
w/ Francesco Sannino, ArXiV:1704.0070

Steven Abel (Durham IPPP)

Towards an Asymptotically Safe SM



• Motivation; the hierarchy versus triviality problem 
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Motivation: two problems to do with  
scalars



Why is the Weak Scale so much lower than the Planck Scale - and how is it protected? 

More precisely perturbation theory with a higgs scalar is suspect: very “massive states” 
dominate any perturbative calculation to do with higgs physics.  

Actually don’t even need a heavy resonance: this can be true for some other rapid change 
(in e.g. beta functions) at a high scale. 

The hierarchy problem:



The hierarchy problem:

Candidate symmetries:

Higgs is a Goldstone mode of some broken global symmetry (like the pions in chiral 
symmetry breaking) with breaking scale of a few TeV 

Supersymmetry - relates boson to fermions. Divergences cancel level by level. 
Phenomenology requires soft (a.k.a. dimensionful) breaking. 

Scaling symmetry - Higgs is the Goldstone mode of a broken scale invariance (a.k.a. 
dilaton) (a trivial perturbative example of this is the Standard Model with vanishing higgs 
mass, but it can occur in nonperturbative models based on AdS/CFT). (The subject here - 
but not Coleman-Weinberg!!) 

Misaligned Supersymmetry - even non-supersymmetric non-tachyonic strings are finite.               
(Alternative route to naturalness) (SAA+Dienes+Mavroudi)



Scalars lead to Landau poles:  

=> the theory is UV incomplete  

But trying to UV complete it result in the hierarchy problem again! (see previous 
comments)  

The triviality problem:



QCD is (unlike SUSY) a UV complete theory. Why? 

1. There is no hierarchy problem: quark masses are protected by chiral symmetry 

2. There is no triviality problem: QCD is asymptotically free

Hints from QCD

Note the philosophy of QCD: we do not mind running masses because they do not upset the  

Gaussian UV fixed point. We simply measure them and let them run. Or to put it another way:  

they are “relevant” operators that are effectively zero in the UV. They do not need to run to  

zero in the UV! (We also don’t care too much about couplings blowing up in the IR.)
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RG flows and the asymptotic safety idea



Gaussian IR fixed point => perturbative 

Interacting UV fixed point => finite anomalous dimensions 

In a field theory replace 1/e with 1/c => divergences of marginal 

operators (which affect the fixed point) cured  

Weinberg used this as a basis for his proposal of UV complete theories 

The Basic idea

Figure 5: Theories on the critical surface flow (dashed lines) to a critical point in the IR.

Turning on relevant operators drives the theory away from the critical surface (solid lines),

with flow lines focussing on the (red) trajectory emanating from the critical point.

Now consider starting near a critical point and turning on the coupling to any operator

with ⇥i > d. According to (5.33) this coupling becomes smaller as the scale ⇤ is lowered,

or as we probe the theory in the IR. We say that the corresponding operator is irrelevant

since if we include it in the action then RG flow just makes us flow back to the critical

point g⇤i . Classically, we can obtain operators with arbitrarily high mass dimension by

including more and more fields and derivatives, so we expect that the critical point g⇤i sits

on an infinite dimensional surface C such that if we turn on any combination of operators

that move us along C, under RG flow we will end up back at the critical point. C is known

as the critical surface and we can think of the couplings of irrelevant operators as provided

coordinates on C, at least in the neighbourhood of g⇤i . (See figure 5.)

On the other hand, couplings with ⇥i < d grow as the scale is lowered and so are

called relevant. If our action contains vertices with relevant couplings then RG flow will

drive us away from the critical surface C as we head into the IR. Starting precisely from a

critical point and turning on a relevant operator generates what is known as a renormalized

trajectory: the RG flow emanating from the critical point. As we probe the theory at lower

and lower scales we evolve along the renormalized trajectory either forever or until we

eventually meet another23 critical point g⇤⇤i . Since each new field or derivative adds to the

dimension of an operator, in fixed space–time dimension d there will be only finitely many

22It’s a theorem that this is always true in two dimensions. It is believed to be true also in higher

dimensions, but the question is actually a current hot topic of research.
23There are a few exotic examples where the theories flow to a limiting cycle rather than a fixed point.
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Note relevant or marginally relevant operators still have “infinities” at the FP - just as quark masses, they 

still run at the FP just like any other relevant operator: but being relevant they do not affect the FP. (And by 

definition they become less important the higher you go in energy.)   

Irrelevant operators: would disrupt the fixed point - therefore asymptotically safe theories 
have to emanate precisely from UV fixed point where they are assumed zero (exactly 
renormalizable trajectory) 

Marginal operators: can be involved in determining the UV fixed point where they become 
exactly marginal. Or can be marginally relevant (asymptotically free) or irrelevant. 

Relevant operators: become “irrelevant” in the UV but may determine the IR fixed point. 

Categorise the content of a theory as follows



This theory has unstable fixed point at a = 0. Asymptotically free if  B > 0  

Simple example of flow - normal QCD:   

↵

@t↵ = �B↵2

@t↵

t = logµ/µ0



If A>0, B>0, this theory has unstable UV fixed point at a = A/B and stable one at IR  a = 0 

Weinberg’s original set-up 
theory with coupling     :

@t↵ = A↵�B ↵2
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↵⇤ = A/B↵⇤ = 0

↵⇤ ⌧ 1
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epsilon expansion:
large-N expansion:      many fields
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Turns out C>0, B>0: theory has stable IR fixed point at a = B/C and unstable one in UV  a = 0 

Take QCD with                    and           fermions but very large numbers of colours+flavours 

↵

@t↵

Note perturbativity:                                            
requires many fields (Veneziano limit) with  

@t↵ = �B↵2 + C↵3

B/C

=) B ⌧ C

Familiar from Seiberg duality and weakly coupled                                             supersymmetry NF . 3NC N = 1

NF ⇡ 11NC/2

B / ✏ =
NF

NC
� 11

2

Caswell-Banks-Zaks fixed point: 

NFSU(NC)



But requires C<0, B<0, this theory has stable IR fixed point at a = 0 and unstable UV one at a = B/C 

Again would have … 

↵

@t↵

Again perturbativity would require  

@t↵ = �B↵2 + C↵3

B/C

What about Asymptotic safety in 4D QFT?

At t -> infinity the coupling ends up here (and fields have finite anomalous dimensions)  

NF ⇡ 11NC/2



Asymptotic safety in 4D QFT



That was a one coupling cartoon: real situation requires several couplings to realise  
Litim & Sannino ’14

In order to get this behaviour need to add scalars and Yukawa couplings  
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The asymptotically safe theories of ref.[1] that we will be using here lie somewhere between
these two extremes. By choosing a theory with a weakly interacting UV fixed point we recover
the benefits of predictivity and control over the e↵ective potential, but at the same time
keep the theory under good perturbative control. This optimisation is reminiscent of the
Banks-Zaks IR fixed point [49], which can be made arbitrarily weakly interacting and hence
perturbatively tractable, in a particular (Veneziano) large-colour/large-flavour limit.

Of course this work follows on from a large body of literature that has discussed asymp-
totic safety and more generally the consequences of UV scale invariance both with and
without gravity: [48, 50–59]). (For a review see [60]). The object of this paper is to place
radiative symmetry breaking in such frameworks on the same footing as it is in the MSSM.

