IceCube and Sterile Neutrinos (pheno)

Jordi Salvado Serra

CrossTalk Workshop: The Fate of Sterile Neutrinos

VUB Sterile neutrinos 2017

The IceCube experiment.

IceCube Goal

- Atmospheric Neutrinos
- Charm Atmospheric Neutrinos
- Astrophysical Neutrinos
- Cosmogenic Neutrinos

IceCube Goal More that 5σ evidence.

- Consistent with the other limits.
- Still a lot of questions.
- We have neutrinos from few 100GeV to few PeV
- Still a lot of questions

First Publication: Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

Science 342 (2013) 1242856

Neutrino Oscillations

$$H=\frac{1}{2E}UM^2U^{\dagger}+V_m$$

M,~V and U are 3 \times 3 matrices. In two generations the oscillation probability at a given distance L and energy E in vacuum

$$P_{\nu_{\alpha} \to \nu_{\alpha}} \left(\frac{L}{E}\right) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Neutrino Oscillations

Neutrino oscillations : mass eigenstates (ν_i ; i = 1, 2, 3) and flavor eigenstates (ν_{α} ; $\alpha = e, \mu, \tau$) are not the same.

Beyond "standard" Neutrino Oscillations

$$H = \frac{1}{2E} U M^2 U^{\dagger} + V_m + \sum_n \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$$

A extension of the 3-ν model would imply:

- Extend the dimension 3+N or N+3: Motivated by the Short Base Line Neutrino Anomalies
- Extend with high powers of the energy: Not very motivated by anomalies but interesting to explore. NSI, LV,...

The LSND experiment (in 90's)

• The LSND experiment saw an excess of $\bar{\nu}_e$ over background.

More motivation: short baseline anomalies

- ► **LSND** found $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ <u>oscillation</u> with $\Delta m^{2} \sim 1 eV^{2}$ and $\sin^{2} 2\theta \sim 0.003$
- MiniBoone $u_{\mu}
 ightarrow
 u_{e}$ and $ar{
 u}_{\mu}
 ightarrow ar{
 u}_{e}$ appearance
 - No significant excess at high energies (E > 475 MeV)
 - Unexplained events at low energies, interpretation as oscillations similar to LSND: Δm² ~ 1eV²
- ► Gallium Anomaly, SAGE and GALLEX event rates lower than expected, can be explained by ν_e disappearance with $\Delta m^2 \ge 1 eV^2$
- ▶ New reactor flux calculation (Mueller et al., 1101.2663, P. Huber, 1106.0687) 3% higher, tension in short-baseline $(L \le 100m)$ experiments, can be explained by $\underline{\nu_e}$ disappearance with oscillation with $\Delta m^2 \sim 1eV^2$. BUT!!→

What does the World data say?

tension between experiments

We need new measurements!

Experiments:
$${\it L}_{
m osc}=2\pirac{{\it E}}{\Delta m^2}\mid\Delta m^2_{
m LSND}=1$$
 eV 2

[modified from J.S. Diaz and V.A. Kostelecky, Phys.Lett. B700, 25 (2011)]

Matter effects: Mikheyev-Smirnov-Wolfenstein

$$P_{
u_lpha
ightarrow
u_lpha} = 1 - \sin^2 2 rac{ heta_M}{4} \sin^2 \left(rac{ heta m_M^2 L}{4 E_
u}
ight)$$

where θ_M and Δm_M^2 satisfy

$$\Delta m_M^2 = \sqrt{(\Delta m^2 \cos 2\theta - A)^2 + (\Delta m^2 \sin 2\theta)^2}$$
$$\tan 2\theta_M = \frac{\tan 2\theta}{1 - \frac{A}{\Delta m^2 \cos 2\theta}}$$

and $A = \pm 2\sqrt{2}EG_FN$, N number density. Resonant flavor transition can happen if

$$E_{\nu}^{res} = \mp \cos 2\theta \frac{\Delta m^2}{2N} \frac{1}{\sqrt{2} G_F}$$

this resonance can enhance the transition between active and sterile neutrinos.

MSW with the Sterile Neutrino at Earth

In the Earth, sterile neutrino with small mixing and $\Delta m^2 = O(1eV^2)$ the resonance happens when

M.V. Chizhov, S.T. Petcov. Phys.Rev. D63 (2001) 073003 H. Nunokawa et al. Phys.Lett. B562 (2003) 279-290 Barger et al.,Phys.Rev.D85:011302.(2012) Arman Esmaili et al. JCAP 1211 (2012) 041

MSW with the Sterile Neutrino at Earth

- TeV is in the center of the atmospheric data.
- Other experiments are not sensitive at this energies.

The initial atmospheric neutrino flux

The conventional atmospheric neutrino (muon) flux originates from the decay of π^{\pm} and K^{\pm} in the atmosphere.

