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“What’s left at the LHC ?”
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• Higgs mass is the order parameter of the electroweak series 
convergence 

• perturbativity (= unitarity, Higgs width, reliability of oblique 
corrections, etc) tightly bound to the Higgs mass parameter 

[Baak et al. `12] 
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• Higgs mass is the order parameter of the electroweak series 
convergence 

• perturbativity (= unitarity, Higgs width, reliability of oblique 
corrections, etc) tightly bound to the Higgs mass parameter 

• Higgs discovery seems to fall into this perturbative QFT paradigm 
but nothing’s guaranteed at this stage in the LHC programme

• What do we know about the composite option? 
• Is it enough to motivate complicated lattice investigations? 
• Is the LHC fit for the future?
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• interpret the electroweak scale as a radiative phenomenon, 
analogous to the pion mass splitting

[SU(2)LxSU(2)R]
/SU(2)D

!0 !- !+
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FIG. 1: Representative Feynman diagram mediating the de-
cay of a neutral scalar S 2 {30,31} to vector bosons V, V 0 2
{Z, �,W±} with interaction vertices obtained in the mass-
diagonal representation of the charged and neutral top and
bottom space currents.

Appendix A: Analysis of Loop-induced decays of the
non-Higgs states

In this section we quickly review the calculation under-

pinning the loop-induced decays of the additional neutral

scalars in the model. After diagonalising the top- and

bottom mass mixing matrices with bi-unitary transfor-

mations, the scalar as well as vectorial couplings will be

in general non-diagonal in the top and bottom partner

spaces. This leads creates a multi-scale decay amplitude

that can be pictorially represented by the sum over Feyn-

man diagrams as indicated in Fig. 1.

We can write the decay amplitude as

iA =

X

i

Cih ˆOii (A1)

with

ˆOi denoting the quantum operators contributing to

the decay with matrix element h ˆOii and associated cou-

plings Ci (which can have a non-zero mass dimension).

In our case the relevant operators are

ˆO1 =

ˆS ˆV ˆV 0

ˆO2 =

ˆS ˆS ˆV ˆV 0

ˆO3 =

ˆS ˆS ˆV ˆV 0

Aµ

!0 !- !+
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1-loop diagrams associated to the Coleman-Weinberg potential are these same as those
in Fig. 7. Their resummation gives

V (⇡) =
3

16⇡2

Z 1

0

dQ2 Q2 log

✓
1 +

1

2

⇧LR(Q2)

⇧V V (Q2)

sin2(⇡/f⇡)

⇡2
(⇡+⇡�)

◆
. (76)

The convergence of the integral thus depends on the behavior of the form factors
⇧LR(Q2) and ⇧V V (Q2) at large Euclidean momenta Q2. To infer such behavior we can
use the information that comes from the OPE of the product of two vector and axial
currents, see eq.(63). The color-singlet, scalar 9 operators of dimension 6 or less are:

1 (identity operator) (d=0)

Om =  ̄mq (d=4)

OG = Ga
µ⌫G

aµ⌫ (d=4)

O� =  ̄�µ⌫tamq Ga
µ⌫ (d=6)

O� =
�
 ̄�1 

� �
 ̄�2 

�
(d=6)

Of = fabcGaµ
⌫ Gb ⌫

⇢ Gc ⇢
µ (d=6)

where a, b, c are color indices and �1,2 are matrices in flavor, color and Lorentz space.
Notice that the operators Om and O� break explicitly the chiral symmetry and must be
thus proportional to the quark mass matrix mq. As such they vanish in the chiral limit.
On the other hand O� is the only chiral-invariant operator among those listed above
whose vacuum expectation value can violate the chiral symmetry and thus distinguish
between the axial and vector currents. In other words, O� is the operator with lowest
dimension to contribute to the form factor ⇧LR:

⇧LR(Q2) = Q2 CO�(Q
2)hO�i + · · · = Q2

✓
�

Q6
+ O

✓
1

Q8

◆◆
, (77)

where � is a numerical coe�cient. 10 Since the form factor ⇧V V grows as Q2 at
large Euclidean momenta (the leading term in its expansion corresponds to the kinetic
term of the photon), we deduce that the integral in the pion potential is convergent. A
reasonable approximation to the full potential is obtained by setting ⇧V V (Q2) ' Q2/e2

and expanding the logarithm at first order:

V (⇡) ' 3

8⇡2
↵em

sin2(⇡/f⇡)

⇡2
(⇡+⇡�)

Z 1

0

dQ2 ⇧LR(Q2) . (78)

9Operators of spin 1/2 and higher do not contribute to the vacuum expectation value hJµJ⌫i and
are thus irrelevant to the following argument.

10The coe�cient � can be computed perturbatively expanding in powers of ↵s and 1/Nc.
In the large Nc limit, the matrix element hO�i factorizes into (h ̄ i)2, and one finds: � =
8⇡2

�
↵s/⇡ + O(↵2

s)
�
(h ̄ i)2 [38, 39].

28

super-convergent
[Weinberg `67]…

!0 !- !+effective potential
[Coleman, Weinberg `73]…

Using the above expression of ⇧LR, the integral appearing in the pion potential gives
Z 1

0

dQ2 ⇧LR(Q2) = f 2
⇡

m2
⇢m

2
a1

m2
a1 � m2

⇢

log

✓
m2

a1

m2
⇢

◆
. (87)

For any value of the masses, the above expression is always positive (reflecting the
positivity of ⇧LR in eq.(86)). This means that the pion potential is minimized for

h⇡1i = h⇡2i = 0 . (88)

In other words, the radiative corrections align the vacuum along the U(1)-preserving
direction, and the photon remains massless. It turns out that the positivity of the
integral (87) and the above conclusion on the alignment of the vacuum are much more
general that our approximate result. Witten [41] has shown that in a generic vector-like
confining gauge theory one has

⇧LR(Q2) � 0 for 0  Q2  1 , (89)

so that the radiative contribution from gauge fields always tends to align the vacuum
in the direction that preserves the gauge symmetry.

