |  |  |  |  |
| Number of (jets, b-tags)                                                      | $(\ge 4, \ge 2)$                                                                                                       | $(\ge 4, \ge 2)$                                                             | $(\geq 2, = 0)$ |  |  |  |  |
| $\text{Jet } p_T > [\text{GeV}]$                                              | (70 60 55 25)                                                                                                          | (170 110 25 25)                                                              | (120 80)        |  |  |  |  |
| $b$ -tagged jet $p_T > [GeV]$                                                 | (25 25)                                                                                                                | (105 100)                                                                    |                 |  |  |  |  |
| $E_T^{miso}$ [GeV]                                                            | > 230                                                                                                                  | > 210                                                                        | > 360           |  |  |  |  |
| $H_{T,sig}^{miss}$                                                            | > 14                                                                                                                   | > 7                                                                          | > 16            |  |  |  |  |
| $m_T$ [GeV]                                                                   | > 170                                                                                                                  | > 140                                                                        | > 200           |  |  |  |  |
| $am_{T2}$ [GeV]                                                               | > 170                                                                                                                  | > 210                                                                        |                 |  |  |  |  |
| $ \Delta\phi(jet_i, \vec{p}_T^{miss}) (i = 1)$                                | > 1.2                                                                                                                  | > 1.0                                                                        | > 2.0           |  |  |  |  |
| $ \Delta \phi(\text{jet}_i, \vec{p}_T^{\text{miss}}) (i = 2)$                 | > 0.8                                                                                                                  | > 0.8                                                                        | > 0.8           |  |  |  |  |
| Leading large-R jet mass [GeV]                                                |                                                                                                                        |                                                                              | [70, 100]       |  |  |  |  |
| $\Delta \phi(\vec{p}_{T}^{miss}, \ell)$                                       | -                                                                                                                      | -                                                                            | > 1.2           |  |  |  |  |
| Variable                                                                      | DM.low                                                                                                                 | DM_high                                                                      |                 |  |  |  |  |
| Number of (jets, b-tags)                                                      | $(\ge 4, \ge 1)$                                                                                                       | $(\ge 4, \ge 1)$                                                             |                 |  |  |  |  |
| $\text{Jet } p_{\text{T}} > [\text{GeV}]$                                     | (60 60 40 25)                                                                                                          | (50 50 50 25)                                                                |                 |  |  |  |  |
| $E_T^{miss}$ [GeV]                                                            | > 300                                                                                                                  | > 330                                                                        |                 |  |  |  |  |
| $H_{T,sig}^{miso}$                                                            | > 14                                                                                                                   | > 9.5                                                                        |                 |  |  |  |  |
| $m_T$ [GeV]                                                                   | > 120                                                                                                                  | > 220                                                                        |                 |  |  |  |  |
| $am_{T2}$ [GeV]                                                               | > 140                                                                                                                  | > 170                                                                        |                 |  |  |  |  |
| $\min(\Delta\phi(\vec{p}_T^{\text{miss}}, \text{jet}_i)) \ (i \in \{1 - 4\})$ | > 1.4                                                                                                                  | > 0.8                                                                        |                 |  |  |  |  |
| $\Delta \phi(\vec{p}_{T}^{\text{tnise}}, \ell)$                               | > 0.8                                                                                                                  |                                                                              |                 |  |  |  |  |





### Stop search with 1-lepton: Background estimation

- The background estimation follows the CR procedure seen in the other ATLAS searches.
- A set of CRs is setup for each of the 3 SR categories.
- The kinematic variables used mean that the method of single top,  $t\bar{t}$  and  $t\bar{t}+V$  entering the SRs are different such that it is desired to split these.

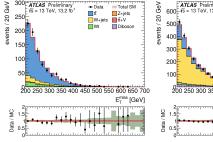


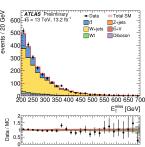





### Stop search with 1-lepton: Background estimation - $t\bar{t}$ +V

- ▶ This is done using a  $t\bar{t}+\gamma$  sample due to the similarity in the feynman diagrams.
- ▶ The same generator setup is used in the two cases and NLO studies show that the k-factors for the two processes in this kinematic regime are very similar (and don't vary much as a function of the kinematics).



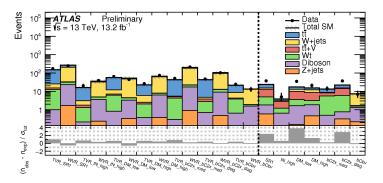






## Stop search with 1-lepton: Background estimation - $t\bar{t}$ and single top

- ▶ The variable  $am_{T2}$  is used to obtain a sample of reasonably pure single top with similar kinematics to that in the signal region.
- There is still significant t\(\ti\text{lin}\) this region however such that the normalisations of t\(\ti\text{l}\) and single top become highly anti-correlated.
- ▶ The simultaneous fit procedure is ideal for accounting for this correctly.










### Stop search with 1-lepton: - Results

- ► The background estimation is validated in 2-lepton regions.
- The results of the fit in the signal regions show 3 mild excesses (which are all correlated).