Neutrinos through the Earth

The muon neutrinos come from different zenith angles (θ_z) transversing different Earth layers

core : $\cos \theta_z \sim [-1, -0.8]$ mantle : $\cos \theta_z \sim [-0.8, -0.1]$ crust : $\cos \theta_z > -0.1$

3+1 Oscillogram

[Carlos Argüelles, J.S., C. Weaver. *SQuIDS*, CPC 2015.06.022.] https://github.com/jsalvado/SQuIDS https://github.com/arguelles/nuSQuIDS

IceCube data set

We perform search using one year of **up-going** lceCube-86 high energy ν_{μ} data (Energy Range : 400 GeV to 20 TeV).

- Based on IC-86 diffuse astrophysical search cut-based event selection. [see arXiv:1507.04005, PRL 115, 081102 (2015)]
- ▶ <u>Number of events ~ 20000</u>.
- Spans a zenith range from -1 to 0.2 in $\cos \theta_z$.
- 99% ν_μ purity.
- Blind Analysis

Muon event in IceCube

The Signal!

Signal in reconstructed quantities for three points in the parameter space.

Systematics!

Systematics are very important; *some more than others*. This are the systematics we considered:

- DOM efficiency
- Flux continuous parameters
 - spectral index
 - π/K ratio
 - ν/ν̄ ratio
- Air shower hadronic models
- Primary cosmic ray fluxes
- Hole Ice
- Neutrino cross sections
- Bulk ice scattering/absorption
- Earth model

<u>continuous systematics</u> discrete systematic

Flux Systematics!

We parametrize the atmospheric flux with the following systematics parameters

$$\phi_{atm}(\cos\theta, E_{\nu}) = N_0 \mathcal{F}(\boldsymbol{\delta}) \bigg(\phi_{\mathcal{K}}(\cos\theta, E_{\nu}) + R_{\pi/\mathcal{K}} \phi_{\pi}(\cos\theta, E_{\nu}) \bigg) \times E_{\nu}^{-\Delta\gamma}$$

- Flux normalization (N₀): no prior.
- Atmospheric flux slope ($\Delta \gamma$): gaussian prior (0.,0.05).
- ▶ Pion/Kaon ratio $(R_{\pi/K})$: gaussian prior (1.0,0.1).
- atmospheric density uncertainty (δ): gaussian prior (0,0.05).
- $\nu/\bar{\nu}$ ratio: gaussian prior (1.,0.05).

1 year IC-86 data

	_	- ⁸³	23	30	- 32	2 ⁶	18	23	1 ¹⁸	19	22	0- 47	36	49	- 56	ر 66	48	72	21		0.2
		176	230	193	170	181	154	194	159	171	207	212	261	290	322	367	443	533	114		Ic(
Ι	10^3	101	213	234	231	254	239	295	282	281	326	343	408	470	490	630	734	824	247		eCu
Frecc		55	109	137	157	127	179	178	184	229	205	243	244	310	355	427	466	599	264	7	be
oxy/		21	39	56	53	72	78	06	97	106	66	149	120	158	180	227	261	314	164	2	PRI
GeV		5	6	15	27	26	37	32	40	37	41	49	62	64	80	92	100	123	91	6	ELI
r		e	6	4	2	10	13	7	19	17	17	16	21	29	40	40	61	68	47	8	MIN
		1	9	2	4	2	2	4	2	2	9	11	14	13	12	17	19	30	15	9	IAR
	10^4	-	1	1	1.	2	1	5	2	4	6	4	2	с	4	10	10	14	10	4	X

Data (events per bin)

How the fit looks

- We fitted the null hypothesis (no steriles) using the central sets (no variants) on the full 2D sample space.
- Blindness is preserved by only looking at projections.
- ▶ We recover a good fit and sensible nuisance parameters.

Parameter	Value	Prior				
Normalization	1.02	No Prior				
$\Delta \gamma$	0.05	G(0.,0.05)				
DO Meff	0.985	No Prior				
π/Κ	1.10	G(1.,0.1)				
$\nu / \bar{\nu}$	1.0	G(1.,0.05)				
δ	0.001	G(0.0.05)				

How the fit looks

- We fitted the null hypothesis (no steriles) using the central sets (no variants) on the full 2D sample space.
- Blindness is preserved by only looking at projections.
- We recover a good fit and sensible nuisance parameters.

Parameter	Value	Prior			
Normalization	1.02	No Prior			
$\Delta\gamma$	0.05	G(0.,0.05)			
DO Meff	0.985	No Prior			
π/Κ	1.10	G(1.,0.1)			
$\nu/\bar{\nu}$	1.0	G(1.,0.05)			
δ	0.001	G(0.,0.05)			

Main result!