The e↵ect of the one-loop potential (78) is that of lifting the degeneracy of vacua
and give a (positive) mass to the charged pion, while leaving the neutral one massless.
Notice indeed that the potential vanishes in the vacuum (88), so that there is still
a flat direction along ⇡0. All the results derived above are valid in the chiral limit,
that is for vanishing quark masses. When the quark masses is turned on, both the
charged and neutral pion get a mass, as a consequence of the explicit breaking of the
chiral symmetry. The di↵erence of the charged and neutral pion mass, however, is
still dominantly accounted for by the electromagnetic correction that we have derived.
Thus, we can compare our prediction with the experimentally measured value and
check the accuracy of our approximations. From eqs.(78) and (87) one gets

m2
⇡± � m2

⇡0
' 3 ↵em

4⇡

m2
⇢m

2
a1

m2
a1 � m2

⇢

log

✓
m2

a1

m2
⇢

◆
. (90)

This result was first derived in 1967 by Das et al. using current algebra techniques [42].
Inserting the experimental values m⇢ = 770 MeV and ma1 = 1260 MeV into eq.(90) one
obtains the theoretical prediction

(m⇡± � m⇡0)|TH ' 5.8 MeV , (91)

to be compared with the experimentally measured value

(m⇡± � m⇡0)|EXP ' 4.6 MeV . (92)

Considering that corrections to the large-Nc approximation are expected to be of or-
der ⇠ 30%, we conclude that the agreement of our theoretical prediction with the
experimental value is fully satisfactory.
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ELW symmetry 
breaking not just 

CW masses …….
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• not straightforward to this adapt to the Higgs case

respect global 
symmetries in the 

Higgs sector

LEP precision 
measurements 

trigger 
ELW symmetry 
breaking not just 

CW masses …….

e.g. [Contino `10]

• vacuum mis-alignement from SU(2)L x U(1)Y direction requires the 
presence of heavy fermions gauge + 

fermions

fermions

4

Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
1

2

�
3g2 + g02

�
< 0 ,

2� = �y2Ĉtop , (II.17)

where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q

�2
t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘ v2

f2
= sin2(hĥi) =

↵ + 2�

4�
. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are

no EWSB

m h

v
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f 2 = 0.12x=0
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
Eq. (II.13), (r

g

⌘ 3g2/(3g2 + g02))

m̂� =
⇣32|↵|

3

⌘ 1
2

= 4

✓
ĈLR

✓
g2 +

g02

3

◆◆ 1
2

' 0.36 ,

m̂�0 =
⇣32|↵|

3
r
g

⌘ 1
2

= 4(ĈLRg
2)

1
2 ' 0.34 ,

which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

A composite sketch

e.g. [Contino, da Rold, Pomarol `07] 
[Agashe, Contino, Pomarol `06]

[Coleman, Weinberg `73]…
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• gauge boson masses through symmetry choices 

• fermion masses through mixing with baryonic matter (part. compositeness) 

• minimal pheno model SO(5)→ SO(4) ≃ SU(2)L x SU(2)R 

• fermions (and hypercolour baryons) in a 5 of SO(5) 

so far no UV completion known for this!
• but

2

This will allow us to identify the parameter domain of the
model, which is mostly driven by Higgs searches, and we
will confront our findings with concrete predictions from
the lattice in IIA. We summarise and conclude in Sec. IV

II. THE MODEL

this section requires some polishing... ldd to do
The model of [9] is based on a symmetry group

SU(4)| {z }
GHC

⇥SU(5)⇥ SU(3)⇥ SU(3)0 ⇥ U(1)
X

⇥ U(1)0| {z }
GF

.

(1)
with Weyl fermions transforming  2 6,� 2 4, �̃ 2 4̄
under the hypercolor gauge group GHC = SU(4). The
strong dynamics of GHC will cause a symmetry break-
ing of the global flavour symmetries SU(5) ! SO(5)
and SU(3) ⇥ SU(3)0 ! SU(3)

c

as well as a broken
U(1)

X

. Based on the maximally attractive channel hy-
pothesis [10], we can expect SU(5) ! SO(5) to occur
at a higher scale than SU(3) ⇥ SU(3)0 ! SU(3)

c

. This
leads to a low-energy e↵ective theory based on the global
symmetry breaking pattern

G
F

/H
F

=
SU(5)⇥ SU(3)⇥ SU(3)0 ⇥ U(1)

X

⇥ U(1)0

SO(5)⇥ SU(3)⇥ U(1)
X

=
SU(5)

SO(5)
⇥ SU(3)⇥ SU(3)0

SU(3)
⇥ U(1)0 . (2)

Since SO(5) � SO(4) ' SU(2) ⇥ SU(2), the unbroken
global symmetry group H

F

contains the custodial sub-
group

H
c

= SU(3)
c

⇥ SU(2)
L

⇥ SU(2)
R

⇥ U(1)
X

(3)

and following the standard paradigm of composite Higgs
scenarios, we weakly gauge the SM subgroup H

c

�
GSM = SU(3)

c

⇥SU(2)
L

⇥U(1)
Y

, where hypercharge is a
linear combination for SU(2)

R

and U(1)
X

, Y = T 3
R

+X.
Weakly gauging a subgroup and heavy quark mass gen-
eration through partial compositeness [11, 12] amount to
explicit violation of G

F

, and the analysis of the one-loop
e↵ective action [9] shows that this indeed gives rise to
NGB misalignment and electroweak symmetry breaking
SU(2)

L

⇥ U(1)
Y

! U(1)QED, completely analogous to
the minimal e↵ective realisations [2, 3]. The di↵erence
between the MCHM5 scenario of [3] is the rather unique
prediction of additional NGBs from the SU(5) ! SO(5)
breaking which transform as 10 + 21/2 + 30 + 3

±1 =
(⌘, H,�0,�) (in addition to an ⌘0 from U(1)0) under
SU(2)

L

⇥ U(1)
Y

, of which the 21/2 can be identified as
the SM Higgs doublet.

This extended scalar sector reveals parallels with the
so-called Georgi-Machacek model [13–15] (for recent phe-
nomenological investigations see also [16–20]), which also
predicts the appearance of a real as well as a complex
SU(2)

L

triplet in the scalar sector. The crucial di↵erence

between these theories is, neglecting the SM-inert singlet
in the following, that these extra states do not contribute
to the breaking of electroweak symmetry breaking [9].
Hence, potential fine tuning problems which are associ-
ated with the ⇢ parameter [21] in custodial triplet sce-
narios are avoided entirely in this model.

The construction of the low-energy e↵ective theory
follows the approach pioneered by Callen, Coleman,
Wess and Zumino (CCWZ) [22, 23]. Denoting the

SU(5)/SO(5) generators by T Â, we can introduce a non-
linear sigma field

⌃(x) = exp

✓
i⇧

f

◆
, ⇧ = �Â(x)T Â . (4)

Since SU(5)/SO(5) is a symmetric space, we can simplify
the CCWZ kinetic term construction by introducing an
object U = ⌃⌃T = exp(2i⇧/f), which allows us to write
the interactions with the gauge bosons from

L � f2

16
Tr
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boson to the massive electroweak gauge bosons rescaled
by

p
1� ⇠, where ⇠ = v2/f2 with v ' 246 GeV, while the

remaining pNGB interactions are completely determined
by their SU(2)

L

quantum numbers.
Heavy third family quark masses are included through

partial compositeness [11, 12], i.e. mixing e↵ects with
vector-like hyperbaryons of the strongly interacting sec-
tor. The relevant terms are

� L � M ̄ + �
q

f ¯̂q
L

� 
R

+ �
t

f ¯̂t
R

�⇤ 
L

+
p
2µ

b

Tr(¯̂q3
L

⌃d̂3
R

) + h.c. (7)

with

 =
1p
2
[iB � iX,B +X, iT + iY,�T + Y,

p
2iR] , (8)

q̂
L

=
1p
2
[ib

L

, b
L

, it
L

,�t
L

, 0]T , (9)

t̂
R

=
1p
2
[0, 0, 0, 0, it

R

]T . (10)

while  2 5 of SO(5), ldd: check the quantum num-

bers of the components!! q̂
L

, t̂
R

, q̂3
L

and d̂3
R

are spuri-
onic SU(5) embeddings that facilitate the bottom mass

doubly 
charged, singly 

charged and extra 
neutral Higgs 

bosons

top partners hyperpions

• perform a scan over the parameter space inputting available ATLAS 
and CMS measurements to constrain and motivate LEC measurements 
from the lattice.