II. THE THEORY, UV FIXED POINT AND CRITICAL CURVE

We begin by describing the behaviour of the weakly interacting gauge-Yukawa theories
that we will be using, and in particular their phase diagrams and RG flow. Consider a
theory with SU(NC) gauge fields Aa

µ and field strength F a
µ⌫ (a = 1, · · · , NC), NF flavours of

fermions Qi (i = 1, · · · , NF ) in the fundamental representation, and an NF ⇥ NF complex
matrix scalar field H uncharged under the gauge group. At the fundamental level the
Lagrangian is L = LYM + LF + LY + LH + LU + LV , with

LYM =�1

2
TrF µ⌫Fµ⌫ + Tr

�
Q i /DQ

�
+ yTr

�
QH Q

�
+ Tr (@µH

† @µH)

�uTr [(H†H)2]� v (Tr [H†H])2 , (1)

where Tr indicates the trace over both color and flavor indices. The model has four cou-
pling constants given by the gauge coupling, the Yukawa coupling y, and the quartic scalar
couplings u and the double-trace scalar coupling v:

↵g =
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(4⇡)2
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(4⇡)2
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F

(4⇡)2
. (2)

We have already re-scaled the coupling constants by the appropriate powers of NC and
NF to work in the Veneziano limit. When necessary we will use a shorthand notation ↵i

with i = (g, y, h, v). As mentioned in the Introduction we will be considering the large
colour and large flavour Veneziano limit, in order to have an interacting fixed point which
is nevertheless arbitrarily weakly coupled. Therefore it is convenient to introduce a control
parameter which in the Veneziano limit is a continuous and arbitrarily small constant

✏ =
NF

NC

� 11

2
. (3)

Asymptotic freedom is lost for positive values of ✏.
Ref.[1] discovered a number of fixed points for this model. However there is one fixed

point that is unique in that it has only one relevant direction with the other three being
irrelevant. Since every relevant direction loses predictivity (as it is formally zero at the fixed

H is an NF ⇥NF scalar

Initially have                                         flavour symmetry U(NF )L ⇥ U(NF )R

L



Effect of Yukawa ….
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Four couplings - flow could in principle be four dimensional  
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Figure 1: The renormalisation group flow of the marginal couplings from the UV fixed point and

around the critical curve, towards the Gaussian IR fixed point.
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where W is the Lambert W -function (a.k.a. the product log defined by W (z)eW (z) = z) and
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Perturbation theory is valid for all values of t as long as ✏ is small.
Since we can access all scales through this set of solutions, the initial gauge coupling

is the only free parameter distinguishing di↵erent physical systems that flow from the UV
fixed point, and must be set by hand in accord with the measurement of the coupling at
some scale. However, as mentioned above one can simply use the gauge coupling itself to
parameterise the flow along the critical curve linking the UV interacting fixed point to the IR
non-interacting one (also known as the separatrix): it is a monotonically increasing function
of µ.



Four couplings - flow could in principle be four dimensional  
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1D exactly renormalisable trajectory! 



Along the separatrix/critical-curve/exact-trajectory can parameterise the flow in terms of  
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point and must be set by hand) this fixed point is of great interest. To the maximum cur-
rently achievable order in perturbation theory and properly respecting the Weyl consistency
conditions it is obtained for

↵⇤
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↵⇤
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h = 0.1998 ✏+ 0.5042 ✏2 +O(✏3) ,

(4)

with the leading coe�cients of ✏ corresponding to ↵⇤
g = 26

57✏ + . . ., ↵⇤
y = 4

19✏ + . . . and

↵⇤
h =

p
23�1
19 ✏+ . . . respectively. Note that the quartic scalar self-coupling is essential for this

fixed point to exist. The remaining double-trace scalar coupling v has two possible fixed
points, one of which is more perturbatively reliable and adds an irrelevant scaling direction
to the theory, found to be at

↵⇤
v1 =

�6
p
23 + 4✏+ 3

p
4✏+ 6

p
23 + 4✏+ 20

4✏+ 26
↵⇤
g +O(↵⇤

g
2) . (5)

Numerically ↵⇤
v1 = �0.1373 ✏ up to quadratic corrections in ✏.
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at leading order since ↵⇤
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v1 > 0, and it also the case for loop corrections as well [1, 3].

Therefore there is no Coleman-Weinberg type instability in these models, as will be shown
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v1 perturbative fixed point is
classically viable and becomes increasingly flat in the Veneziano limit, and moreover in the
absence of relevant operators the flow never leaves the critical curve.

Having identified all the critical coupling values and the scaling dimensions it is possible
to parameterize the gauge coupling and hence the entire flow along the critical curve for any
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The asymptotically safe theories of ref.[1] that we will be using here lie somewhere between
these two extremes. By choosing a theory with a weakly interacting UV fixed point we recover
the benefits of predictivity and control over the e↵ective potential, but at the same time
keep the theory under good perturbative control. This optimisation is reminiscent of the
Banks-Zaks IR fixed point [49], which can be made arbitrarily weakly interacting and hence
perturbatively tractable, in a particular (Veneziano) large-colour/large-flavour limit.

Of course this work follows on from a large body of literature that has discussed asymp-
totic safety and more generally the consequences of UV scale invariance both with and
without gravity: [48, 50–59]). (For a review see [60]). The object of this paper is to place
radiative symmetry breaking in such frameworks on the same footing as it is in the MSSM.

II. THE THEORY, UV FIXED POINT AND CRITICAL CURVE

We begin by describing the behaviour of the weakly interacting gauge-Yukawa theories
that we will be using, and in particular their phase diagrams and RG flow. Consider a
theory with SU(NC) gauge fields Aa

µ and field strength F a
µ⌫ (a = 1, · · · , NC), NF flavours of

fermions Qi (i = 1, · · · , NF ) in the fundamental representation, and an NF ⇥ NF complex
matrix scalar field H uncharged under the gauge group. At the fundamental level the
Lagrangian is L = LYM + LF + LY + LH + LU + LV , with

LYM =�1

2
TrF µ⌫Fµ⌫ + Tr

�
Q i /DQ

�
+ yTr

�
QH Q

�
+ Tr (@µH

† @µH)

�uTr [(H†H)2]� v (Tr [H†H])2 , (1)

where Tr indicates the trace over both color and flavor indices. The model has four cou-
pling constants given by the gauge coupling, the Yukawa coupling y, and the quartic scalar
couplings u and the double-trace scalar coupling v:

↵g =
g2 NC

(4⇡)2
, ↵y =

y2 NC

(4⇡)2
, ↵h =

uNF

(4⇡)2
, ↵v =

v N2
F

(4⇡)2
. (2)

We have already re-scaled the coupling constants by the appropriate powers of NC and
NF to work in the Veneziano limit. When necessary we will use a shorthand notation ↵i

with i = (g, y, h, v). As mentioned in the Introduction we will be considering the large
colour and large flavour Veneziano limit, in order to have an interacting fixed point which
is nevertheless arbitrarily weakly coupled. Therefore it is convenient to introduce a control
parameter which in the Veneziano limit is a continuous and arbitrarily small constant

✏ =
NF

NC

� 11

2
. (3)

Asymptotic freedom is lost for positive values of ✏.
Ref.[1] discovered a number of fixed points for this model. However there is one fixed

point that is unique in that it has only one relevant direction with the other three being
irrelevant. Since every relevant direction loses predictivity (as it is formally zero at the fixed

At the fixed point it is arbitrarily weakly coupled,                             ,  where   
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III. SYMMETRY BREAKING

What happens when we add a classically relevant operator to such a system, in particular
of course a mass-squared term for the scalar H? As described in the Introduction, as long
as the operator remains relevant at the quantum level we do not expect it to a↵ect the UV
fixed point, and its status will therefore be equivalent to that of chiral symmetry breaking
mass-terms in QCD, in the sense that it is a parameter which is set at the initial RG scale
by physical measurement. There is no question of uncontrolled UV sensitivity because we
know that the theory is exactly conformal precisely at the UV fixed point (this is of course
the central assumption which unlike the CW mechanism is now motivated by a genuine
symmetry). On the other hand being a relevant operator it will divert the flow away from the
IR fixed point. In the current context this flow is precisely the seed for radiative symmetry
breaking.

