SOX – searching **sterile neutrinos** with Borexino

Universite Libre de Bruxelles March 10, 2017

Michael Wurm (JGU Mainz & EC PRISMA)

Motivation for sterile neutrino searches

All evidence from SM in favor of just 3 light neutrinos. Why should there be more?

Fundamental (from theory)

- arguably, the most simple extension of the SM
 → addition of inactive singlet state(s)
- excellent Dark Matter candidate
- required for See-Saw mechanism

 → light active neutrino masses
 → leptogenesis for M/AM asymmetry
 → vMSM ...

Agnostic (from experiments)

- short-baseline oscillation anomalies (eV)
- unexplained X-ray lines: from keV-DM annihilation?

Mixing of sterile and active states

no interactions with SM particles, but mixing with active neutrinos:

extended PMNS matrix

 in See-Saw: Natural scale for active-sterile mixing

 $\Theta \sim \frac{m_{\rm D}}{M_{\rm R}}$

Michael Wurm (Mainz)

Sterile neutrinos

Active-to-sterile neutrino oscillations

Active states only:

$$\left(
u_{a}
ight) = \left(U_{ai}
ight) \left(
u_{i}
ight)$$

Active-to-sterile neutrino oscillations

New mass states & ordering schemes

- As a necessity, new neutrino flavor states imply new neutrino mass states, e.g. one further sterile state v_s → mass state v₄
- Different mass ordering schemes might be realized:

lly-inverted"

More complicated schemes possible:

- **3+2, 3+3** ...
- 1+3+1 etc.

Active-sterile oscillation modes

JGU

■ Active-sterile mixing matrix → new mixing amplitudes

• new masses \rightarrow new Δm^2 values:

$$\Delta m^2_{41}, \ldots > \Delta m^2_{21}, \Delta m^2_{31}, \Delta m^2_{32}$$

→ occurrence of oscillation phenomena at **new (shorter) baselines**, e.g.

$$\begin{array}{ll} active \rightarrow sterile\\ disappearance\\ active \rightarrow active\\ appearance\\ \end{array} \quad P(\nu_e \rightarrow \nu_s) = \sin^2 2\theta_{ee} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right); \qquad \sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)\\ active \rightarrow active\\ appearance\\ \end{array} \quad P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{e\mu} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right); \qquad \sin^2 2\theta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \end{array}$$

Short-baseline oscillation anomalies ^{1/2}

JGU

(Long-standing) electron neutrino appearance anomalies

LSND result

 v_e appearance signal in a low-energy \overline{v}_μ beam from stopped pions

MiniBooNE result

 v_e appearance signal in a GeV v_μ/\overline{v}_μ beam at similar L/E ratio

→ interpretation as $v_{\mu} \rightarrow v_{e}$ appearance oscillations via a new Δm^{2} on eV² scale

Short-baseline oscillation anomalies ^{2/2}

JGU

(More recent) electron neutrino disappearance anomalies

Michael Wurm

Parameter space favored by anomalies

• All anomalies can be described by a (3+1) scheme adding a single eV-mass sterile neutrino

JG U

Results on v_{\mu} \rightarrow v_s disappearance ^{1/2}

are interlinked

JG U

• In 2011, already some tension between $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}$ and $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{s}$ results:

Recent IceCube result

- Probe: **Atmospheric v's** crossing the Earth
- matter potential affects only active v's
- No resonant conversion of v_µ→v_s found at TeV energies, i.e. Δm²₄₁ ~ 1eV²

Results on $v_{\mu} \rightarrow v_s$ disappearance ^{2/2}

are interlinked

JGU

• Now, new results by **MINOS+/IceCube** on $v_{\mu} \rightarrow v_s$ further increased the tension:

The open issue: $v_e \rightarrow v_s$ disappearance

Note: No oscillation data directly contradicts the reactor/Ga anomalies!

→ need for dedicated experiments

Testing the v_e disappearance anomalies

Reactor vs. Radioactive Sources

Basic approach:

- search for $v_e \rightarrow v_s$ disappearance oscillations
- Intrinsically pure beam: only v_e or v_e
- oscillometry: oscillation waves inside the detector
- energy range: 1-10 MeV → distance 1-10 m
- well-known cross-sections at MeV energies

Reactor experiments

- intense, stable source of antineutrinos
- extended reactor core \rightarrow research reactor
- Iarge intrinsic background levels

Radioactive source

- Iow-background levels (nearly background-free)
- well-defined and well-localized source activity
- decaying source \rightarrow limited measuring time
- bureaucratic challenge

Short-baseline reactor experiments

Experime	ent	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)		3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)		2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)		40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)		100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)		85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)		72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	Ĩ	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)		. 57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

from N. Bowden's talk at Nu16

JGU

Short-baseline source experiment: SOX

Schematic of Borexino

Start: May 2007

THE A, B AND C OF GRAN SASSO Gran Sasso National Experiments at the Gran Sasso National Laboratory Laboratory are housed in and around three huge halls carved deep inside the mountain, where they are shielded from cosmic rays Laboratory by 1.400 metres of rock. OPERA XENON GERDA CUORE DarkSide LVD Borexino DAMA **ICARUS** Rome Adriatic CERN coast HALLE

HAU

Borexino @ Gran Sasso Laboratories

- Iow-energy solar neutrino experiment
- organic liquid-scintillator detector
- since 2007: ⁷Be, pep, pp, geo-neutrinos
- ultra-low background conditions:
 - rock shielding: 1.4 km
 - \circ intrinsic radiopurity: 10⁻¹⁸ g/g U/Th