[Del Debbio, CE, Zwicky `17]

see also [Belyaev, Cacciapaglia, Hai, Ferretti, Flacke, Parolini, Serodio `16]
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Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
1

2

�
3g2 + g02

�
< 0 ,

2� = �y2Ĉtop , (II.17)

where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q

�2
t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘ v2

f2
= sin2(hĥi) =

↵ + 2�

4�
. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are

no EWSB
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
Eq. (II.13), (r

g

⌘ 3g2/(3g2 + g02))

m̂� =
⇣32|↵|

3

⌘ 1
2

= 4

✓
ĈLR

✓
g2 +

g02

3

◆◆ 1
2

' 0.36 ,

m̂�0 =
⇣32|↵|

3
r
g

⌘ 1
2

= 4(ĈLRg
2)

1
2 ' 0.34 ,

which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

in units of f
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m
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In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

3

iT 15), Eq. (II.5) leads to canonically normalised kinetic
terms.

Expanding this Lagrangian we find the standard
MCHM4/5 coupling modifications of the physical Higgs
boson to the massive electroweak gauge bosons rescaled
by

p
1 � ⇠, where ⇠ ⌘ v2/f2, while the remaining PNGB

interactions are completely determined by their SU(2)
L

quantum numbers.
Heavy third family quark masses are included through

partial compositeness [15, 16], i.e. mixing e↵ects with
vector-like hyperbaryons of the strongly interacting sec-
tor. The relevant terms originating from an extended HC
(EHC) sector are

� L � M ̄ + �
q

f ¯̂q
L

⌃ 
R

+ �
t

f ¯̂t
R

⌃⇤ 
L

+
p

2µ
b

Tr(¯̂q3
L

Ud̂3
R

) + h.c. (II.7)

where we introduced the field  to represent the com-
posite fermion in the e↵ective theory, transforming under
a 5 of SO(5) and a 3 of SU(3)

c

, and q̂
L

� (t
L

, b
L

), and
t̂
R

� t
R

are SO(5)-spurionic embeddings of the third gen-
eration quarks. The field  can be written in terms of its
components that have definite quantum numbers under
the standard model gauge group SU(3)

c

⇥ SU(2)⇥U(1):

 =
1p
2
[iB � iX,B + X, iT + iY,�T + Y,

p
2iR] ,

(II.8)

where the quantum numbers are (T,B) 2 (3,2)1/6,
R 2 (3,1)2/3, and (X,Y ) 2 (3,2)7/6. Expanding this
Lagrangian yields a mass matrix in the top partner space
(t, T, Y,R):

M̂
T

=
0

BBB@

0 �q

2 (1 + c
h

) �q

2 (1 � c
h

) �q
p

2
s
h

�t
p

2
s
h

M̂ 0 0

� �t
p

2
s
h

0 M̂ 0

�
t

c
h

0 0 M̂

1

CCCA
, (II.9)

and an analogous matrix in the bottom partner space
(b, B):

M̂
B

=

✓
µ̂
b

s
h

c
h

�
q

0 M̂

◆
, (II.10)

where hatted quantities, e.g. M̂ ⌘ M/f , are made dimen-
sionless by dividing by the appropriate power of f . In the
expressions above c

h

⌘ cos(ĥ) and s
h

⌘ sin(ĥ), where h
is the physical Higgs in the unitary gauge. Bi-unitary
transformations yield the physical top and bottom part-
ner mass spectrum as well as their (non-diagonal) inter-
actions with the Higgs after expanding s

h

, c
h

. Note that
the X-particle and the Higgs h do not interact at the
tree-level. To lowest order in v the top mass O(v0) and
bottom mass O(v) are given by

m
t

'
p

2�
q

�
tq

M̂2 + �2
q

q
M̂2 + �2

t

M (II.11)

and

m
b

' M̂µ̂
bq

M̂2 + �2
q

v , (II.12)

where v = sin(hĥi) has been used in the last equation.
It is seen from Eq. (II.12) that µ̂

b

essentially acts like a
Yukawa coupling for the b-quark as in the SM. Eq. (II.11)
is inverted to �

q

= �
q

(m
t

) for the scan for which we
use m

t

' 173 GeV. We use a similar strategy to invert
Eq. (II.12) µ

b

= µ
b

(m
b

,�
q

) with m
b

' 4.7 GeV as an
input. Furthermore, we will require M > 1.5 TeV (see
below) and leave f as a free parameter.

The SM-like Higgs boson phenomenology is identical
to MCHM4/5 but includes the previously mentioned ex-
otically charged NGBs. The masses of the NGBs are
radiatively induced, in analogy to the ⇡±⇡0 mass di↵er-
ence in the SM due to electromagnetic interaction. The
leading order expression assumes the form [31]

V =
CLR

f2

✓
(3g2 + g02)

✓
2H†H +

16

3
�†�

◆
+ 8g2�†

0�0

◆
,

(II.13)
where 3g2 + g02 ' 1.31 and g2 ' 0.40 and

CLR =
3

16⇡2

Z
1

0
dq2 q2⇧33

LR

(q2) , (II.14)

is an integral over the SU(2)
L

⇥ SU(2)
R

-correlator

i

Z
d4x eiq·x hTJµa

L

(x) Jµ b

R

(0)i = ⇧ab

LR

(q2)Pµ⌫ . (II.15)

Above Pµ⌫ = (q2gµ⌫ � qµq⌫), gµ⌫ = diag(1,�1,�1,�1)
and the chiral currents are in the adjoint flavour repre-
sentation 2Jµa

L,R

=  ̄�µ(1⌥�5)T a . This current has the
right quantum numbers to excite the NGBs and there-
fore lim

q

2
!0 q

2⇧33
LR

(q2) = f2 as the lowest term in a
q2 expansion, which underpins Eq. (II.13). In the next
section we will consider further corrections to the Higgs
potential for which LHC constraints furnish a value for
ĈLR. The latter gives a lower bound on the triplet masses
� and �0. Further low energy exotic states include an
SU(3)

c

octet hyper-pion, whose mass is estimated to be
in the multi-TeV regime [32] and has been investigated
phenomenologically in [19].