A. A simple example

There are a number of di↵erent relevant operators that one might consider adding to the
theory that can contribute to symmetry breaking. They are distinguished by whether or
not they explictly break the SU(NF )L ⇥ SU(NF )R flavour symmetry of the theory. To be
concrete we will first consider the mass term,

V � m2
�

4NF

�
Tr(H +H†)

�2
, (8)

which explicitly breaks the flavour symmetry to the diagonal, U(NF )L ⇥ U(NF )R !
SU(NF )diag and picks out just the scalar component of the trace.

Generally, the RG flow will be on a critical surface whose dimensionality is given by the
number of relevant operators (plus one), but if this flavour breaking operator is the dominant
one, the flow and stability may be analysed in terms of the corresponding normalised Higgs
along its direction,

H =
�p
2NF

NF⇥NF , (9)

where � is real. We will for the moment restrict our attention to only this direction in field
space and assume that a negative m2

� will ultimately be responsible for symmetry breaking –
in the next subsection we will focus on the main point of the paper, which is that a positive
m2

� operator radiatively causes instability in other directions.
First let us deal with the quartic part of the classical potential of the theory, which along

the � direction reads

V
(4)
class =

4⇡2

N2
F

(↵h + ↵v)�
4 . (10)

Hence we define the e↵ective quartic coupling,

� = 32⇡2 3

N2
F

(↵h + ↵v) . (11)
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It is also useful to define

 = 32⇡2 1

N2
F

(3↵h + ↵v) . (12)

In the absence of m2
� the potential is stable at tree-level, and one can also confirm the

one-loop stability [3]. This essentially rules out the CW form of radiative breaking, be-
cause it is not possible perturbatively to take these theories to a limit in which the crucial
M(�)4 logM(�)2 terms are dominant. Indeed using the results of the Appendix, the entire
one-loop potential along the � direction is

V =
�

4!
�4 +

m2
�

2
�2 +

1

64⇡2

✓
m2

� +
�

2
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log
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4NFNC
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✓
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◆
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✓
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�
6�

2

µ2
� 3
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!
. (13)

The crucial aspect of this expression is that the last line, which contains the contributions
from all the orthogonal higgs scalars and pseudoscalars that get a mass, are according to
eqs.(11) and (12), suppressed by order ↵v and ↵h with respect to the leading term, despite
the factor of N2

F . From one point of view this is of course desirable since it ensures that
the theory remains perturbative, but it also means that these terms are not able to play
o↵ against the tree-level term in order to create a minimum (in contrast with the original
CW mechanism which without the constraint of having to be on a renormalisable trajectory
could freely set � ⇠ ↵2

e). It would of course be interesting to find theories where one could
(by varying a parameter such as m2

�) go continuously to CW radiative symmetry breaking.
As promised therefore, symmetry breaking, if it occurs at all, must be driven by the

mass-squared. Its evolution may be treated in the same way as for any other coupling in a
perturbative theory. It is useful for our later treatment of more complicated flavour structure,
to have the relevant expressions to hand of the various contributions to the RG flow. For
this reason (and to be careful about signs and establish conventions) let us summarise the
general framework for a theory of scalars � with generic �n couplings as

�(n) =
@nV

@�n
, (14)

where of course for the mass-squared we will take n = 2, so at the risk of confusion �(2) ⌘ m2
�.

The main equation to solve is the Callan-Symanzik equation for the n-point Green’s function,
✓
� @

@t
+ �̄

@

@�(n)
� n�̄

◆
�
(n)
eff = 0 , (15)

where t = log(�/µ0), corresponding to invariance under changes in the cut-o↵ µ0, of the
coupling �

(n)
eff (�/µ0) that one calculates directly in the e↵ective field theory.
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CW mechanism which without the constraint of having to be on a renormalisable trajectory
could freely set � ⇠ ↵2

e). It would of course be interesting to find theories where one could
(by varying a parameter such as m2

�) go continuously to CW radiative symmetry breaking.
As promised therefore, symmetry breaking, if it occurs at all, must be driven by the

mass-squared. Its evolution may be treated in the same way as for any other coupling in a
perturbative theory. It is useful for our later treatment of more complicated flavour structure,
to have the relevant expressions to hand of the various contributions to the RG flow. For
this reason (and to be careful about signs and establish conventions) let us summarise the
general framework for a theory of scalars � with generic �n couplings as

�(n) =
@nV

@�n
, (14)

where of course for the mass-squared we will take n = 2, so at the risk of confusion �(2) ⌘ m2
�.

The main equation to solve is the Callan-Symanzik equation for the n-point Green’s function,
✓
� @

@t
+ �̄

@

@�(n)
� n�̄

◆
�
(n)
eff = 0 , (15)

where t = log(�/µ0), corresponding to invariance under changes in the cut-o↵ µ0, of the
coupling �

(n)
eff (�/µ0) that one calculates directly in the e↵ective field theory.
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warm-up; first restrict ourselves to the diagonal direction where mass-squared term 
looks like the following operator: 
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III. SYMMETRY BREAKING

What happens when we add a classically relevant operator to such a system, in particular
of course a mass-squared term for the scalar H? As described in the Introduction, as long
as the operator remains relevant at the quantum level we do not expect it to a↵ect the UV
fixed point, and its status will therefore be equivalent to that of chiral symmetry breaking
mass-terms in QCD, in the sense that it is a parameter which is set at the initial RG scale
by physical measurement. There is no question of uncontrolled UV sensitivity because we
know that the theory is exactly conformal precisely at the UV fixed point (this is of course
the central assumption which unlike the CW mechanism is now motivated by a genuine
symmetry). On the other hand being a relevant operator it will divert the flow away from the
IR fixed point. In the current context this flow is precisely the seed for radiative symmetry
breaking.

A. A simple example

There are a number of di↵erent relevant operators that one might consider adding to the
theory that can contribute to symmetry breaking. They are distinguished by whether or
not they explictly break the SU(NF )L ⇥ SU(NF )R flavour symmetry of the theory. To be
concrete we will first consider the mass term,

V � m2
�

4NF

�
Tr(H +H†)

�2
, (8)

which explicitly breaks the flavour symmetry to the diagonal, U(NF )L ⇥ U(NF )R !
SU(NF )diag and picks out just the scalar component of the trace.