Phys.Rev.Lett. 117 (2016) no.7, 071801 [arXiv:1605.01990]

Other new results from Neutrino2016

arXiv:1607.01176,1607.01177

Conclusions about the IceCube Sterile search

- The IceCube result excludes the main LSDN region at 99% CL.
- The tension is growing for the 3+1 O(eV) sterile neutrinos, but still the upper part survives.
- IceCube has more years of data to be analyzed and other experiments are in progress.

Questions About the Conclusions

- Is the anomaly "new physics"?
- The new IceCube result seams to point to NO. What do we need?
 - ► Is there a O(eV) (3+1) sterile? we need to be quantitative about the tension:today we know is 0.4×10^{-4} Global analysis talk by Joachim.

Can we accommodate all(or only IceCube with other positive)?

- ► May be is not O(eV) (3+1):
 - ➤ X More light Steriles: The neutrino matter effects behind the IceCube power are well established and any oscillation physics with O(eV) masses would be potentially detectable.
 - ► ✓ Some other new physics hides the lceCube signal. Using NSI Phys.Rev.Lett. 117 (2016) no.7, 071802 Jiajun Liao, et al.
 - Decay of heavy steriles O(KeV), IceCube bound not relevant since there is not matter effect enhancement.
 JHEP 0509 (2005) 048 Sergio Palomares, et al.
 Phys.Rev. D93 (2016) no.7, 073004 Yang Bai, et al.
- We still need more experiments!

Don't forget the second new physics extension (*n*-powers of E)

$$H = \frac{1}{2E} U M^2 U^{\dagger} + V_m + \sum_n \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$$

$$\bullet O_n = \operatorname{diag}(O_{n,1}, O_{n,2}, O_{n,3})$$

•
$$V_m = \operatorname{diag}(V_e, 0, 0)$$

•
$$\Delta = \operatorname{diag}(\Delta_1, \Delta_2, \Delta_3)$$

 O_n and Λ_n set the scale of the new physics.

Non-Standard Interactions (NSI) n = 0 with ordinary matter

$$H = \frac{1}{2E_{\nu}} U M^2 U^{\dagger} + V_m + \sum_{f} V_f \varepsilon^{fV}$$

$$V_m = \operatorname{diag}(V_e, 0, 0)$$

$$\triangleright \ \varepsilon_{\alpha\beta} \propto \sum \frac{n_f}{n_d}$$

- IceCube is more sensitive to the μτ sector.
- The effect is proportional to the density crossing the earth
- The plot shows the ratio between the final and initial flux

arXiv:1609.03450 JS., et al.

Non-Standard Interactions (NSI)n = 0 with ordinary matter With the Atmospheric neutrinos (sterile DATA)

- Effect on the zenith distribution.
- The IceCube atmospheric data gives the strongest bound in the ε_{μτ} sector.

ω

 $\varepsilon_{\mu\tau}$

Wouldn't be great to use astrophysical ν !??

New Physics with Astrophysical Neutrinos

$$H = \frac{1}{2E} U M^2 U^{\dagger} + V_m + \sum_n \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$$

- High energy(PeV) and long propagation distance(Mpc) enhance the effect
- But we don't know the spectrum at the source

n	New Physics	Current Bound
		From SK and IC-atm
0	CPT-odd Lorentz Violation	$O_0 < 10^{-23} { m GeV}$
	Coupling space time torsion	
	Non Standard Neutrino Interactions	
1	CPT-even Lorentz Violation	$O_1/\Lambda_1 < 10^{-27}$
	Violation of the equivalence principle	

New Physics with Astrophysical Neutrinos

$$H = \frac{1}{2E} U M^2 U^{\dagger} + V_m + \sum_n \left(\frac{E}{\Lambda_n}\right)^n \tilde{U}_n O_n \tilde{U}_n^{\dagger}$$

- High energy(PeV) and long propagation distance(Mpc) enhance the effect
- But we don't know the spectrum at the source
- The flavor content may be the answer

(Olga Mena et al. Phys.Rev.Lett. 113 (2014) 091103

Astophysical neutrinos effect

- Top Value at the Current Bound Already maximal effect!
- Bottom-Left O(10⁻³) times the Current Bound Potentially measurable
- Bottom-Right O(10⁻⁵) times the Current Bound
- Source information is preserved.

Conclusions

- IceCube put the strongest constrain in the relevant light sterile neutrino parameter space. (There is more data and other experiments!)
- The resonance between oscillation frequency and the matter potential is behind the strength of IceCube: May be is not an oscillation! (Ex: decay,....)
- More IceCube data together with other experiment may solve this
- From the sterile technology: High energy atmospheric neutrinos may constrain other BSM physics (NSI, Lorentz Violation, ...).
- The flavor triangle matters!: The flavor content may explore new physics even not knowing the source. About three orders of magnitude! improvement.
- ► Astrophysics flavor information is relatively preserved.
- Great near future: Several years of data are already there to be analyzed, IceCube extensions and other experiments are planed.

¡Thanks!