Lessons from the Lattice and the LHC

Several LECs are accessible by first principle compu-
tations, e.g. lattice Monte Carlo simulations, of the UV
complete theory. As previously mentioned one might
think of f , the ⇧ decay constant in Eq. (II.4), as setting
the scale of the SU(4)-hypercolour theory. In increasing
order of complexity LECs of interest are the spectrum of
the lowest lying state in a given channel (including the
composite baryon mass M̂), the quark condensates h  i
and h�̄�i with associated decay constants f and f 0, and
the Higgs potential parameters ĈLR and Ĉtop resulting
from non-trivial correlation functions.

see also [Golterman, Shamir `15]

SU(2)xSU(2) 
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Low Energy Constants
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Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by
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where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q

�2
t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where
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= sin2(hĥi) =

↵ + 2�

4�
. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.
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ĈLR

✓
g2 +

g02

3

◆◆ 1
2

' 0.36 ,

m̂�0 =
⇣32|↵|

3
r
g

⌘ 1
2

= 4(ĈLRg
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with
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are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

3

iT 15), Eq. (II.5) leads to canonically normalised kinetic
terms.

Expanding this Lagrangian we find the standard
MCHM4/5 coupling modifications of the physical Higgs
boson to the massive electroweak gauge bosons rescaled
by

p
1 � ⇠, where ⇠ ⌘ v2/f2, while the remaining PNGB

interactions are completely determined by their SU(2)
L

quantum numbers.
Heavy third family quark masses are included through

partial compositeness [15, 16], i.e. mixing e↵ects with
vector-like hyperbaryons of the strongly interacting sec-
tor. The relevant terms originating from an extended HC
(EHC) sector are

� L � M ̄ + �
q

f ¯̂q
L

⌃ 
R

+ �
t

f ¯̂t
R

⌃⇤ 
L

+
p

2µ
b

Tr(¯̂q3
L

Ud̂3
R

) + h.c. (II.7)
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posite fermion in the e↵ective theory, transforming under
a 5 of SO(5) and a 3 of SU(3)
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are SO(5)-spurionic embeddings of the third gen-
eration quarks. The field  can be written in terms of its
components that have definite quantum numbers under
the standard model gauge group SU(3)
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where hatted quantities, e.g. M̂ ⌘ M/f , are made dimen-
sionless by dividing by the appropriate power of f . In the
expressions above c
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⌘ cos(ĥ) and s
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⌘ sin(ĥ), where h
is the physical Higgs in the unitary gauge. Bi-unitary
transformations yield the physical top and bottom part-
ner mass spectrum as well as their (non-diagonal) inter-
actions with the Higgs after expanding s

h
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h

. Note that
the X-particle and the Higgs h do not interact at the
tree-level. To lowest order in v the top mass O(v0) and
bottom mass O(v) are given by
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where v = sin(hĥi) has been used in the last equation.
It is seen from Eq. (II.12) that µ̂
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essentially acts like a
Yukawa coupling for the b-quark as in the SM. Eq. (II.11)
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' 4.7 GeV as an
input. Furthermore, we will require M > 1.5 TeV (see
below) and leave f as a free parameter.

The SM-like Higgs boson phenomenology is identical
to MCHM4/5 but includes the previously mentioned ex-
otically charged NGBs. The masses of the NGBs are
radiatively induced, in analogy to the ⇡±⇡0 mass di↵er-
ence in the SM due to electromagnetic interaction. The
leading order expression assumes the form [31]
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where 3g2 + g02 ' 1.31 and g2 ' 0.40 and

CLR =
3

16⇡2

Z
1

0
dq2 q2⇧33

LR

(q2) , (II.14)
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-correlator
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Above Pµ⌫ = (q2gµ⌫ � qµq⌫), gµ⌫ = diag(1,�1,�1,�1)
and the chiral currents are in the adjoint flavour repre-
sentation 2Jµa

L,R

=  ̄�µ(1⌥�5)T a . This current has the
right quantum numbers to excite the NGBs and there-
fore lim

q

2
!0 q

2⇧33
LR

(q2) = f2 as the lowest term in a
q2 expansion, which underpins Eq. (II.13). In the next
section we will consider further corrections to the Higgs
potential for which LHC constraints furnish a value for
ĈLR. The latter gives a lower bound on the triplet masses
� and �0. Further low energy exotic states include an
SU(3)

c

octet hyper-pion, whose mass is estimated to be
in the multi-TeV regime [32] and has been investigated
phenomenologically in [19].

Lessons from the Lattice and the LHC

Several LECs are accessible by first principle compu-
tations, e.g. lattice Monte Carlo simulations, of the UV
complete theory. As previously mentioned one might
think of f , the ⇧ decay constant in Eq. (II.4), as setting
the scale of the SU(4)-hypercolour theory. In increasing
order of complexity LECs of interest are the spectrum of
the lowest lying state in a given channel (including the
composite baryon mass M̂), the quark condensates h  i
and h�̄�i with associated decay constants f and f 0, and
the Higgs potential parameters ĈLR and Ĉtop resulting
from non-trivial correlation functions.

see also [Golterman, Shamir `15]
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Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
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where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q

�2
t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where
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= sin2(hĥi) =

↵ + 2�
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. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with
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2� = �y2Ĉtop , (II.17)
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) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
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V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘ v2

f2
= sin2(hĥi) =
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Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential
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and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
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From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m
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and thus
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>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with
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where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q

�2
t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2
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0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
Eq. (II.13), (r

g

⌘ 3g2/(3g2 + g02))

m̂� =
⇣32|↵|

3

⌘ 1
2

= 4

✓
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In summary the Higgs potential is parameterised by
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of EWSB. On the other hand ↵ and � can be deter-
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hypercolor theory, Eq. (II.17). Hence the determination
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more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
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↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
Eq. (II.13), (r
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⌘ 3g2/(3g2 + g02))

m̂� =
⇣32|↵|

3

⌘ 1
2

= 4

✓
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with
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4

Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
1

2

�
3g2 + g02

�
< 0 ,

2� = �y2Ĉtop , (II.17)

where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q

�2
t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘ v2

f2
= sin2(hĥi) =

↵ + 2�

4�
. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
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= 4(ĈLRg
2)

1
2 ' 0.34 ,

which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with
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As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
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2� = �y2Ĉtop , (II.17)

where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q

�2
t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘ v2

f2
= sin2(hĥi) =

↵ + 2�

4�
. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
h

v2
= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.
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which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

(ass. 20% radiative corrections)
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(hĥi2 = 3
2
(↵+2�)
↵+8� ) this leads to the identification
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2
F̂LL � ĈLR

1

2
(3g2 + g02)

� = �F̂RR � 1

4
F̂LL +

1

2
F̂LR . (9)

The condition for EWSB reads

↵+ 2� = F̂LR � 2F̂RR � 1

2
(3g2 + g02)ĈLR � 0 (10)

and the ⇠-parameter reads

⇠ ⌘ v2

f2
=

↵+ 2�

4�
=

2F̂LR � 4F̂RR � (3g2 + g02)ĈLR

4F̂LR � 8F̂RR � 2F̂LL

(11)

At last note that
FLR ⇠ (�1�2)

2 ⇠ y2 , FRR ⇠ �4
2 , FLL ⇠ �4

1 ,

which introduces one new EHC-parameter since the Yukawa-parameter is given.