Generally, the RG flow will be on a critical surface whose dimensionality is given by the
number of relevant operators (plus one), but if this flavour breaking operator is the dominant
one, the flow and stability may be analysed in terms of the corresponding normalised Higgs
along its direction,

H =
�p
2NF

NF⇥NF , (9)

where � is real. We will for the moment restrict our attention to only this direction in field
space and assume that a negative m2

� will ultimately be responsible for symmetry breaking –
in the next subsection we will focus on the main point of the paper, which is that a positive
m2

� operator radiatively causes instability in other directions.
First let us deal with the quartic part of the classical potential of the theory, which along

the � direction reads

V
(4)
class =

4⇡2

N2
F

(↵h + ↵v)�
4 . (10)

Hence we define the e↵ective quartic coupling,

� = 32⇡2 3

N2
F

(↵h + ↵v) . (11)
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The bars indicate division by 1 + �: as we will work to one-loop for the evolution of
the mass-squareds, they will ultimately be dropped. For n = 2 this gives the anomalous
dimension as

�̄ = �1

2

@ logZ

@t
, (16)

where the renormalized fields scale as � ! p
Z(t)�, hence Z = exp(�2

R
�̄ dt).

In order to solve (15) we identify �̄ as the t-derivative of a running coupling �(t) which
must be found by solving

�̄ =
d�(n)(t)

dt
=

@�
(n)
eff

@t
+ n�̄�(n) , (17)

with the functional form of the RHS being determined by perturbation theory and eq.(16).
The solution for �(n)

eff is then given in terms of this coupling, by

�
(n)
eff = �(n)(t)Zn/2 . (18)

In SUSY for example the t-derivative of �
(n)
eff is zero to all orders due to the non-

renormalization theorem, and eq.(18) simply says that �(n)(t) / Z�n/2: the renormalisation
of any coupling including masses is multiplicative (thereby solving the hierarchy problem)
since it comes entirely from absorbing wave-function renormalization. On the other hand in
pure ��4 theory one has � = 0 at one-loop and the renormalization of � is dominated by
the e↵ective potential.

In the present context we require the anomalous dimension of H to one-loop: it will be
denoted by � and is simply [61]

� = ↵y . (19)

In addition to the field renormalisation piece, there is a contribution to the running from
the cross-term in the one-loop potential, of the form

V � m2
�

2
�2

✓
1 +

�t

16⇡2

◆
, (20)

where � ⌘ �(4) is the quartic coupling. (When we come to discuss radiatively induced
breaking later on, this will be the crucial contribution.) As m2

� is the only coupling with
classical dimension, there can be no other contributions to the mass-squared terms at one-
loop, as is indeed apparent from eq.(13). Thus to one-loop (and dropping the bars)

�m2
�

= m2
�

✓
�

16⇡2
+ 2�

◆
, (21)

and inserting eq.(11) gives

1

m2
�

�m2
�

= 2↵y +
6

N2
F

(↵v + ↵h) . (22)

Anomalous dimension of fields 

t-dependence in one-loop calculation of V 



For mass-squareds, by dimensions have contributions from cross-terms only … 
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the e↵ective potential.
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denoted by � and is simply [61]

� = ↵y . (19)

In addition to the field renormalisation piece, there is a contribution to the running from
the cross-term in the one-loop potential, of the form
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✓
1 +

�t

16⇡2

◆
, (20)

where � ⌘ �(4) is the quartic coupling. (When we come to discuss radiatively induced
breaking later on, this will be the crucial contribution.) As m2

� is the only coupling with
classical dimension, there can be no other contributions to the mass-squared terms at one-
loop, as is indeed apparent from eq.(13). Thus to one-loop (and dropping the bars)

�m2
�
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✓
�

16⇡2
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◆
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and inserting eq.(11) gives
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(↵v + ↵h) . (22)

Using the solutions along the separatrix: 
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One can conclude that in the Veneziano limit the mass-squared renormalization is dominated
by the anomalous dimension of the fields and the individual cross-terms die away as 1/N2

F .
Moreover the beta function is always positive indicating that the operator grows (in absolute
terms) in the UV but of course always remains relevant3.

Substituting the solutions in eq.(6) we obtain

1

m2
�

�m2
�

= f↵g , (23)

where

f =
12

13


1 +

3

4N2
F

✓q
20 + 6

p
23� 1�

p
23

◆�
. (24)

In the Veneziano limit we find f ⇡ 0.92, with the mass-squared growing in the UV as

m2
�

UV�! m�(0)
2

✓
µ

µ0

◆f↵⇤
g

. (25)

Of course the reason this does not disrupt the fixed point is that for parametrically small
↵⇤
g ⇠ ✏ the m2

� coupling grows much more slowly than µ2 itself. On the other hand the
physical mass shrinks in the IR since ↵g(t) ! 0 there. Indeed integrating eq.(23) gives the
solution

m2
�(t) = m2

�(0) exp


f

Z t

0

↵gdt

�

= m2
�(0)!

� 3f
4✏ , (26)

where

! =
↵⇤
g/↵g(t)� 1

↵⇤
g/↵g(0)� 1

. (27)

We arrive at a purely perturbative description of the evolution of the mass-squared:

m2
�(t) = m2

⇤

✓
↵⇤
g

↵g

� 1

◆� 3f
4✏

IR�! m2
⇤

✓
↵g

↵⇤
g

◆ 3f
4✏

, (28)

where the invariant mass-squared parameter is

m2
⇤ = m2

�(0)
�
↵⇤
g/↵g(0)� 1

� 3f
4✏ . (29)

Note that m2
⇤ is independent of the arbitrary energy scale µ0 corresponding to t = 0 at which

the flow started. Therefore each m2
⇤ parameter defines a unique trajectory for m2

�(t), and the
totality of possible flows defines a two-dimensional critical surface in (g, y, u, v,m2

�)-space.
The importance of eq.(28) is that (in accord with the whole philosophy of the renormalisation
group) one may now dispense with µ0 and describe the flow entirely in terms of the RG
invariants m⇤, ↵⇤

g, and the running coupling ↵g(t). As was the case for the classically

3 in the technical sense, and hence not relevant in the colloquial sense.

i.e. mass-squared scales with the gauge coupling like all the marginal couplings … 

(                                      )

Solve Callan Symanzik eqn for them as usual =>

17

of any coupling including masses is multiplicative (thereby solving the hierarchy problem)
since it comes entirely from absorbing wave-function renormalization. On the other hand in
pure ��4 theory one has � = 0 at one-loop and the renormalization of � is dominated by
the e↵ective potential.

In the present context we require the anomalous dimension of H to one-loop: it will be
denoted by � and is simply [62]

� = ↵
y

. (39)

In addition to the field renormalisation piece, there is a contribution to the running from
the cross-term in the one-loop potential, of the form

V � m2
�

2
�2

✓
1 +

�t

16⇡2

◆
, (40)

where � ⌘ �(4) is the quartic coupling. (When we come to discuss radiatively induced
breaking later on, this will be the crucial contribution.) As m2

�

is the only coupling with
classical dimension, there can be no other contributions to the mass-squared terms at one-
loop, as is indeed apparent from eq.(33). Thus to one-loop (and dropping the bars)

�
m

2
�

= m2
�

✓
�

16⇡2
+ 2�

◆
, (41)

and inserting eq.(31) gives

1

m2
�

�
m

2
�

= 2↵
y

+
6

N2
F

(↵
v

+ ↵
h

) . (42)

One can conclude that in the Veneziano limit the mass-squared renormalization is dominated
by the anomalous dimension of the fields and the individual cross-terms die away as 1/N2

F

.
Moreover the beta function is always positive indicating that the operator grows (in absolute
terms) in the UV but of course always remains relevant2.