Short-baseline source experiment: SOX

SOX Pit below Borexino

Antineutrino source: ¹⁴⁴Ce/¹⁴⁴Pr

JGU

¹⁴⁴Ce-¹⁴⁴Pr decay scheme

Inverse Beta Decay (IBD) cross section: $\sigma_{\rm IBD} \approx 9.5 \cdot 10^{-45} \, {\rm cm}^2 \bigl(E - 1.8 \, {\rm MeV} \bigr)^2$

β-spectrum & cross-section

¹⁴⁴Ce source production

Source transport

Tungsten shielding

Source shielding: reduces 4PBq to 200Bq surface activity

SOX experimental layout

SOX source insertion system

JGU

Antineutrino detection in Borexino

JGU

Antineutrino detection

Event reconstruction in Borexino

- Scintillator light yield:
 ~10k photons per MeV
 - \rightarrow 5% detected by PMTs
- Energy resolution
 ~500 p.e. per MeV
 → ΔE/E ~ 5% @ 1 MeV
- Energy threshold instrumental: ~50 keV solar analysis: ~150 keV
- Spatial reconstruction
 from photon time-of-flight

 Δx ~ 10 cm @ 1 MeV

Michael Wurm (Mainz)

IG

Event reconstruction in Borexino

JGU

- Scintillator light yield:
 ~10k photons per MeV
 → 5% detected by PMTs
- Energy resolution
 ~500 p.e. per MeV
 → ΔE/E ~ 5% @ 1 MeV
- Energy threshold instrumental: ~50 keV solar analysis: ~150 keV
- Spatial reconstruction
 from photon time-of-flight

 Δx ~ 10 cm @ 1 MeV
- Calibration campaign with sources inside IV planned for autumn.

Expected antineutrino signal

G

Expected antineutrino signal

Expected sensitivity vs. rate

Experimental parameters

activity:	100→150 kCi
exposure:	1.5 yrs
fiducial radius:	4 m
uncertainties	
- on activity:	1%
- on fiducial volu	me: 1%
 on spectral shap 	be b: 3%
no background	

→ maximum sensitivity for oscillation waves in region of the anomalies

Expected sensitivity vs. spectral shape

$^{144}\text{Pr}\ \beta\text{-spectrum}$ with shape correction factor:

$$\frac{\mathrm{d}N}{\mathrm{d}E} = \sum_{i} \mathrm{BR}_{i} \cdot \mathrm{S}_{\beta i}(E) \cdot C(E) \text{ with } C(E) = 1 + b \cdot m_{e}/E$$

Experimental parameters

activity:	125 kCi
exposure:	1.5 yrs
fiducial radius:	4 m
uncertainties	
- on activity:	1%
- on fiducial volume:	1%
- on spectral shape b:	0%→∞

- no background
- → maximum sensitivity for oscillation waves in region of the anomalies
- → shape uncertainty matters but is under control

JGU

Expected sensitivity vs. spectral shape

Michael Wurm

JGU

Source heat power measurement

Two calorimeters for independent measurements of thermal power (~1%)

- Calorimeter inside SOX-Pit German groups/Genova
- Calorimeter outside PIT/in Mayak
 CEA Saclay

Measurement strategy

- insulate source from surroundings
- circulate water through loop around W shielding
- measure mass flow Φ and temperature increase ΔT
 - $P = \Phi \cdot C_{\mathrm{H_2O}} \cdot \Delta T + P_{\mathrm{loss}}$
- sub-% accuracy reached in test measurements

Mounting mock-up source in TUM/Genova calorimeter

Michael Wurm

Complementary information on sterile neutrinos

 $m_v = 0$

 $m_v = 1.9 \text{ eV}$

Effect of steriles on β-decay spectra

Measuring the electron neutrino mass

- Effect of mass is a shift of the endpoint/spectral deformation
- Effective mass is incoherent sum $m^2(
 u_{
 m e}) := \sum |U_{
 m ei}^2|m^2(
 u_{
 m i})$
- 3 known mass eigenstates could in principle be resolved but mass differences very small $\Delta m_{31} < 50 \text{ meV}$
- sterile mass splitting much larger $\Delta m_{41} \sim 1 \text{eV}$ for light steriles
- Size of effect depends on
 v₄ admixture to v_e flavor state: |U_{e4}|²

→ observable in upcoming experiments?

J. A. Formaggio, J. Barret, PLB 706 (2011) 68 Spectral deformation of tritium decay spectrum (3-year measurement in KATRIN) Sterile v parameters: $\Delta m^2 = 2 eV^2$, $|U_s|^2 = 0.067$

eV-mass sterile neutrinos in KATRIN

search for eV-mass sterile neutrinos can be performed based on regular setup

Mi

Michael Wurm (Mainz)

Constraints on light sterile neutrinos

- Cosmological observations able to place stringent bounds on the **number** N_{eff} and **mass sum** Σm_v of light (i.e. thermalizing) sterile neutrinos
- Most important observables
 - Cosmic Microwave Background
 - Big Bang Nucleosynthesis
 - Large-scale structure
- Bounds from PLANCK (+BAO):
 - $N_{\rm eff} = 2.99 \pm 0.20$
 - □ $\Sigma m_v < 0.49$ (0.17) eV (95% C.L.)
- These limits <u>can be avoided</u> by introducing additional physics, e.g. sterile neutrino self-interactions Dasgupta, Kopp [arXiv:1310.6337]

Michael Wurm

Conclusions

SOX is getting ready:

- Contract with Mayak for the ¹⁴⁴Ce source has been signed.
- Experimental site is ready (Borexino, clean room ...)
- Tungsten shield has arrived at LNGS.
- Source calorimeters are in commissioning phase.
- Summer: Complete test of procedures with mock-up source.
- Autumn: Calibration run with radioactive source inside the target.

Start of data taking in early 2018.

Most of statistics acquired in ½ year

 → stay tuned for first results

Thank you for listening!

Solar neutrino spectroscopy

Backup slides

