

Jet cross section measurements and extraction of QCD parameters

Giannis Flouris

Internal Seminar 27 February 2017

- LHC Accelerator
- CMS Detector
- QCD and Jets
- Jet Reconstruction and Jet Energy Corrections
- CMS Measurements
 - Inclusive jet cross section and strong coupling at 7 TeV
 - 3-jet to 2-jet cross section ratio and strong coupling at 7 TeV
 - Dijet azimuthal decorrelations at 8 TeV
 - Inclusive jet cross section at 13 TeV
- Conclusions

CERN's accelerator complex.

CMS Detector

Magnetic filed: 3.8T Tracking: $|\eta| < 2.5$ Central calorimeter: $|\eta| < 3$ Forward calorimeter: $3 < |\eta| < 5$

CMS Detector

Magnetic filed: 3.8T Tracking: |η|<2.5 Central calorimeter: |η|<3 Forward calorimeter: 3<|η|<5

Slice of CMS (Compact Muon Solenoid) **CMS** Detector

High data taking efficiency.

Year	√s	$\mathcal{L}_{LHC}(fb^{-1})$	$\mathcal{L}_{CMS}(fb^{-1})$
2010	7	0.442	0.408
2011	7	6.13	5.55
2012	8	23.30	21.79
2015	13	4.22	3.81
2016	13	41.07	37.82

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

Quantum Chromodynamics

Jets (streams of particles)

- Hard scattering is described by perturbative Quantum Chromodynamics (pQCD).
 - Quarks are assumed to behave as free particles.
 - Assymptotic behaviour of the strong coupling constant (α_s).
- Factorization theorem:

PDF x pQCD $\sigma^{hh} \sim \sum_{ij} dx_1 dx_2 f_i(x_1, \mu_f^2) f_i(x_2, \mu_f^2) \hat{\sigma}(x_1, x_2, Q^2/\mu_f^2)$

 μ_{f} : factorization scale. Arbitrary cut-off parameter.

Quantum Chromodynamics

- Parton showers. (PS)
 - Quarks emit gluons, gluons split into quarks...
 - This procedure continues until partons loose enough energy and the strong coupling becomes large enough to form hadrons.
- Hadronization: (HAD)
 - Quarks form hadron that interact with matter (detector).
- PS and HAD are simulated with models that are described in HERWIG and PYTHIA.
- Jet are the signatures of quarks and gluons.

Quantum Chromodynamics

Jet Reconstruction and Calibration

Anti-k, clustering algorithm: Infrared and collinear safe. Used with various values of R.

VUB

Jet Reconstruction and Calibration

Particle Flow Jets (PF Jets): Combines information from all sub-detectors to reconstruct and identify all stable particles used in jets.

Anti-k_T clustering algorithm: Infrared and collinear safe. Used with various values of R.

Factorized JEC approach in CMS

JINST 6 (2011) 11002 CMS DP2012-006 CMS DP2013-033

- Measurement of double differential cross section on p_T and y as a function of p_T .
- Comparison with theoretical calculations using NNPDF2.1.
- Jets up to |y|=2.5, $p_T=2TeV$. Five rapidity bins of $\Delta |y|=0.5$.
- p⊤ range 114 GeV 2TeV

Main systematic uncertainties:

- JES 10-20%
- Unfolding 3-4%
- Luminosity 2.2%
- Residuals 1%

- Bottom left: Ratio of data (and theory with various α_s values) to theoretical calculation with $\alpha_s(M_z)=0.1180$.
- CT10-NLO PDF is used with range of $\alpha_{_{\rm S}}$ 0.112-0.126.
- As expected the cross section is sensitive to the variations of α_s .
- Theory describes well the data in the whole range of $\boldsymbol{p}_{\scriptscriptstyle T}$

- Fitted regions: 114 2116 GeV
 133 data points.
- The main result was extracted using CT10-NLO PDF. Data used in fit combined by all the rapidity regions (0<|y|<2.5).
- Scale and PDF uncertainties are the dominant in the measurement.
- The result is compatible with the world average: $\alpha_s(M_Z) = 0.1184 \pm 0.0007$

$$\alpha_{s}(M_{z}) = 0.1185 \pm 0.0019 \,(\text{exp.}) \pm 0.0028 \,(PDF) \pm 0.0004 \,(NP)_{-0.0024}^{+0.0053} \,(\text{scale})$$
$$= 0.1185_{-0.0041}^{+0.0065}$$
$$\chi^{2}/ndof = 0.8$$

Using NNPDF2.1NNLO PDF set we get the following result:

15/17

ΛUB

3-jet to 2-jet cross section ratio and α_{s}^{2} 7 TeV

theoretical uncertainties.