2.2.2 Higgs triplet mass corrections

From [1] eq.3.4.

V = ĈLR

✓
3g2 + g02)(2H†H +

16

3
�†
+�+) + 8g2�0�0

◆
+ 8F̂LL�

†
+�+ (12)

This leads to the following mass corrections

m2
�
0

= 16g2ĈLR ,

m2
�
+

= 16(g2 +
g
02

3
)ĈLR + 8F̂LL (13)

which is identical in the g0 ! 0 and �2 ! 0 limit.
Now Y (tR) = 1/6 and Y (tL) = 2/3 and Y = TR

3 + X and then one gets with TR
3 (tL,R) =

�1, 2, 0 one gets indeed X(tL,R) = 2/3.5 Because of this reversal of matters it is still TL which
transforms non-trivially under SU(2)R and therefore it is �1 from LEHC � �1T̄LBR + . . . (14)
which should give rise to the triplet splitting and it indeed does.

2.2.3 Consequences

Here I summarise some of the consequences and give an outlook on the the new functions FLL

and FRR to be confirmed.

• It is remarkable that no new terms arose. No �-term needed. Possibly this can be
understood more generally.

5Somewhat doubtful what is meant by the familiar custodial symmetry of the SM. I thought the limit of
custodial symmetry is g0 ! 0, Yu = Yd and to group (uR, dR) into a SU(2)R-doublet.
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Higgs Potential

As discussed above, the Higgs particle is one of the
NGBs of the UV complete theory. In the hypercolour the-
ory in isolation, no potential is generated for the NGBs;
hence the Higgs potential can only arise from interac-
tions with the SM sector. In particular there are two
contributions to the one-loop e↵ective potential: the first
one is due to the coupling to the weak gauge bosons (cf.
Eq. (II.13)) and the second one to the coupling to the top
and the composite fermions. Using the standard compos-
ite Higgs potential parametrisation

V̂ (ĥ) = ↵ cos(2ĥ) � � sin2(2ĥ) , (II.16)

the dimensionless parameters ↵ and � are given by

↵ = �ĈLR
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2� = �y2Ĉtop , (II.17)

where CLR = ĈLRf4 is defined in Eq. (II.14) and Ctop

is a top-baryon 4-point function of O(�2
q
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t

) originating
from the terms in Eq. (II.7), as discussed in detail in [31].
Note that Eq. (II.16) includes radiative corrections as dis-
cussed in [33] in a more systematic way. Up to a constant
the potential Eq. (II.16) can be written as

V̂ (ĥ) = 4�(sin2(ĥ) � ⇠)2 , (II.18)

where

⇠ ⌘ v2

f2
= sin2(hĥi) =
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. (II.19)

The important condition, for EWSB, reads

↵ + 2� > 0. (II.20)

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

The ↵-� parameter space is shown in Fig. 1 with phe-
nomenologically acceptable values of ⇠ 2 [0, 0.12] shown
in purple. The Higgs mass is related to the second deriva-
tive of the potential

m̂2
h

= V̂ 00(hĥi) = 32�⇠(1 � ⇠) = 8� � 2↵2/� , (II.21)

and gives a second constraint, cf. Fig. 1, in the ↵-� plane
by combining Eqs. (II.19) and (II.21)

m2
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= 32�(1 � ⇠) = 8(2� � ↵) ' 0.258 . (II.22)

From Fig. 1, 0.012 < �↵ < 0.02 and 0.06 < � < 0.11,
are inferred whose range mainly depends on unknown
radiative corrections to the Higgs mass. The value of
↵ allows us to set a lower bound, at leading order in
the EFT, on the PNGB triplets masses. The latter are
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FIG. 1: Contour plot for ⇠ = (↵ + 2�)/(4�), Eq. (II.19). In
the white region no EWSB occurs and the purple level curves
are values of ⇠ ranging from 0 to 0.12 where the latter value is
a representative constraint taken from Ref. [4]. An additional
constraint comes from the Higgs mass m2

h/v
2 = 8(2� � ↵) '

0.258, Eq. (II.22), for which we have allowed generous 20%
radiative corrections. The intersection of the purple and grey
region is the physically allowed parameter space of the model
that has to be satisfied by the UV theory.

given by the contribution of the weak gauge bosons only,
Eq. (II.13), (r

g

⌘ 3g2/(3g2 + g02))

m̂� =
⇣32|↵|

3

⌘ 1
2

= 4

✓
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= 4(ĈLRg
2)

1
2 ' 0.34 ,

which are identical in the limit g02 ! 0 of no hypercharge.
The mass di↵erence of the charged to neutral is positive,
m� � m�0 � 0, as for the pions in the SM [34]. Since
the hypercharge contribution is small the two masses are
very close in numerical value. From the LHC bound ⇠ =
v2/f2 < 0.12 it follows that f >⇠ 5.7m

h

and thus

m�
>⇠ m�0 > 1.97m

h

. (II.23)

In summary the Higgs potential is parameterised by
the two constants ↵ and �, Eq. (II.16), which are experi-
mentally constrained by m

h

/v, v/f and the requirement
of EWSB. On the other hand ↵ and � can be deter-
mined from well-defined correlation function of the UV
hypercolor theory, Eq. (II.17). Hence the determination
of either ↵ or � alone can exclude the model. Somewhat
more precisely, the model can be excluded/validated by
computing � ⇠ Ctop, and using the Higgs mass con-
straint. Since in practice, cf. the discussion below, com-
puting ↵ ⇠ CLR is more feasible the latter is going to be
the computation that excludes/validates the model. The
quantity CLR has been computed recently in [35] for an
SU(4) gauge theory in the quenched approximation with

can expect small EWPD corrections compared to standard 
MCHM5 scenario e.g [Gilioz et al. `12]
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• model predicts a number of exotics phenomenological implications

2

This will allow us to identify the parameter domain of the
model, which is mostly driven by Higgs searches, and we
will confront our findings with concrete predictions from
the lattice in IIA. We summarise and conclude in Sec. IV

II. THE MODEL

this section requires some polishing... ldd to do
The model of [9] is based on a symmetry group

SU(4)| {z }
GHC

⇥SU(5)⇥ SU(3)⇥ SU(3)0 ⇥ U(1)
X

⇥ U(1)0| {z }
GF

.