Substituting the solutions in eq.(26) we obtain

1

m2
�

�
m

2
�

= f↵
g

, (43)

where

f =
12

13


1 +

3

4N2
F

✓q
20 + 6

p
23� 1�

p
23

◆�
. (44)

In the Veneziano limit we find f ⇡ 0.92, with the mass-squared growing in the UV as

m2
�

UV�! m
�

(0)2
✓

µ

µ0

◆
f↵

⇤
g

. (45)

2 in the technical sense, and hence not relevant in the colloquial sense.
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Moreover the beta function is always positive indicating that the operator grows (in absolute
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One can conclude that in the Veneziano limit the mass-squared renormalization is dominated
by the anomalous dimension of the fields and the individual cross-terms die away as 1/N2

F .
Moreover the beta function is always positive indicating that the operator grows (in absolute
terms) in the UV but of course always remains relevant3.

Substituting the solutions in eq.(6) we obtain

1

m2
�

�m2
�

= f↵g , (23)

where

f =
12

13


1 +

3

4N2
F

✓q
20 + 6

p
23� 1�

p
23

◆�
. (24)

In the Veneziano limit we find f ⇡ 0.92, with the mass-squared growing in the UV as

m2
�

UV�! m�(0)
2

✓
µ

µ0

◆f↵⇤
g

. (25)

Of course the reason this does not disrupt the fixed point is that for parametrically small
↵⇤
g ⇠ ✏ the m2

� coupling grows much more slowly than µ2 itself. On the other hand the
physical mass shrinks in the IR since ↵g(t) ! 0 there. Indeed integrating eq.(23) gives the
solution

m2
�(t) = m2

�(0) exp


f

Z t

0

↵gdt

�

= m2
�(0)!

� 3f
4✏ , (26)

where

! =
↵⇤
g/↵g(t)� 1

↵⇤
g/↵g(0)� 1

. (27)

We arrive at a purely perturbative description of the evolution of the mass-squared:

m2
�(t) = m2

⇤

✓
↵⇤
g

↵g

� 1

◆� 3f
4✏

IR�! m2
⇤

✓
↵g

↵⇤
g

◆ 3f
4✏

, (28)

where the invariant mass-squared parameter is

m2
⇤ = m2

�(0)
�
↵⇤
g/↵g(0)� 1

� 3f
4✏ . (29)

Note that m2
⇤ is independent of the arbitrary energy scale µ0 corresponding to t = 0 at which

the flow started. Therefore each m2
⇤ parameter defines a unique trajectory for m2

�(t), and the
totality of possible flows defines a two-dimensional critical surface in (g, y, u, v,m2

�)-space.
The importance of eq.(28) is that (in accord with the whole philosophy of the renormalisation
group) one may now dispense with µ0 and describe the flow entirely in terms of the RG
invariants m⇤, ↵⇤

g, and the running coupling ↵g(t). As was the case for the classically

3 in the technical sense, and hence not relevant in the colloquial sense.
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point and must be set by hand) this fixed point is of great interest. To the maximum cur-
rently achievable order in perturbation theory and properly respecting the Weyl consistency
conditions it is obtained for

↵⇤
g = 0.4561 ✏+ 0.7808 ✏2 +O(✏3)

↵⇤
y = 0.2105 ✏+ 0.5082 ✏2 +O(✏3)

↵⇤
h = 0.1998 ✏+ 0.5042 ✏2 +O(✏3) ,

(4)

with the leading coe�cients of ✏ corresponding to ↵⇤
g = 26

57✏ + . . ., ↵⇤
y = 4

19✏ + . . . and

↵⇤
h =

p
23�1
19 ✏+ . . . respectively. Note that the quartic scalar self-coupling is essential for this

fixed point to exist. The remaining double-trace scalar coupling v has two possible fixed
points, one of which is more perturbatively reliable and adds an irrelevant scaling direction
to the theory, found to be at

↵⇤
v1 =

�6
p
23 + 4✏+ 3

p
4✏+ 6

p
23 + 4✏+ 20

4✏+ 26
↵⇤
g +O(↵⇤

g
2) . (5)

Numerically ↵⇤
v1 = �0.1373 ✏ up to quadratic corrections in ✏.

In the presence of more than one relevant direction the flow from the UV would be
expected to emanate from a critical surface, however with only one relevant direction the
flow is along the critical curve shown in Fig.1 towards the IR stable Gaussian fixed point
in the infra-red, and is therefore completely determined in terms of a single parameter
which could be taken to be the gauge coupling itself. The arrows in the figure are at equal
separation in renormalisation “time”, so it is clear that the flow to the critical curve happens
much more rapidly than flow along it. In fact as discussed in Ref. [1] the relative rate of flow
is proportional to ✏. Of course for the present discussion the flow emanates precisely from
the UV fixed point of Eq.(4) marked in black, along the critical curve towards the Gaussian
IR fixed point.

In scalar field theories we must also determine if the potential is stable. Ignoring the
possible presence of relevant operators for the moment, we see that this is indeed the case
at leading order since ↵⇤

h + ↵⇤
v1 > 0, and it also the case for loop corrections as well [1, 3].

Therefore there is no Coleman-Weinberg type instability in these models, as will be shown
explicitly later in certain directions in field space. Thus the ↵⇤

v1 perturbative fixed point is
classically viable and becomes increasingly flat in the Veneziano limit, and moreover in the
absence of relevant operators the flow never leaves the critical curve.

Having identified all the critical coupling values and the scaling dimensions it is possible
to parameterize the gauge coupling and hence the entire flow along the critical curve for any

We find multiplicative renormalisation …  

In principle …                                                        but you should just think of it as an RG invariant  

that defines this particular trajectory. (Every relevant operator will have an associated invariant.)      

It has the same status as the chiral quark masses. 



Radiative symmetry breaking



Criticism of the simplest example…

Purely multiplicative: Hence the mass-squared has to be negative along the whole trajectory 

We cheated: in the sense that we ignored all the orthogonal directions!! These also get 
contributions at one-loop even though their masses were zero at tree-level 

In order to address both these, organise the discussion in terms of the                                    
flavour symmetry that we break with the mass-squareds: 

U(NF )⇥ U(NF )
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C. General solutions and the role of flavour

We conclude from eq.(36) that adding a large positive mass-squared operator in the UV
will generically lead to a further spontaneous radiative breaking of flavour symmetry in a
multitude of orthogonal directions. But as mentioned above, there was nothing particularly
special about the direction h in the above analysis, compared to any of the other flavour
breaking directions that we could have chosen. Therefore in order to identify the correct
vacuum one should in principle consider the entire complement of Higgses in the theory.

Let us therefore define the general direction in terms of the generators of flavour (replacing
the previous � and ⌘ with h0 and p0 for convenience),

H =
(h0 + ip0)p

2NF
NF⇥NF + (ha + ipa)Ta , (38)

where Ta with a = 1 . . . N2
F � 1 labels the adjoint generators of SU(NF )diag and by con-

vention Tr(TaTa) =
1
2 . The scalar components in the potential are e↵ectively the hermitian

component of H whereas the pseudoscalars are the antihermitian component.
What is the influence of a positive m2

h0h0
operator in the other ha directions? The crucial

cross-terms in the potential, V � ah
2
0h

2
a, arise from the Tr(H†HH†H) operator in eq.(1) and

as is clear from eq.(A9) they are all similar in magnitude, and in fact any generators T a that
also have daab = 0 receive degenerate mass-squareds. Therefore if for example m2

haha
(0) = 0

for all the high scale starting values, then all of these directions receive mass-squareds

m2
haha

⇡ �m2
0(0)

2
(w

3(f�f)
4✏ � w� 3(f+f)

4✏ ) 8 a , (39)

where f is as before, and where the approximation is that we are neglecting cross-terms
between the h2

a’s which give contributions that are suppressed by powers of w. Nevertheless
we can conclude that every flavour breaking scalar orthogonal to h0 receives a negative mass-

squared.
It is interesting to turn the question around and ask when is there guaranteed to be

no instability. From eq.(36), degenerate values of mass-squareds remain degenerate at all
scales. This suggests that for all the possible directions to remain stable requires complete
degeneracy, m2

h0h0
⌘ m2

0 = m2
haha

8a, which is satisfied if one adds the only mass-squared
operator that breaks no flavour symmetry at all, namely Tr(H†H) .

