Imperial College London

SoLid and reactor experiments

Antonin Vacheret

CrossTalk workshop: The fate of the Sterile Neutrino 18th January 2017 VUB, Brussels

Outline

- Reactor anomalies
- Recent reactor measurements
- SoLid: a dedicated experiment at very short baseline
- Summary

Anomalies 2011

$$v_e + {^{71}\text{Ga}} \rightarrow {^{71}\text{Ge}} + e^-$$

- re-analysis of calibration source data
 - $(L/E \sim 1m/0.1 MeV)$
- rate deficit of $14 \pm 6 \%$
 - Gallium anomaly

$$\bar{\nu}_e + p \to e^+ + n$$

- 2011 re-evalatation of reactor antineutrino flux and update on cross-section parameters
 - 3.5% new conversion of ILL beta spectra
 - 1.5% off-equilibrium
 - 1.5% neutron lifetime τ_n
- rate deficit 6.5 %
 - Reactor anomaly

Flux calculations

- Method to calculate flux based on conversion of electron beta spectra to antineutrinos
- Electron beta measurements made at ILL in the 1980s by Schrekenbach et al. used as reference spectra for antineutrino flux calculations. Prediction to ~ 5% level
- Shift upward with respet to ILL beta-shape measurements was also found by P. Huber confirming the anomaly

Size of the rate anomaly

- Current precision experiment at short baseline (km) consistent with previous measurements < 100 m
- rate deficit or theoritical excess ?

A possible explanation

- Light sterile neutrino with mass around 1 eV $\overline{\nu}_e \rightarrow \nu_s$
- electron neutrino disappearance

 $P_{ea} \approx P_{es} = 4U_{e4}^2 U_{s4}^2 \sin^2(1.27\Delta m_3^2 L/E)$

 Oscillation of ~m scale for MeV neutrinos

6

Global fits 3+1 as of 2013

2014: a surprising result

 At neutrino 2014, Double Chooz showed this :

2014: a surprising result

Data (background subtracted) 1.2 No oscillation Reactor flux uncertainty Total systematic uncertainty Data / Predicted 0.25 MeV 1.1 • At neutrino 2014, Best fit: sin²20₁₃ = 0.090 at $\Delta m^2 = 0.00244 \text{ eV}^2$ **Double Chooz showed** 1.0 this: 0. **DC-III (n-Gd) Preliminary** 0.8 Livetime: 467.90 days 2 3 5 6 7 8 1 followed by : Visible Energy (MeV) @ ICHEP 2014 @ NEUTRINO 2014 RENO Preliminary Data \$30000 Near detector 20000 Huber+Mueller (full unc.) Data e 25000 MC_{osc} Huber+Mueller (reac. unc.) Entries / 250 keV 15000 $\sin^2 2\theta_{13} = 0.100$ 20000 ILL+Vogel $\Delta m_{11}^2 = 2.32 \times 10^{-3} \text{ eV}^2$ 15000 Measured spectrum 10000 10000 is normalized to prediction for shape 5000 5000 only comparison. (Data - MC) / MC 0.2 0.15 1.2 Data/Prediction 0.1 1.1 0.05 n 0.9 -0.05 0.8 -0.1 10 5 Prompt Energy [MeV] Prompt Positron Energy (MeV)

Expected spectrum shape

 Conversion method and other calculations tested at Bugey-3

 why bump not seen at Bugey-3 like other experiment at PWR ?

Origin of the bump

- · Size of the bump found to be correlated with reactor power
 - confirmed by cancellation between near and far detector measurements
 - many crosschecks by all 3 reactor experiments
- · Existence of a bump points towards issue with flux calculations
 - difficult to disentangle in PWR spectra (combination of isotopes)
 - · many hypotheses put forward to explain it
 - Some can be tested with HEU reactor: pure U-235 antineutrino spectrum
 - origin in U-238 or U-235
- Is this linked to the reactor anomaly ?
 - would not explain all of it so other explanations not yet ruled out
- More data needed !

[MeV]

11

Recent limits

Daya Bay arXiv:1607.01174

- Relative comparison of spectra at three detector sites
- Sensitivity at <0.1eV² region improved by 2x with respect to Phys. Rev. Lett. 113, 141802

MINOS+ arXiv:1605.04544

Combined results: nue appearance

NEOS 2016

- Hanbit nuclear power plant 2.8 GWth, Korea
- baseline 24 m and 20 m.w.e overburden
- Detector in Tendon Gallery
- Homogeneous target detector, LS +Gd technology
- S:B of 20
- Sees two shapes distortions
- Exclusion contour at 90% CL entering region around 1 eV

Global fit 3+1 as of 2016

- IceCube and other recent results have restricted significantly the phase space for a 3+1 appearance hypothesis
 - doesn't give strong constraint on disappearance of electron neutrinos
- region around 1 eV² remains to be explored

Dedicated experiments

Very short baseline reactor experiment

 dedicated new experiments require percent level precision in antineutrino spectrum measurement

- detector located close to reactor core
- operating on the surface

New reactor experiments

20

New reactor experiments

Tech Reactor P [MW] L (m) M (tonnes)

STEREO (Fr/Ger)	LS+Gd	ILL-HFR	57	8.8-11.2	2
Neutrino-4 (Ru)	LS+Gd	SM3	100	6-12	1.5
PROSPECT (US)	LS + ⁶ Li	ORNL HFIR	85	7-18	2
SoLid (UK/B/Fr)	PVT + ⁶ LiF:ZnS	SCK • CEN BR2	45-80	5.5-11	2
DANSS (Ru)	PS + Gd	KNPP	3000	9.7-12.2	0.9