 $\alpha_s = 0.1148 \pm 0.0014(\exp) \pm 0.0018(PDF) \pm 0.0050(theory)$ $\chi^2/ndof = 1.1$

The running of the α_s

No deviation from the QCD predictions is observed.

Dijet azimuthal decorrelations 8TeV

Measurement of the normalized differential cross section

 $1 d\sigma$

 $\sigma_{\rm \tiny Dijet}~d\Delta\phi_{\rm \tiny Dijet}$

as a function of $\Delta \phi_{\scriptscriptstyle Dijet} = \left| \phi_{\scriptscriptstyle jet1} - \phi_{\scriptscriptstyle jet2} \right|$

- Jets with p_T >100GeV and |y| < 2.5
- Comparison with NLOJet++ (fastNLO) calculations with various PDF sets. (3-jet NLO)
- Comparison with various Monte Carlo generators matched to PS.
- Probe multijet events by measuring the angular separation of the two leading jets.

Dijet azimuthal decorrelations 8TeV

• Background of the measurement: Z(vv)+Jets, W(lv)+Jets and tt.

- Rejection of background using missing energy over the sum of transverse energy.
- Event selection: $E_T / \sum E_T < 0.1$
- Rejects ~0.7% of the data sample.

Dijet azimuthal decorrelations 8TeV

- Various PDF sets tested, all agree with each other.
- 3-jet calculations good agreement in region $\Delta \phi_{Dijet} > 5\pi/6$
- Deviations at small $\Delta \phi_{Dijet}$ of NLO and LO region.

- Comparison with various MC generators matched to PS.
- Madgraph gives the best description

Inclusive jet differential cross sections 13TeV

- Measurement of double differential cross section on p_T and y as a function of p_T .
- Comparison with fixed order pQCD and MC generators matched to PS. Using various tunes and PDF sets.
- Jets up to |y|=4.7, $p_T=2TeV$. Six rapidity bins of $\Delta |y|=0.5$ + one $\Delta |y|=1.5$
- Theory describes data within uncertainty.

Inclusive jet differential cross sections 13TeV

- Measurement of double differential cross section on p^T and y as a function of p^T.
- NLO calculations describe data within uncertainty.
- LO generators exhibit significant discrepancies. Shape of HERWIG++ in agreement with data for all rapidity bins while PYTHIA8 differs for the outer rapidity bins.

 $\frac{d^2\sigma}{dp_{\rm T}dy} = \frac{1}{\boldsymbol{\epsilon}\cdot\boldsymbol{\mathcal{L}}_{\rm eff}} \frac{N_{\rm jets}}{\Delta p_{\rm T}(2\cdot\Delta|y|)}$

Inclusive jet differential cross sections 13TeV

- Measurement of double differential cross section on p_T and y as a function of p_T .
- Comparisons with fixed order NLOJet++ shows that cross sections for the larger jet cone size is described better.
- NLO generator POWHEG interfaced to PYTHIA8 describes cross sections for both jet cones well.

Conclusions

- Excellent understanding of jet reconstruction and calibration.
- High performance of data collecting leads to precision measurements
- Various jet measurements improve our understanding of QCD.
- Inclusive jet cross-section measurement is presented from 7 and 13 TeV data.
- Multijet cross section measurements at 7 and 8 TeV.
- Strong coupling extraction at 7 and (8 TeV).
- We performed measurements of the strong coupling constant at Q~1.5TeV region and no deviations from the QCD predictions observed.
- Currently the theoretical uncertainties being the dominant ones.

Conclusions

- Excellent understanding of jet reconstruction and calibration.
- High performance of data collecting leads to precision measurements
- Various jet measurements improve our understanding of QCD.
- Inclusive jet cross-section measurement is presented from 7 and 13 TeV data.
- Multijet cross section measurements at 7 and 8 TeV.
- Strong coupling extraction at 7 and (8 TeV).
- We performed measurements of the strong coupling constant at Q~1.5TeV region and no deviations from the QCD predictions observed.
- Currently the theoretical uncertainties being the dominant ones.

SPARE SLIDES

VUB

NP corrections 13TeV

NP corrections 13TeV