### **Stop search with 1-lepton: Results**

| Signal region                                    | SR1                  | tN_high             | bC2x_diag            | bC2x_med            | bCbv                | DM_low               | DM_high             |
|--------------------------------------------------|----------------------|---------------------|----------------------|---------------------|---------------------|----------------------|---------------------|
| Observed                                         | 37                   | 5                   | 37                   | 14                  | 7                   | 35                   | 21                  |
| Total background                                 | $24 \pm 3$           | $3.8 \pm 0.8$       | $22 \pm 3$           | $13 \pm 2$          | $7.4 \pm 1.8$       | $17 \pm 2$           | $15 \pm 2$          |
| $t\bar{t}$                                       | $8.4 \pm 1.9$        | $0.60 \pm 0.27$     | $6.5 \pm 1.5$        | $4.3 \pm 1.0$       | $0.26 \pm 0.18$     | $4.2 \pm 1.3$        | $3.3 \pm 0.8$       |
| W+jets                                           | $2.5 \pm 1.1$        | $0.15 \pm 0.38$     | $1.2 \pm 0.5$        | $0.63 \pm 0.29$     | $5.4 \pm 1.8$       | $3.1 \pm 1.5$        | $3.4 \pm 1.4$       |
| Single top                                       | $3.1 \pm 1.5$        | $0.57 \pm 0.44$     | $5.3 \pm 1.8$        | $5.1 \pm 1.6$       | $0.24 \pm 0.23$     | $1.9 \pm 0.9$        | $1.3 \pm 0.8$       |
| $t\bar{t} + V$                                   | $7.9 \pm 1.6$        | $1.6 \pm 0.4$       | $8.3 \pm 1.7$        | $2.7 \pm 0.7$       | $0.12 \pm 0.03$     | $6.4 \pm 1.4$        | $5.5 \pm 1.1$       |
| Diboson                                          | $1.2 \pm 0.4$        | $0.61 \pm 0.26$     | $0.45 \pm 0.17$      | $0.42 \pm 0.20$     | $1.1 \pm 0.4$       | $1.5 \pm 0.6$        | $1.4 \pm 0.5$       |
| Z+jets                                           | $0.59 \pm 0.54$      | $0.03 \pm 0.03$     | $0.32 \pm 0.29$      | $0.08 \pm 0.08$     | $0.22 \pm 0.20$     | $0.16 \pm 0.14$      | $0.47 \pm 0.44$     |
| $t\bar{t}$ NF                                    | $1.03 \pm 0.07$      | $1.06 \pm 0.15$     | $0.89 \pm 0.10$      | $0.95 \pm 0.12$     | $0.73 \pm 0.22$     | $0.90 \pm 0.17$      | $1.01 \pm 0.13$     |
| W+jets NF                                        | $0.76 \pm 0.08$      | $0.78 \pm 0.08$     | $0.87 \pm 0.07$      | $0.85 \pm 0.06$     | $0.97 \pm 0.12$     | $0.94 \pm 0.13$      | $0.91 \pm 0.07$     |
| Single top NF                                    | $1.07 \pm 0.30$      | $1.30 \pm 0.45$     | $1.26 \pm 0.31$      | $0.97 \pm 0.28$     | _                   | $1.36 \pm 0.36$      | $1.02 \pm 0.32$     |
| $t\bar{t} + W/Z$ NF                              | $1.43 \pm 0.21$      | $1.39 \pm 0.22$     | $1.40 \pm 0.21$      | $1.30 \pm 0.23$     | _                   | $1.47 \pm 0.22$      | $1.42 \pm 0.21$     |
| $p_0 (\sigma)$                                   | 0.012 (2.2)          | 0.26 (0.6)          | 0.004 (2.6)          | 0.40 (0.3)          | 0.50(0)             | 0.0004 (3.3)         | 0.09 (1.3)          |
| $N_{\text{non-SM}}^{\text{limit}}$ exp. (95% CL) | $12.9^{+5.5}_{-3.8}$ | $5.5^{+2.8}_{-1.1}$ | $12.4^{+5.4}_{-3.7}$ | $9.0^{+4.2}_{-2.7}$ | $7.3^{+3.5}_{-2.2}$ | $11.5^{+5.0}_{-3.4}$ | $9.9^{+4.6}_{-2.9}$ |
| $N_{\text{non-SM}}^{\text{limit}}$ obs. (95% CL) | 26.0                 | 7.2                 | 27.5                 | 9.9                 | 7.2                 | 28.3                 | 15.6                |





#### Conclusions

WHEN YOU LEAST EXPECT IT. SOMETHING GREAT WILL COME ALONG SOMETHING BETTER PLANNED FOR. BE PATIENT. BE SMART





#### **Conclusions**

- I have described a few of the ATLAS searches for Supersymmetry using the Run II data.
- (Further details and the rest of the searches can be found on the ATLAS public pages here)
- So far there are no significant excesses such that we could claim evidence of SUSY.
- ► There are some excesses in certain channels (like the stop 1-lepton search) which we hope might turn into something exciting!
- So the search for SUSY continues with the full 2015/2016 data and the large dataset that will (hopefully) be taken next year, the sensitivity will increase sigificantly.
- ▶ In particular, with the large integrated luminosity there will be good sensitivity to lower x-section SUSY particle production modes like the partners of the EW bosons, and further sensitivity to the stop and sbottom particles.