

Introduction

- * The heaviest elementary particle ever discovered (1995)
- Almost exclusively decays to W boson and b quark
- * Short lifetime makes it decay before hadronization ($\tau \approx 4 \times 10^{-25}$ s)
- Represents relatively clean experimental signature to study

- * The most Godly particle ever discovered (2012)
- The last predicted missing particle in SM now observed
- Gives mass to all particles via Higgs field
- Its properties and implications for SM are currently being studied in details

In SM top is expected to strongly couple to Higgs ($y_t \approx 1$)

Why top Yukawa coupling is so strong?

Higgs field expectation
$$1/3Q_{-1/3}(H+v)$$

Yukawa interaction with quarks: Higgs field expectation
$$\mathcal{L} = \frac{1}{\sqrt{2}} \overline{Q}_{2/3} \lambda_{2/3} Q_{2/3} (H+v) + \frac{1}{\sqrt{2}} \overline{Q}_{-1/3} \lambda_{-1/3} Q_{-1/3} (H+v)$$

Yukawa coupling
$$=\sqrt{2}\frac{m_Q}{v}$$

Top quark Yukawa coupling (y_t) = $1.4*(173 \text{ GeV})/(246 \text{ GeV}) \approx 0.98$ precise calculations give 0.990 +/- 0.003 → presumably enhanced sensitivity to BSM particles

Is our world stable?

- Our world is **stable** if there are no other potential minima V < V_{Fermi}
- * Our world is **metastable** if there is another potential minimum with a tunneling time greater than the age of our universe ($P^{-1}_{tunnel} > \tau_{universe}$)
- * Our world is **unstable** if P-I tunnel <

 $au_{ ext{universe}}$

- * The answer is strongly connected to top and Higgs properties!
- * $\mu^{thr} = O(v = 246 \text{ GeV})$
- * $\mu^{cri} = O(M_{Planck} = 1.22 \times 10^{19} \text{ GeV})$

stability

JHEP10 (2012) 140

When the world (almost) crashes down

- * Our world is **unstable** at 1.3σ
- * We seem to live in a metastable
 world → transition time between
 two minima > lifetime of the
 universe
- Main uncertainties on our fate come from m_t, m_H and y_t
 determination

Phys. Rev. Lett. 115, 201802 (2015)

vacuum stability condition

Lucky (?)

The importance of being yt

- * Critical y_t: Higgs field has two degenerate minima
- * $y_t \in [y_t^{crit}, y_t^{crit} + 0.04]$: the new minimum is deeper than ours, the age of the universe is smaller than the life-time of our vacuum (metastability)
- * $y_t > y_t^{crit} + 0.04$ ($m_t > 178$ GeV): the life-time of our vacuum is smaller than the age of the universe
- * $y_t < y_t^{crit} 1.2 \times 10^{-6}$: our vacuum is unique
- * $y_t \in [y_t^{crit} 1.2 \times 10^{-6}, y_t^{crit}]$: our vacuum is deeper than the other one

$$y_t^{
m crit} = 0.9244 + 0.0012 imes rac{M_h/{
m GeV} - 125.7}{0.4} + 0.0012 imes rac{lpha_s(M_Z) - 0.1184}{0.0007}$$

J. Exp. Theor. Phys. 120 (2015) 3

Mass, Yukawa and stability

Precision mass measurements for top and Higgs, and yt determination are crucial to understand where we live!

Higgs mass measurements

How to catch Yukawa?

Directly

Indirectly

Caveat: new particles could contribute to the loops!

Catch me directly, if you can

How well do we know yt?

yt and CP violation

Top-Higgs interaction

$$\mathcal{L}_t = -\frac{m_t}{v} \left(\kappa_t t t + i \tilde{\kappa}_t t \gamma_5 t \right) H$$

CP violation phase: $\zeta_t = arctan(\tilde{\kappa}_t/\kappa_t)$

yt and CP violation

Direct CP measurement of yt

- * Probe CP of y_t in ttH dilepton events
- * Sensitive to $\Delta \Phi \ell \ell$
- * Even more pronounced in **boosted regime**

CP-even SM Higgs 0^+ (K=1, α =0) CP-odd SM Higgs 0^- (K=1, α = π /2)

Phys. Rev. Lett. 116, 091801 (2016)

Golden process to directly probe yt but a very complex final state!

ttH search results

CMS-PAS-HIG-16-038

CMS-PAS-HIG-16-020

ttH search results

ATLAS-CONF-2016-068

CMS-PAS-HIG-16-022

CMS-PAS-HIG-16-020

Evidence for ttH <u>reported</u> yesterday at Moriond!