(1)
with Weyl fermions transforming  2 6,� 2 4, �̃ 2 4̄
under the hypercolor gauge group GHC = SU(4). The
strong dynamics of GHC will cause a symmetry break-
ing of the global flavour symmetries SU(5) ! SO(5)
and SU(3) ⇥ SU(3)0 ! SU(3)

c

as well as a broken
U(1)

X

. Based on the maximally attractive channel hy-
pothesis [10], we can expect SU(5) ! SO(5) to occur
at a higher scale than SU(3) ⇥ SU(3)0 ! SU(3)

c

. This
leads to a low-energy e↵ective theory based on the global
symmetry breaking pattern

G
F

/H
F

=
SU(5)⇥ SU(3)⇥ SU(3)0 ⇥ U(1)

X

⇥ U(1)0

SO(5)⇥ SU(3)⇥ U(1)
X

=
SU(5)

SO(5)
⇥ SU(3)⇥ SU(3)0

SU(3)
⇥ U(1)0 . (2)

Since SO(5) � SO(4) ' SU(2) ⇥ SU(2), the unbroken
global symmetry group H

F

contains the custodial sub-
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In summary, we find that while there are searches at
the LHC which might become sensitive to the exotic
states predicted by the model of Sec. II in the near fu-
ture, current analyses are not yet constraining enough to
significantly limit the models parameter space. This can
be understood as a motivation to explore this scenario on
the lattice as valid candidate theory of TeV scale com-
positeness.

Finally, coming back to the potential impact of lattice
input, we show the scan of top partners assuming a lat-
tice calculation input of M̂ . This results in a correlation
of the top partner spectrum with f , Fig. 5 and indicates
that an observation of top partners in the near future at
the LHC can not only provide an input to a more com-
prehensive investigation on the lattice, but, more impor-
tantly can potentially rule out the model of Eqs. (II.1)
and (II.2) directly.

IV. SUMMARY AND CONCLUSIONS

The observation of a SM-like Higgs and no additional
evidence of physics beyond the SM provides no hint to-
wards a more fundamental theory of the TeV scale.

Non-minimal theories of Higgs compositeness have al-
ways been attractive solutions to solve this puzzle, but
recently they have received particular attention as the
possibility of UV-complete models paves the way for ap-
plying non-perturbative techniques. Such a programme
needs to be informed by the results of the LHC as col-
lider constraints can be understood in terms of the UV-
theory’s LECs. In this work, we provide the latest con-
straints from Higgs-like measurements as well as from
searches for additional pseudo Nambu-Goldstone weak
triplets with exotic charges predicted by the scenario
of [10].

Including constraints from the literature on the exotic
states that are relevant for our analysis of LECs of this
particular scenario, we find that the latter is largely un-
constrained at this stage in the LHC programme. Ex-
trapolating to 3/ab, the weak exotics searches are capa-
ble of limiting the e↵ective theory’s parameter space. In
particular, the increasing precision on the 125 GeV Higgs
couplings (see e.g. [89–91]) will allow us to explore the
coupling strength deviations in the 5%-range, which will
provide stringent constraints (see Fig. 2) on the model.

Direct searches are not constraining on the top partner
mass m0

t

but when combined with lattice determinations
the situation may change. For instance, the prediction
of the hypercolor baryon mass M , in units of the decay
constants f , provides directly falsifiable predictions on
the top quark partner spectra as shown in Fig. 5. In
the longer term, the computation of the Higgs potential
parameters ↵ and � provides first principle constraints
on the viability of the model against the Higgs mass and
Higgs decay channel measurements (cf. Fig. 1). In par-
ticular the determination of only one of these parame-
ters can exclude the model whereas both parameters are

needed to confirm it in this sector. The lattice technol-
ogy developed within this particular model can be used
for future UV completions that may become interesting
in the future.
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Shamir for helpful discussions and especially Gabriele
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Appendix A: Analysis of loop-induced decays of the
non-Higgs scalar states

In this section we briefly review the calculation under-
pinning the loop-induced decays of the additional neutral
scalars in the model.

After diagonalising the top- and bottom mass mixing
matrices, the scalar as well as vectorial couplings will
be in general non-diagonal in the top and bottom part-
ner spaces (and not necessarily purely vectorial)w . This
leads to a multi-scale decay amplitude that can be pic-
torially represented by the sum over Feynman diagrams
indicated in Fig. 6.

We can write the unrenormalised decay amplitude at
one loop as
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i (A.1)

with Ô
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denoting the quantum operators contributing to
the decay with matrix element hÔ
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i and associated cou-
plings C
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(which can have a non-zero mass dimension).
In our case the relevant operators are
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Ô2 = ŜV̂ µ⌫ V̂ 0
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,

Ô3 = ŜV̂ µ⌫f̂V 0
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,

Ṽ denotes the dual field strength tensor.
The latter two operators typically arise from integrat-

ing out chiral fermions [92], while the first one is the stan-
dard V -Higgs interaction associated with spontaneous
symmetry breaking.
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FIG. 6: Representative Feynman diagram mediating the de-
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{Z, �,W±} with interaction vertices obtained in the mass-
diagonal representation of the charged and neutral top and
bottom space currents.
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i

denoting the quantum operators contributing to
the decay with matrix element hÔ
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[Del Debbio, CE, Zwicky in prep.]

• no constraints from charged Higgs searches 

• doubly charged Higgs bosons produced via Drell Yan might be 
accessible at the LHC [CE, Schichtel, Spannowsky `16]
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[Del Debbio, CE, Zwicky in prep.]

• no constraints from charge Higgs searches 

• doubly charged Higgs bosons produced via Drell Yan might be 
accessible at the LHC in the future 

• Higgs signal strength - no news here either

[CE, Schichtel, Spannowsky `16]
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FIG. 2: 125 GeV Higgs signal strengths as constrained by the ATLAS and CMS combination of Ref. [43]. The blue-shaded
area corresponds to the points in our scan yielding the correct top and bottom masses. The red points in panel (a) result from
a modified scan which includes the charged exotic Higgs loop contributions to the diphoton partial decay width, demonstrating
that the signal strength in the photon channel can be significantly impacted by the presence of these states. The scatter in the
red points results from varying the sign and size of the unknown trilinear Higgs couplings.

1 [43] (see also [4] for an interpretation of ATLAS results
in terms of composite models).

In Fig. 2, we show a scan over the model following the
prescription as detailed earlier. As can be seen, the cur-
rent Higgs signal strength measurements are consistent
with the model’s prediction over a large range of values
of ⇠ = v2/f2. In this sense our findings are consistent
with the analysis of [4]. However, the possibility of addi-
tional charged scalars running in the h ! �� loops can
significantly change this result†. Given the early stage
of the Higgs phenomenology programme, the Higgs mea-
surements are not sensitive enough to provide tight con-
straints on the model.