Therefore in order to find a genuine solution to the RG equations that one can legitimately
resum, one should begin with the RG equations for the most general set of flavour-breaking
operators, and seek a deviation from flavour universality that is isomorphic under renor-
malisation: it turns out that a simple suitable structure is generator diagonal and universal
except for a flavour deviation in only the trace components; namely

V
(2)
class = m2

0Tr(H
†H) + 2�2

X

a

Tr(TaH
†)Tr(TaH) , (40)

which gives
m2

hahb
= m2

papb
= (m2

0 +�2) �ab , (41)



Non-trivial simple example…

Seek to add a set of mass-squared operators whose flavour structure is closed under 
RG: simple example 
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m2

{�2
m2

ha
= m2

pa
= m2

0 +�2

m2
h0

= m2
p0

= m2
0

{m2
0



Following the same procedure and after some work find the following answer in terms 
of two RG invariants (one for each independent bit of the flavour structure)        
(where y=(1-1/NF^2)):
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one can write

m̃2 = m̃2
⇤

✓
↵⇤
g

↵g

� 1

◆� 3fm0
4✏

�2 = �2
⇤

✓
↵⇤
g

↵g

� 1

◆� 3f�
4✏

. (48)

With this solution to hand, it is now possible to see how the flavour structure drives ra-
diative symmetry breaking. Consider the case of a slightly positive �2

⇤, that is, the SU(NF )
flavour breaking directions are given a slightly larger mass-squared than the trace h0 direc-

tion. According to eq.(46) m̃2 shrinks very rapidly in the IR as w� 3fm0
4✏ ! w�2.4/✏ (recalling

that w grows in the IR). On the other hand the deviation �2 also shrinks, but much more

slowly, as w� 3f�
4✏ ! w�0.7/✏. Because fm0 is greater than f�, the dominance of �2 in the IR

is inevitable. Indeed the mass-squareds for the di↵erent components are

m2
0 = m̃2

⇤

✓
↵⇤
g

↵g

� 1

◆� 3fm0
4✏

� �2
⇤ ⌫

✓
↵⇤
g

↵g

� 1

◆� 3f�
4✏

,

m2
a=1...N2

F�1 = m̃2
⇤

✓
↵⇤
g

↵g

� 1

◆� 3fm0
4✏

+ �2
⇤ (1� ⌫)

✓
↵⇤
g

↵g

� 1

◆� 3f�
4✏

, (49)

with the �2 piece eventually coming to dominate in the IR. Note that since 1� ⌫ = 1/N2
F ,

in the large N2
F limit light ha directions are collectively driving a much larger negative

mass-squared for the single h0 direction. (The sum of the mass-squareds is approximately
zero). We conclude that a positive m2

0 is driven entirely negative in the IR if we begin with
a preponderance of orthogonal slightly heavier directions in the UV. An example flow is
shown in figure 2. As is evident from the figure a minimum appears where the deviation �2

overcomes the running average mass-squared.
Even if the flavour breaking is tiny (for example the 5% shown in the figure), this hap-

pens very quickly, and the potential itself develops a minimum at the transmutation scale
corresponding to the minimum value of m2

0; defining

R⇤ =
�2

⇤
m̃2

⇤
, (50)

the mass-squared (and hence the potential) forms a minimum at

↵⇤
g

↵g,min

� 1 ⇡
✓

f�
fm0

⌫R⇤

◆� 4✏
3(fm0�f�)

,

m2
0,min ⇡ � m̃2

⇤
fm0 � f�

f�

✓
R⇤⌫

f�
fm0

◆ fm0
fm0�f�

. (51)

For the example in figure 2, where R⇤ = 0.05 and ✏ = 0.1, the above approximations give
↵g,min = 0.44↵⇤

g and m2
0,min ⇡ �6.5⇥ 10�3 m2

⇤. Note that for small ✏ in the Veneziano limit
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for all the scalar and pseudoscalar SU(NF ) directions, and degenerate trace pseudo-scalar
and scalar mass-squareds, m2

h0h0
= m2

p0p0
= m2

0.
The renormalisation of the mass-squared couplings can be determined as before (at the

cost of considerably more tedium). The detailed expressions required to build the one-loop
potential for the most general case are given in eq.(A8). Inserting the structure chosen in
(40), we find

�m2
0
= ↵g

�
fm0m

2
0 + f�

 �2
�
,

��2 = ↵gf��
2 , (42)

where using the results from eq.(A21) and inserting the solutions from eq.(6) we have

fm0 =
6

13

"q
20 + 6

p
23

✓
1 +

1

N2
F

◆
� 2

p
23

N2
F

#
,

f�
 =

6

13

✓
1� 1

N2
F

◆q
20 + 6

p
23� 2

�
,

f� =
6

13

"
2 +

p
20 + 6

p
23� 2

p
23

N2
F

#
. (43)

Note that f� is dominated by the field renormalisation, and that fm0 � f� ⇡ f�
 up to

corrections of order 1/N2
F . The crucial aspect of these beta functions is that no degrees

of freedom were neglected in their derivation, and this flavour structure remains intact
throughout the running. In addition note that �2

� is zero in the limit of vanishing �; as
anticipated, totally flavour symmetric mass-squareds do not lead to radiative symmetry
breaking as there can be no preferred direction in field space. Finally, in contrast with the
simplistic example above, the cross-term in the beta function coe�cients does not vanish in
the Veneziano limit.

Eq.(42) can be solved for �2 and the combination

m̃2 = m2
0 + ⌫�2 , (44)

where we define

⌫ =
f�


fm0 � f�
= 1� 1

N2
F

. (45)

Since f�
 > 0 then fm0 > f�. They have the following solutions;

m̃2 = m̃2(0)w� 3fm0
4✏ ,

�2 = �2(0)w� 3f�
4✏ . (46)

As for the simple case, it is now possible to describe the entire flow in terms of RG invariants;
that is defining

m̃2
⇤ = m̃2(0)

�
↵⇤
g/↵g(0)� 1

� 3fm0
4✏

�2
⇤ = �2(0)

�
↵⇤
g/↵g(0)� 1

� 3f�
4✏ , (47)

Dies away quickly in the IR                  Dies away slowly in the IR



m2

{�2

{m2
0

}

(0)

(0)

Starting values get relatively closer in UV (note the masses are all shrinking in 
absolute terms in the IR) - full flavour symmetry restored precisely at fixed point

⇠ �2
⇤

⇠ �2
⇤/N

2
F

}

The sum of the mass-squareds quickly dies to zero in IR 

UV IR
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Figure 2: A mass-squared that is smaller than the average by 5% being driven negative radiatively,

(where the initial value at t = 0 is 0.99). We take ✏ = 0.1 in the Veneziano limit (NF ! 1).

one has

↵g,min
✏!0�! 1

2
↵⇤
g . (52)

In other words the minimum forms at precisely the scale where the theory is passing from the
UV fixed point, and the flow is coming under the more standard influence of the Gaussian
IR fixed point. Finally note that if we had chosen negative �2 the reversed pattern of
breaking would have occurred, with the trace h0 direction being the only stable and very
heavy direction, with a mass-squared balancing order N2

F very small negative mass-squareds
for all the orthogonal directions.