- * Suppressed in SM by destructive interference: $y_t \cdot y_w < 0$
- * tHq is sensitive to both magnitude and sign of y_t
- BSM can be looked for by probing
 negative y_t still allowed from global fits
- * 15x increase in tHq cross section assuming inverted coupling scenario, $y_t = -1$

t channel

s channel

Eur. Phys. J. C (2015) 75: 267

tHq search results

JHEPO6 (2016) 177

tHq search results

JHEPO6 (2016) 177

- * As tHq, suppressed in SM by destructive interference: $y_t \cdot y_w < 0$
- * Sensitive to both magnitude and sign of y_t
- * Significant increase in tHW cross section (up to 50x) in some phase space of (y_t , y_w)

${f CP~even}~~{f CP~odd} \ {\cal L}_0^t = -ar{\psi}_tig(c_lpha\kappa_{{\scriptscriptstyle H}tt}g_{{\scriptscriptstyle H}tt} + is_lpha\kappa_{{\scriptscriptstyle A}tt}g_{{\scriptscriptstyle A}tt}\,\gamma_5ig)\psi_t\,X_0 \ {\cal L}_0^V = \kappa_{ m SM}ig(rac{1}{2}g_{{\scriptscriptstyle H}ZZ}\,Z_\mu Z^\mu + g_{{\scriptscriptstyle H}WW}\,W_\mu^+ W^{-\mu}ig)\,X_0 \$

Eur. Phys. J. C (2017) 77: 34

No experimental results yet

Indirect probe of yt in four tops

$$\sigma(t\bar{t}t\bar{t}) = \sigma^{\rm SM}(t\bar{t}t\bar{t})_{g+Z/\gamma} + \kappa_t^2 \sigma_{\rm int}^{\rm SM} + \kappa_t^4 \sigma^{\rm SM}_{\rm int} (t\bar{t}t\bar{t})_H$$

arXiv:1602.01934

	$8 \mathrm{TeV}$	$14 \mathrm{TeV}$
$\sigma^{\mathrm{SM}}(tar{t}tar{t})_{g+Z/\gamma}$:	1.193 fb,	12.390 fb,
$\sigma^{ m SM}(tar t tar t)_H:$	0.166 fb,	1.477 fb,
$\sigma^{ m SM}(tar t tar t)_{ m int}:$	-0.229 fb,	-2.060 fb.

LHC data results @8TeV:

$$\sigma(t\bar{t}t\bar{t}) \le 23 \text{ fb} \qquad \kappa_t \le 3.49$$

When flavours change but charge remains the same

- Flavour-changing neutral currents (FCNC) suppressed at tree level in SM by GIM mechanism
- * Could be significantly enhanced in BSM
- * Direct probe of anomalous yt

FCNC in production

FCNC in decay

From LHC to HL-LHC

LHC Global data fit results

HL-LHC Projection

arXiv:1307.7135

- * Scenario I: systematics unchanged
- * Scenario 2: scale theoretical uncertainties by 1/2, others are scaled by IL

Could reach $\approx 5\%$ uncertainty in y_t !

expected uncertainty

Study of y_t at future colliders

 $e^+e^- \rightarrow \mathbb{Z}/\gamma^* \rightarrow ttH$ arXiv:0604166

arXiv:1506.05992

			$\sigma(tar{t}H)[ext{pb}]$	$\sigma(t\bar{t}Z)[ext{pb}]$	$rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$
_	$13~{ m TeV}$	$m_t=174.1~{ m GeV}$	0.3640	0.5307	0.6860
		$m_t=172.5~{ m GeV}$	0.3707	0.5454	0.6800
	100 TeV	$m_t=174.1~{ m GeV}$	23.88	37.99	0.629
		$m_t=172.5~{ m GeV}$	24.21	38.73	0.625

arXiv:1507.08169

Collider	HL-LHC	ILC	LC 1-3 TeV	FCC-ee+hh
λ_{t}	4%	14%	2-4%	1-2%
$\lambda_{ m H}$	50%	83%	10 - 15%	5-10%

arXiv:1510.09056

Expected precision in y_t determination

Conclusion

- We live in a beautiful metastable world
- Top quark Yukawa coupling might be a portal to other worlds with new physics
- Experimental studies of this vital fundamental parameter in SM have just begun
- * A broad range of analyses in the top-Higgs sector is being performed by the LHC experiments
- * Very good prospects for y_t determination at future colliders!