†Similar ideas have been used to explain the early excess in the
observed diphoton branching ratio, see [58].

Constraints from exotic Higgs searches

Doubly Charged Scalars

The most striking BSM signature related to the exotic
Higgs states is the production of doubly charged scalars.
Since the triplet states’ potential is not a↵ected by elec-
troweak symmetry breaking, these states can only be
pair-produced as W+W+��

�

vertices are absent in the ef-
fective theory. This leads to a qualitatively di↵erent phe-
nomenology compared to one of the standard scenarios
of scalar weak triplets [20–22]: In our case, the dominant
production mechanism relevant for the LHC is Drell-Yan
production (with expected moderate QCD corrections
K ' 1.3 see e.g. [59]) which is entirely determined by
the hypercharge and SU(2)

L

quantum numbers of the
doubly charged scalar. For a choice m

�

±
±

= 200 GeV, we

ATLAS+CMS combination
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• searches for extra scalar / pseudoscalar Higgs bosons with 
couplings to top quarks 

7

obtain a Drell-Yan cross section of 84 fb‡, which decreases
exponentially for heavier masses.

Current analyses [65, 66] set constraints mostly from
searches for same-sign lepton production, which are
motivated from a Majorana-type lepton sector opera-
tors involving the 31 multiplet in the Georgi-Machacek
model [20, 22]. Although leptons are not included in Fer-
retti’s proposal [10], we can expect the biggest coupling
to arise from ⌧ leptons following the partial composite-
ness paradigm. Ref. [66] sets a constraint in this channel
of ⇠ 100 fb, which is not stringent enough to constrain
the presence of a doubly charged Higgs boson as pre-
dicted in the model even when we consider decays to ⌧
leptons.

If this lepton operator is not considered, the domi-
nant decay will be to same sign W bosons via fermion
loops [67]. Ref. [65] does not make any specific assump-
tions on jet or missing energy activity and set constraints
of ⇠ 1 fb. Including the W branching fractions the weak
pair production of the doubly-charged scalar in our model
readily evades these constraints. The recent analysis [67]
that specifically targets the pp ! 4` + missing energy
smoking signature shows that the LHC should in princi-
ple be able to probe a mass regime up to 700 GeV.

Charged Scalars

Charged Higgs boson searches have been performed
during Run-1 by ATLAS [68] and CMS [69] from the
production o↵ top quarks and set constraints of 0.6-0.8 pb
in the considered mass region. In our scan, we find cross
sections§ in the range of ' 1 fb after averaging between
the 4 and 5 flavour scheme as detailed in [70]. W conclude
that available LHC analyses are not sensitive enough to
constrain the exotic Higgs spectrum because of the small
production cross section.

Neutral Scalars

The interactions of Eq. (II.7) also introduces Yukawa-
type interactions with the heavy SM fermions and top
partners after diagonalisation of Eqs. (II.9) and (II.10).
The dominant production modes of the extra neutral
scalars is then gluon fusion with heavy SM fermions and
top partners running in the gluon fusion loops.¶

‡We use a combination of Feynrules [60–62], Ufo [63] and MadE-

vent [64] for the calculation of the cross section.
§Again we use a combination of Feynrules [60–62], Ufo [63] and
MadEvent [64]

¶There is also the possibility of small anomaly-induced terms which
we will not consider in this work; they are expected to be paramet-
rically small [18].
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FIG. 3: Scan over the neutral, CP even 31 state including AT-
LAS [71] and CMS [72, 73]. Currently no model-independent
LHC constraint exists for the t̄t-channel.

We calculate the gluon fusion cross sections,k for the
parameters that reproduce the correct top and bottom
masses, which satisfy constraints of the current top part-
ners outlined above as well as the 125 GeV Higgs mea-
surements. A flat QCD K ' 1.6 factor [77–81] is in-
cluded.

Since the 30 state couples to ⇠ �
q

b̄
L

B
R

/
p

2 + h.c. the
phase space enhanced decay into physical bottom quarks
dominates, irrespective of the smallness of the coupling.
For these final states there are currently no sensitive
searches given the large expected QCD backgrounds and
the challenge of triggering such final states in the first
place.
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FIG. 4: Scan over the neutral, CP odd 31 state including AT-
LAS [71] and CMS [72, 73]. Currently no model-independent
LHC constraint exists for the t̄t-channel.

kUsing a modified version of Vbfnlo [74] together with Fey-

nArts/FormCalc/LoopTools [75, 76].
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• extra scalars with net bottom coupling avoid experimental detection 

lots of parameter space available = let lattice do their thing
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4

Hence the sign of �, and its magnitude compared to ↵,
are the first constraints that the UV complete theory
needs to satisfy.

Furthermore, at a more quantitative level, the values
of the LECs need to conspire to yield the right values for
the Higgs mass and self-coupling. The usual relation for
the Higgs boson mass,

m
h

=
p
2�v =

p
2(↵+ 2�)f . (22)

This is a highly non-trivial test that the UV complete
theory needs to satisfy.move fig-

ure

FIG. 1: Contour plot for ⇠ ⌘ v̂ = �↵/(2�). The allowed
values of ⇠ constrain the possible values of ↵ and � very sig-
nificantly. [coloured area EWSB broken. Blue level curves for
⇠ ranginf from 0 to 0.12.]

2. Constrained parameter scan

The lattice computation of the parameter ⇢
M

= f/M
constrains the scan over the free parameters in the model.
First of all, the value of the top partner mass is no longer
a free parameter. Given the value of ⇠, we have

M =
vp
⇠⇢

M

. (23)

Furthermore, when combined with the expression for the
top quark mass,

m
t

/v =

p
2⇢

M

�
q

�
tq

1 + �2
q

⇢2
M

p
1 + �2

t

⇢2
M

, (24)

the value of ⇢
M

relates �
t

and �
q

. For a given value of
⇢
M

and �
t

, �
q

is then fixed by the physical value of the
top mass.
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FIG. 2: Contour plot for a scan of the first non-SM top
partner in agreement with the current constraints detailed
in Sec. III. Blue points show the correlation expected from
a lattice result of ⇢M 2 [0.20, 0.47] while the red points leave
M as a free parameter in M 2 [1.5, 5.5] TeV.

III. PARAMETER REGIONS AFTER LHC
MEASUREMENTS

The model predicts a singly charged scalar, a doubly
charged scalar, and two neutral scalars from 31 in ad-
dition to a charged and and a neural scalar from 30 in
addition to QCD-charged fermionic and scalar exotica.
The masses of the weak scalars are fixed via Eq. (15) at
leading order in the e↵ective theory approach, which we
will adopt in the following. Note that, at this order, there
is no mixing between the 30,1 states.
The necessary value of CLR modulo the vacuum mis-

aligning top contributions is fixed by the observation of
the SM-like Higgs with m

h

' 125 GeV. We treat exotic
Higgs mass multiplets as free parameters in our scan in
the range m > 200 GeV > m

h

given the PNGB character
of the 125 GeV state.