IV. CONCLUSIONS

We have studied the stability properties of the class of perturbative UV fixed point
theories introduced in ref.[1], in the presence of additional scalar mass-squared terms. It
is important to realise that such terms, being relevant operators, may take any value in a
scenario of asymptotic safety without disrupting the fixed point. As such their status is
similar to that of the quark masses in QCD: they are simply set by hand at some scale and
are fully controlled and multiplicatively renormalised along the entire RG trajectory. Indeed
the value of all the relevant operators everywhere along the flow is completely determined
by a set of corresponding RG invariants.

This general picture, in which the trajectories of relevant operators (for example m2
⇤ in

our case) are determined by a set of tunable RG invariants that defines a particular model,
while the marginal operators are all (except for one) determined by a UV fixed point, is a
familiar one in the context of the exact renormalisation group. However it is certainly novel
to be able to treat it perturbatively.

Such a treatment reveals that these theories exhibit an interesting form of calculable
radiatively induced symmetry breaking, that is exactly analogous to that in the MSSM
[6]. It was found that a generic set of positive but flavour violating mass-squared terms
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The ASSM via radiative breaking…



To embed the SM - focus on breaking SU(Nc) to SU(3) colour with Ns new scalars …  

Extension of Pati-Salam (XPS) - breaks to SU(3) if we choose 

5

SU(N
C

) SU(N
F

)
L

� SU(2)
L

SU(N
F

)
R

� SU(2)
R

SU(N
S

) � SU(2)
R

Qi

L,a

˜ 1 1

Qa

R,i

˜ 1 1

Hj

i

1 ˜ 1

Q̃
j=1..NS

˜ 1 1

Table II: Fields in the extended model, where Q̃ are scalars and in the simplest case N
S

= N
C

� 3.

The SU(2)
L

⇥ SU(2)
R

subgroups are gauged, but note that three generations of fermions (i.e.

the first 6 entries in N
F

) transform under them. There are correspondingly 9 Higgs pairs: for

the generations, one could identify an SU(3)
L

⇥ SU(3)
R

SM flavour subgroup of the SU(N
F

)
L

⇥
SU(N

F

)
R

symmetry, but to avoid complication we take this as implicit. The first two flavours of

Q̃ form a fundamental of SU(2)
R

so that the SU(4)
C

⇥ SU(2)
L

⇥ SU(2)
R

Pati-Salam symmetry

is broken down to the SM in the usual manner (namely with the Q̃ � (4,1,2) being the canonical

Pati-Salam Higgs).

As we will later see, in this limit the ‘t Hooft couplings are all proportional to the parameter
✏, which is therefore an indicator of the perturbative reliability of the fixed point.

For the moment however let us focus on the embedding of the SM, which is shown
in Table II. Our approach will be to embed SU(3)

C

of the SM into the SU(N
C

) of this
theory. Therefore the first extra ingredient in the Table is N

C

� 3 scalar fundamentals of
SU(N

C

), which we refer to as Q̃. Note that this is just one possibility for a breaking pattern
which happens to be the simplest. In the Conclusions we shall suggest other ones. We will
somewhat reluctantly refer to these objects as squarks. One can indeed take some lessons
from supersymmetry regarding their possible properties, for example the fact that one can
add into the theory a positive mass-squared for them which (since they do not have Yukawa
couplings to fermions) will remain positive throughout the flow. In order to arrive at the
SM, the squarks will acquire VEVs in the IR, breaking SU(N

C

) ! SU(3). By making
suitable colour and flavour rotations they can be written in the form

hQ̃i =

Ncz }| {0

B@
0 0 0 1
...
...
...

. . .

0 0 0 1

1

CA .

The breaking induced on the colour side is

[SU(N
C

)]⇥ SU(N
C

� 3) ! [SU(3)
c

]⇥ SU(N
C

� 3)
Diag

, (3)

where the square brackets indicate that the symmetry is gauged. Counting degrees of free-
dom, all N2

C

� 9 Goldstone modes of the symmetry breaking are eaten by gauge bosons.
There are then 2N

C

(N
C

�3)� (N2
C

�9) = (N
C

�3)2 real degrees of freedom remaining from
the Q̃ which are all “Higgses” with masses of order the breaking scale.

Secondly in the Table, we broadly indicate the assignment of the states and indicate the
embedding of the global symmetries. The assignment of SM matter fermions inside Q

L/R

is
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The new scalars give a similar UVFP

c.f. Pelaggi, Sannino Strumia Vigiani 
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Table II: Fields in the extended model, where Q̃ are scalars and in the simplest case N
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is broken down to the SM in the usual manner (namely with the Q̃ � (4,1,2) being the canonical

Pati-Salam Higgs).

As we will later see, in this limit the ‘t Hooft couplings are all proportional to the parameter
✏, which is therefore an indicator of the perturbative reliability of the fixed point.

For the moment however let us focus on the embedding of the SM, which is shown
in Table II. Our approach will be to embed SU(3)

C

of the SM into the SU(N
C

) of this
theory. Therefore the first extra ingredient in the Table is N
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� 3 scalar fundamentals of
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C

), which we refer to as Q̃. Note that this is just one possibility for a breaking pattern
which happens to be the simplest. In the Conclusions we shall suggest other ones. We will
somewhat reluctantly refer to these objects as squarks. One can indeed take some lessons
from supersymmetry regarding their possible properties, for example the fact that one can
add into the theory a positive mass-squared for them which (since they do not have Yukawa
couplings to fermions) will remain positive throughout the flow. In order to arrive at the
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where the square brackets indicate that the symmetry is gauged. Counting degrees of free-
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There are then 2N
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�3)2 real degrees of freedom remaining from
the Q̃ which are all “Higgses” with masses of order the breaking scale.

Secondly in the Table, we broadly indicate the assignment of the states and indicate the
embedding of the global symmetries. The assignment of SM matter fermions inside Q
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The new scalars give a similar UVFP …
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Note that we are able to put the leptons as the 4th colour, in a manner reminiscent of Pati-
Salam models. Note that the Also the third generation occupies the first

This limit also has the simplifying aspect that in the Veneziano limit

NS

NC
! 1 ;

NF

NC
! 21

4
+ ✏ . (53)

We will therefore henceforth work with the reduced SU(NF )R preserving set of interactions

L � LYM + LKE +
yp
2
Tr [H (QL ·QR)]� u1Tr

⇥

H†H
⇤2 � u2Tr

⇥

H†HH†H
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� v1Tr
⇥

H†H
⇤

Tr
⇥

q̃† · q̃⇤� w1Tr
⇥

q̃† · q̃⇤2 � w2Tr
⇥

q̃† · q̃ q̃† · q̃⇤ , (54)

and their RG equations. We leave NS unfixed but define without loss of generality

xF =
NF

NC
; xS =

NS

NC
= 22� 4xF + 4✏ , (55)

which may take different values in the Veneziano limit. It is convenient to define the following
rescaled couplings:

↵g =
NCg

2

(4⇡)2
; ↵y =

NCg
2

(4⇡)2
; ↵u1 =

N2
Fu1
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; ↵w1 =
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; ↵w2 =
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(4⇡)2
.

