Sterile neutrino searches with IceCube

Sebastian Böser CrossTalk Workshop | Brussels | Jan 18th 2017

World Data, pre-lceCube

[Kopp et al. JHEP 1305 (2013) 050]

Appearance only 10¹ NOMAD E776 Δm_{41}^2 +LBL reactors 10^{0} Combined MiniBooNE v 10^{-1} 99 % CL, 2 dof 10^{-3} 10^{-2} 10^{-1} $\sin^2 2\theta_{\mu e}$

Appearance and disappearance

Potential sterile neutrino candidate

 $\Delta m^2_{41} \sim 1 eV^2$

 $= \sin^2(2\theta_{\mu e}) (\sim 3.10^{-3})$

✓ small effect → needs large neutrino sample !??

Electron neutrinos

- additional interaction with electrons
- effective mass and mixing (2-flavour approximation)
 - depend on electron density Ne

$$\sin^2 2\theta_M \equiv rac{\sin^2 2 heta}{\sin^2 2 heta + (\cos 2 heta - x)^2}$$

$$x\equiv \frac{V_W/2}{\Delta m^2/4E}=\frac{2\sqrt{2}G_FN_eE}{\Delta m^2}$$
 . Neutrino energy

Resonance behaviour

Selectron density

- for $x = cos(2\theta)$ there is $sin^2(2\theta_M) \rightarrow 1$
 - Iargest possible oscillation amplitude:
 - ▶ independent of original mixing angle θ

Sterile neutrinos

- no interactions with matter at all
- participate in oscillations
 - ► 3x3 mixing matrix \rightarrow 4x4 mixing matrix

→ New oscillation effects are to be expected.

Full phenomenology:

- Esmali and Smirnov [JHEP 1312 (2013) 014]
- Chizov and Petcov
 [Phys.Rev. D63 (2001) 073003]

Sterile neutrino MSW Resonance

Cherenkov light from ν_{μ}

IceCube event signatures

charged current (CC) interaction

neutral current (NC) interaction

Relativistic secondary particles:

Cherenkov light emission

Track like events:

 \mathbf{v}_{μ} CC interactions

Cascade like events:

all NC interaction, CC of v_e , v_τ

Muon neutrino spectrum in IceCube

Where is the MSW resonance?

Experiments

appearance and disappearance Island allowed by both

$$\Delta m^2 \sim 1 eV^2$$

MSW resonance occurs at:

$$E_{res} = \frac{\Delta m^2 cos 2\theta}{\sqrt{2}G_F N_e}$$

For Earth matter density:

 $E_{crit} = 3 \ TeV$

Resonance energy

[Phys.Rev.Lett. 115 (2015) 8, 081102]

Oscillation signature

Sterile signature in IceCube

Sample

- livetime ~ 1yrs
- purity ~ 100%

Energy resolution ■ σ_E ~ 0.3 log10(E) ▶ mostly not contained

Angular resolution

Statistical uncertainty per bin

		1	Ex	хp	e	ct	e	d	St	ta	t	E	rr	01	Ξ,	1	y	ea	r	(%	%)		30
		65.3 -	06.3	64.9	55.1	38.0	34.7	09.60	05.9	00.3	89.2	80.4 -	76.9	75.2	57.5 -	61.9	48.6	45.1	52.7	71.7			30
	10^{4}	66.4 2	15.6 2	02.6 1	89.2 1	82.0 1	73.0 1	70.4 1	66.5 1	61.0 1	58.6	52.5	49.2	44.9	38.1	36.0	30.6	28.8	32.4	50.7			27
	10	94.9 1	69.2 1	61.2 1	55.1	49.5	47.2	43.8	42.7	39.2	35.2	31.7	30.4	29.4	25.2	23.1	20.7	8.61	22.3	41.8			24
Λ		56.3	2.4	37.3	33.8	31.5	0.0	28.3	26.7	25.0	3.6	21.6	20.3	18.7	17.2	4.9	13.7	12.7	15.1	36.3			21
/Ge		4.6	5.6 4	3.2	6.0	9.4	8.4	7.4	6.8	5.9 2	4.9	3.8	3.1 2	2.2	1.0 1	0.0	9.0	8.5	0.5	3.8			18
o 'oxy/		1.0 3	5.4 2	3.9 2	3.1 2	2.4 1	1.9 1	1.3 1	0.6 1	0.1 1	9.4 1	9.0 1	8.6 1	8.0 1	7.5 1	6.8 1	6.1	5.7	7.8 1	9.5 3			15
μ,pn		8.7 2:	9.5 13	3.8 10	3.6 1	3.3 13	3.0 1	1 1.	7.3 1(.0 1	5.7	5.3	5.1	7.0	.4	0.0	L.4	11	5.4	.3			12
Η	?	.3 13	2	.4 8		3	3	1 7	6.	8.	5. 0	ы. С	0.	8	5	.1	7	.4	4	.5 55			9
	10^{3}	6 0	8	2 6	4 6	5	7 6	7 6	8	5	1 5	7 5	1 5	7 4	3 4	0 4	6 3	4 3	3	8 145		-	6
		7 8.	3 6.	7.	1 7.	5 7.	8 7.	1 7.	5 7.	1.7.	7.	9 6.	9	2	2	7 5.	2 4.	1 4.	ю Т	564.			3
		11.3	15.3	18.5	20.4	21.1	22.(23.4	23	22.4	21.(- 17.5	15.8	14.3	- 13.3	0 12.7	12.	12.	28.4		0		0
	_	1.	0	_	-0	.ŏ	, -	-().(0 0	_ _	U. 2A	$\frac{4}{rec}$	co	0	.2	I	0.	.0		0.	Z	
										U	0.	50	μ, z	;									