Precise measurements at reactor

~ 100 m - 1 km baseline

- underground laboratory
- large external shielding
- homogenous, well contained energy
- achieve percent level antineutrino flux measurement at PWR

$$\bar{\nu}_e + p \to e^+ + n$$

detection using IBD reaction

$$E_{vis} = E_{\bar{\nu_e}} - 0.782 \text{ MeV}$$
$$E_{vis} = T_{e^+} + 2\gamma \text{ (511 keV)}$$

Precise measurements at reactor

~ 100 m - 1 km baseline

- Underground laboratory
- Large external shielding
- Well contained energy
- achieve percent level antineutrino flux measurement at PWR

~ 10 m baseline

Challenges:

- sensitivity in E and L for oscillation search
- rejection of background
- security and safety constraint on site

Precise measurements at reactor

~ 100 m - 1 km baseline

technology

- Underground laboratory
- Large external shielding
- Well contained energy
- achieve percent level antineutrino flux measurement at PWR

~ 10 m baseline

Challenges:

- sensitivity in E and L for oscillation search
- rejection of background
- security and safety constraint on site

Highly segmented detector sufficiently compact to deploy meters away from core

Oscillometric measurement based on segmentation

- Measurement as a function of L and E with extended detector geometries •
- Adress challenging background conditions close to reactor core and surface.

~ 6 target cells Gamma-ray catcher volume SoLid

5-6 modules each of 10 planes 13 000 voxels 3200 read out channels Prospect

Bugey-3 like detector ~100 long cells read out channels

SoLid

- Search for oscillation with high precision in energy and position
 - only way to demonstrate new oscillation
- HEU core gives pure U-235 spectrum
 - addresses the 5 MeV bump
- New detector technology

SCK•CEN BR2 reactor

- Tank in Pool MTR research reactor
- Licensed to run at power up to 100 MW
 - variable operating power (45-80 MW)
 - 6 cycles per year
 - Beam ports not in use
 - ideal for low background measurement

3D segmented composite detector

- composite /dual scintillator detector element :
 - 5 cm x 5 cm x 5 cm PVT cube segmentation to contain positron energy and localise interaction
 - Layer of LiF:ZnS(Ag) for neutron detection close to interaction

¹
⁴He
$$^{6}Li$$

 $E_{tot} = 4.78 \text{ MeV}$

- WLS fibre to collect both scintillation light in X and Y direction
- each cube voxel optically separated from each other by reflective coating
- SiPM to read out fibre signal

Signal localisation

- Neutron capture efficiency uniform up to the edge of the detector
- Neutron capture one cube away from interaction gives directional sensitivity

Visible energy reconstruction

- Summing all energy visible in 1 m³ detector
- gamma-ray leakage affects energy reconstruction

Visible energy reconstruction

 Energy estimation recovered by selecting two highest energy cube

Energy reconstruction

Real scale system SM1

2010-2013

2014-2015

64 voxels, 32 chan.

 SoLid Module 1 (SM1) 288kg
 2 304 voxels, 288 chan.
 9 detector planes

Learning how to build it

Deployment at BR2

Energy response calibration

Neutron ID and capture time

prompt to neutron capture time difference (AmBe source)

 Validated PID, neutron tranport simulation (MCNP & G4) and Li capture efficiency

Signal analysis

Demonstrated power of segmentation on background rejection

IBD candidate

Saffron event: 53636, time range: (19427.0, 20027.0) us

prompt

Data

Background events

Signal analysis

- Demonstrated power of segmentation on background rejection
- but SM1 had limited shielding and lower absolute neutron efficiency of ~ 2.5% due to high data rate

Scaling up to full mass

Improvements for SoLid

Neutron capture efficiency

- Additional LiF:ZnS sheets
 - Li capture efficiency 0.55 to 0.7 +30%
 - Reduced capture time 105 to 66 us
- new screens with improved transparency

Light yield and uniformity of response

- 4 fibre read out
 - 37 PA/cube/MeV +66% increase in light yield from SM1
 - on target for 14%/sqrt(E) resolution
- 7% total variation of light yield across detector planes

Average PA/cube = 37.2

Trigger and efficiency

- Neutron signal : large number of photons but distributed in time and large range of light output
 - in SM1 direct threshold had to be set to 6.5 PA to limit data rate and required two channel in coincidence
 - reduced neutron detection efficiency to 5%
- Neutron trigger implementation
 - limit reactor ON/OFF data sizes and rate
 - maximise neutron and IBD efficiency
 - reduce rate dependence to threshold

Neutron trigger and data size

- Neutron pattern recognition in firmware
 - neutron rate is low: Rn ~ 7 Hz
- Buffer time ±500 us and ±2 planes around neutron
 - can recover neutron detection efficiency from 5% to 70% !
- remove inefficiencies of forming coincidence
- Zero suppression threshold at 1.5 PA applied to other signals
 - Iimit data size and storage
 - Detector cooling to 5 deg to reduce dark counts

SoLid detector integration

SoLid construction

- SoLid detectors are under construction !
- cube production and assembly well underway
- Staged production of electronics
- Trigger implemented and DAQ
 under development
- Calibration system to be commissionned next month
- Container built and to be delivered this month

SoLid sensitivity

• Data taking starting spring 2017

Summary

- Reactor anomalies in the electron antineutrino sector are still not understood
 - in addition to a rate deficit (or theoritical excess), disagreement in the spectrum shape have been measured
 - put current accuracy of conversion model in question
 - origin of deviation not yet understood but new U-235 spectrum measurement will test many hypotheses.
- Currrent experimental sensitivity is now entering the region of interest to look for a sterile neutrino of 1 eV
- Dedicated experiments have started or about to start in 2017
- SoLid will use a new technology and the HEU core of BR2 to search for oscillations
- New measurements should address the anomalies before 2020

Back up