(56)
To determine the fixed points, we require the RG equations to order ↵3 ⌘ ✏↵2 in �g and order
↵2 ⌘ ✏↵ in �y:

�g = ↵2
g

✓

4

3
✏+ (36� 2xF )↵g � x2

F↵y

◆

�y = ↵y (�6↵g + (1 + xF )↵y) . (57)
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Explicit embedding looks like P-S 
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Given this assignment of matter fields, and the Yukawa coupling in (21), the first 6⇥ 6
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as shown explicitly in
(5). (Note that SU(2) contraction in the Lagrangian is with " = i�2 tensors). These 18
Higgs doublets would be the only possible source for generating the flavour structure in the
e↵ective quark Yukawas, so clearly in a fully phenomenologically viable model one would
want the VEV of H to be dominated by H66. We will discuss in the Conclusions how this
could be achieved, but for the discussion in this paper we shall for simplicity maintain flavour
symmetry, so the VEV for H will be degenerate in the diagonal entries. The scalar field, Q̃
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Finally we must extend the couplings in the theory to incorporate the new scalars:
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KE

+
yp
2
Tr [H (Q
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)]� u1Tr
⇥
H†H

⇤2 � u2Tr
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H†H H†H

⇤

� v1Tr
⇥
H†H
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Tr[Q̃† · Q̃]� w1 Tr[Q̃

† · Q̃]2 � w2 Tr[Q̃
† · Q̃ Q̃† · Q̃], (6)

For the present discussion we are maintaining some flavour symmetry for simplicity.
Therefore we do not for example add any v2Tr[H†H Q̃†Q̃] couplings (which would necessitate
Q̃ having the first 6 entries as 3 generations of SU(2)

R

fundamental, and which could involve

Assignment implies 9 pairs of Higgses one for each choice of generation 



Extend Lagrangian … 
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and find the theory flows as below (we have almost no freedom) developing VEVs to 
break XPS and electroweak symmetry at same time… 

3

Figure 1: The renormalisation group flow of the marginal couplings from the UV fixed point and

around the critical curve, towards the Gaussian IR fixed point.

flavoured scalars of the original theory which contain the SM Higgs. It turns out that such a
coupling is asymptotically free so it also does not disrupt the UV fixed point. Nevertheless
the flow is diverted in the IR (into the marginally relevant portal-coupling direction) as
shown in the left panel of the figure, and, as a function of RG scale, in the right panel. The
first stage of symmetry breaking then turns the portal-coupling into a mass-squared term
for the SM Higgs, seeding electroweak symmetry breaking.

The above description sounds rather intricate but actually we are simply describing what
happens when you add coloured scalars and a portal coupling to the theory of [1, 2]. There is
very little freedom and few arbitrary parameters. In fact there are only two free parameters
besides the gauge couplings in the theory, corresponding to the two relevant operators,
namely the mass-squared and the (marginally relevant) portal-coupling. In accord with
the usual asymptotic safety story, the asymptotically safe couplings are all fixed in terms
of the gauge coupling because the theory flows along a single trajectory between the two
fixed points A and B, while every relevant operator represents a new degree of freedom or,
equivalently, a loss of predictivity. In the present case there is a free parameter for each scale
of symmetry breaking. Because the other couplings are all constrained, it is then non-trivial
that the theory turns out to be stable, and that as we mentioned the portal-coupling is
indeed asymptotically free, and hence harmless to the UV fixed point.

The layout of the discussion is as follows: the next section recaps the structure of the
UV complete theories of [2–6] which form the core of the UV fixed point theory, and then
indicates how the SM can be embedded into it, and the additional states that must be added.
Here the focus is on the general structure which is broadly speaking a many colour/flavour
extension of the Pati-Salam model. We discuss the symmetry breaking pattern, where the
gauge groups and matter fields of the SM fit, and which are the crucial operators, but there
is little discussion of the dynamics at this point. Section III then goes on to discuss the RG
flow, and establishes that the symmetry breaking does in fact occur in the desired way. In
particular it demonstrates that the additional coloured scalars in the theory do not destroy
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What about the SU(2)xSU(2) gauge groups?  

As we saw, these have a large number of flavours (Nf (small f) of order order Nc)?

Gracey, Holdom, Shrock, Pica Sannino, 

Not necessarily Landau pole. SU(2) with large number of flavours has a “well-known” UVFP. 
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The U(1) �-function is defined as

�(↵) =
@ ln↵

@ lnµ
. (1)

The one loop result is �(↵) = 2A/3 where A ⌘ N↵/⇡. We may write an expansion in 1/N as

follows,
3

2

�(↵)

A
= 1 +

1X

i=1

Fi(A)

N i
. (2)

The “1” corresponds to the one loop result and we shall refer to it as the zeroth order term in

the 1/N expansion. Each Fi(A) represents a class of diagrams having the same dependence

on N when A is held fixed, and such diagrams exist to all orders in A. If the functions |Fi(A)|
were bounded then for su�ciently large N one could conclude that the zeroth order term

dominates and that the Landau pole is unavoidable. But singularities in the Fi(A) will keep

us from drawing this conclusion.

We collect together what is known about the Fi(A)’s in the MS renormalization scheme.

F1(A) =

Z A
3

0

I1(x)dx (3)

I1(x) =
(1 + x) (2 x� 1)2 (2 x� 3)2 sin (⇡ x)3 � (x� 1)2 � (�2 x)

(x� 2) ⇡3
(4)
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Important for our study is the fact that F1(A) is known completely [2]. We have expressed the

integrand I1(x) in a form that makes more clear the location of its zeros and poles. The A3

terms in F2(A) and F3(A) were calculated in [3], the A4 term in F2(A) in [4], and the F4(A)

term in [5]. The latter two results are 5-loop calculations.

One way to express the results in (3-7) is to plot their sum and ignore what is not known.

The result for the 3�(↵)/2A for various N is displayed in Fig. (1). A zero would indicate a

nontrivial fixed point, but the zeros are occurring at values of A that are too high to ignore

higher order terms. Thus we cannot deduce much from this plot, except to notice sensitivity

of the �-function to N .

The 2-loop contribution to �(↵) involves one fermion loop and one internal photon and

it gives rise to the first term in the expansion of F1(A), which is 3
4A. The higher order

terms in F1(A) correspond to the insertion of the appropriate number of fermion loops on the

photon line, and these bubble chains have been summed up to produce the result (3) [2]. An

2

Ã =
2

15
Nf

α

π
Ñ = Nf/16

1

Resum first terms gives a pole near where beta function vanishes => Need Nf > 16 



The difficult part …  

Can show in the Veneziano limit the corrections to these terms go like epsilon. Can 
neglect everything but gauge couplings when determining the SU(2) fixed points. 

By simple power-counting, the SU(2) gauge couplings are subdominant (by 1/Nc) in the 
original UVFP. Can neglect the SU(2) gauging for this UVFP. 



• Considered perturbative asymptotically safe QFTs (gauge-Yukawa theories that 
require scalars)

• UV fixed points do not prefer any mass-squared - they are relevant operators so  
simply take any value described by an RG-invariant (multiplicative renormalisation)

• Deviation from zero = breaking of scale invariance,                                                         
c.f. non-zero quark masses = breaking of chiral symmetry

• Positive mass-squareds can be driven negative in the IR, akin to radiative symmetry 
breaking in MSSM

• Minimum generated radiatively

•  The effect depends on the explicit breaking of flavour structure in the RG invariants.

• Using mechanism to embed the SM looks promising  

Summary