JGU

Systematic effects

see later

Continuous parameter	Central value	Gaussian prior width
normalization	1	no prior ¹
DOM Efficiency	0.99	no prior
cosmic ray spectral shift	0	0.05
π/K ratio	1	0.1
$\nu/\overline{\nu}$ ratio	1	0.025
atmospheric density shift	0	tuned per-model

Continuous parameters

adjusted in fit

Discrete parameters

- no continuous adjustment
 - select best-fit model

Discrete variant	Variant numbers
Central model	0
SPICEMie, PREM, HERAPDF	
Ice absorption $+10\%$	1
Ice scattering $+10\%$	2
SPICELea (anisotropy)	3
No hole ice effect	4
Flux variants	5-10
Cross section variants	11-15
Earth model variants	16-24

The Data (IC86 1 year)

Comparison of data to no-steriles hypothesis, after accounting for systematics

IceCube blind result

IC86 shape only

- flux normalization
 - ~ factor 2 too high
- best-fit value for $\Delta m^2_{41} \sim 10 eV^2$
- unresolved fast oscillations
 - ► acts like flux suppression

A-posteriori IC86 rate+shape result

- added normalization constraints
 - mildly weaker due to normalization tension at best-fit.

Independent analysis

1 year of data from partly-built 59-string detector

 10^{1}

Final result

[IceCube Collaboration PRL 117, 071801 (2016).2]

Sensitivity comparison

- stronger than median sensitivity
 - within 95% band from pseudo-data trials

Global-fit comparison

appearance allowed region rejected at 99%CL

Addressing assumptions: $\theta_{34}=0$?

θ₃₄ < 25° at 90%CL
 [Phys.Rev.Lett. 107 (2011) 011802]

Sensitivity exploration

• $\theta_{34}=0$ gives most conservative limit on θ_{24}

This analysis

- $|U_{e4}|$ fixed at world best fit from $\nu_e \rightarrow \nu_e$ experiments
 - constraint on θ_{14}

Constraints

- $sin^{2}2\theta_{ee} = 4|U_{e4}|^{2}(1 |U_{e4}|^{2})$
 - reactor experiments
- $sin^{2}2\theta_{\mu\mu} = 4|U_{\mu4}|^{2}(1 \cdot |U_{\mu4}|^{2})$
 - MINOS, SK, (this analysis)
- $sin^{2}2\theta_{\mu e} = 4|U_{\mu 4}|^{2}|U_{e 4}|^{2}$
 - LSND, MB, KARMEN, NOMAND
- → how far can MB /LSND slide?

 $\sin^2 2\theta_{24}$

IceCube

IceCube's low-energy v detector

Why at this depth?

+ stronger atmospheric muon suppression!

Low-energy matter effects in the earth

Event Reconstruction

Challenge

- few hits per event
- light is scattered and absorbed
- module self-noise

Method

 only use direct (unscattered) light

Energy resolution

• $\sigma_{\rm E} \sim 25\%$ (E_{ν} > 10 GeV) • $\sigma_{\theta} \sim 15^{\circ} \cdot 5^{\circ}$ (E_{ν} > 5 GeV)

Standard oscillation analysis

The challenge: muon background

- Trigger level
 - 10^6 atm. μ per ν_{μ}
- Analysis level
 - 10⁻² atm. μ per ν_μ
 (DeepCore only)
- → Only use highest-quality events

Events at final level

■ 3yrs → 953 days livetime

Component	oscillated	no osc.				
$ u_{f \mu}$	3755	5900				
$ u_{ extsf{T}}$	273	-				
${\cal V}_{f e}$	678	650				
vnc	41	18				
atm. µ	54					

Oscillation analysis

Oscillation result

- precision oscillation physics comparable to long-baseline experiments
 - still statistics limited

Sterile neutrinos in IceCube — 29

Sterile neutrinos at low energies

Effects below 100 GeV:

- sensitive to the angles θ 24 and θ 34
 - shifts of oscillations minimum
 - changes of amplitude

Characteristics

- effects proportional to matter density
 - highest sensitivity in core
- for $\Delta m41^2 > 0.3 eV^2$ (resolution limit)
 - independent of sterile neutrino mass

Sterile neutrinos at low energies: results

• Strong exclusions of $|U_{\tau 4}|^2 \rightarrow$ publication in preparation

Outlook

High-energy muon neutrinos

high sensitivity to sterile neutrinos via resonance-like mixing in earth core
 previous ~1eV² sterile neutrino best-fit mostly excluded

Low-energy neutrinos (both v_e and v_{μ}) sensitivity to $|U_{\mu4}|^2$ and $|U_{\tau4}|^2$

Outlook

more then 6 yrs of data recorded by now

- improved methods
 - starting tracks with better energy resolution for high energy
 - improved reconstruction criteria for low energy

We will keep exploring!

Non-standard interactions

Evolution of flavors

Non-standard interactions

- Modifications of the oscillations pattern
- Possible to measure/constrain with IceCube

Non-standard interactions: results

- Expectation compatible with standard physics
- Strong exclusion limits
- > Publication in preparation