Constraints from colored exotica

The LHC analysis programme that targets the phe-
nomenology of the fermionic partners of Eq. (8) is well-
developed across a range of final states (see e.g. [32]
or [33]). A comprehensive interpretation of searches for
exotic top partner spectra as detailed above has been
performed recently in Ref. [34]. In particular, searches
for the fermion X with exotic charge 5/3 set constraints
on the vector-like mass M >⇠ 1.5 TeV. We include this
constraint to our scan directly.
Searches for pair-produced colour-octet scalars, as

predicted from the breaking to QCD in Eq. (2)
SU(3)2/SU(3) with subsequent gauging of QCD, have
been considered in theories of vector-like confine-
ment [35–37] as well as in N = 1/N = 2 hybrid SUSY

mock lattice 
measurement of

baryon mass

decay constant

top partners 
democratic

= v2/f2

excluded
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• distributions over-constrain the system!

[CE, Kogler, Schulz, Spannowsky `15]
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FIG. 7: Marginalised 95% confidence level constraints for the dimension-six operator coe�cients for current data (blue),
the LHC at 14 TeV with an integrated luminosity of 300 fb�1 (green) and 3000 fb�1 (orange). The expected constraints are
centered around zero by construction, since the pseudo-data are generated by using the SM hypothesis. The left panel shows
the constraints obtained using signal strength measurements only, and on the right di↵erential pT,H measurements are included.
The inner error bar depicts the experimental uncertainty, the outer error bar shows the total uncertainty.

where ht ⌘ yts� , Xt ⌘ At � µ cot� and mQ̃ and mt̃R
denote the soft masses of the left and right-handed stops
respectively. To ensure the validity of our EFT approach
based on di↵erential distributions, we have to make the
strong assumption that all supersymmetric particles are
heavier than the momentum transfer probed in all pro-
cesses that are involved in of our fit [37, 106] (see also
[43, 107] for discussions of (non-)resonant signatures in
BSM scenarios and EFT). For convenience, we addition-
ally assume that all supersymmetric particles except the
lightest stop t̃1 are very heavy and decouple from cg.
The largest value for pT,H we expect to probe during the
LHC high-luminosity runs, based on our leading-order
theory predictions is 500 GeV. And we can therefore
trust the e↵ective field theory approach for mt̃1 > 600
GeV. For instance, fixing the soft masses mQ̃ = mt̃ = m,
µ = 200 GeV and tan� = 30 we can understand the con-
straints on cg as constraints in the At �m plane, Fig. 6.
Similar interpretations are, of course, possible with the
other Wilson coe�cients.

V. DISCUSSION, CONCLUSIONS AND
OUTLOOK

Even though current measurements as performed by
ATLAS and CMS show good agreement with the SM
hypothesis for the small statistics collected during LHC
run 1, the recently discovered Higgs boson remains one of
the best candidates that could be a harbinger of physics
beyond the SM. If new physics is heavy enough, modi-
fications to the Higgs boson’s phenomenology from inte-
grating out heavy states can be expressed using e↵ective
field theory methods.

In this paper we have constructed a scalable fitting
framework, based on adapted versions of Gfitter, Pro-
fessor, Vbfnlo, and eHdecay and have used an abun-
dant list of available single-Higgs LHC measurements to
constrain new physics in the Higgs sector for the results
of run 1. In these fits we have adopted the leading order
strongly-interacting light Higgs basis assuming vanishing
tree-level T and S parameters and flavour universality of
the new physics sector. Our results represent the latest
incarnation of fits at 8 TeV, and update results from the
existing literature. The main goal of this work, however,
is to provide an estimate of how these constraints will

signal strength 

 only
distribution pT,H
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statistical and systematic uncertainties, which leads to a
more constrained fit. The fit for the 300 fb�1 scenario
uses 36 signal strength measurements, and 46 measure-
ments are used for the scenario with 3000 fb�1. Specifi-
cally the constraints on operators that modify associated
Higgs production and weak boson fusion benefit from the
increased centre-of-mass energy and luminosity. In the
scenario for the high luminosity phase the theoretical un-
certainties become dominant in some cases.

In a second step, we include the di↵erential pT,H mea-
surements from all production modes, except pp ! H.
For the pp ! H production mode we include six sig-
nal strength measurements, as no transverse momentum
of the Higgs boson is generated on tree-level. This re-
sults in 82+6 independent measurements included for
the fit with 300 fb�1 and 117+6 for 3000 fb�1. In a
given production and decay channel, experimental sys-
tematic uncertainties are included as correlated uncer-
tainties among bins in pT,H . Comparing the above con-
straints with those expected from including the di↵eren-
tial distributions, Fig. 4, we see a tremendous improve-
ment. Two-dimensional contours of the expected con-
straints are shown in Fig. 5. Several flat directions are re-
solved, which are present when using only signal strength
measurements, e↵ectively allowing to constrain all coef-
ficients simultaneously. Elements of studying di↵erential
distributions to e↵ective Higgs dimension six framework
have been investigated with similar findings in the lit-
erature [21, 23], but, to our knowledge, Figs. 4 and 5
provide the first consistent fit of all single-Higgs relevant
operators in a fully di↵erential fashion, in particular with
extrapolations to 14 TeV.

A series of dimension six operators, on which no con-
straints can be formulated at this stage of the LHC pro-
gramme or by only including signal strength measure-
ments, can eventually be constrained with enough data
and di↵erential distributions. The reason behind this
is that di↵erential measurements ipso facto increase the
number of (correlated) measurements by number of bins,
leading to a highly over-constrained system. Also, since
the impact of many operators is most significant in the
tails of energy-dependent distribution, the relative statis-
tical pull is decreased by only considering inclusive quan-
tities.

IV. INTERPRETATION OF CONSTRAINTS

The whole purpose of interpreting data in terms of an
e↵ective field theory is to use this framework as a means
of communication between a low-scale measurement at
the LHC and a UV model defined at a high scale, out of
reach of the LHC. This way, the EFT framework allows
us to limit a large class of UV models.

For a well-defined interpretation using e↵ective opera-
tors, we assume that the operators, induced by the UV
theory, only directly depend on the SM particle and sym-
metry content, and we also need to assume that the UV

FIG. 6: Matching the constraints on |c̄g| . 5 ⇥ 10�6 of
Fig. 4 onto stop contributions using Eq. (11) for identified
soft masses mQ̃ = mt̃ = m. For details see text.

theory is weakly coupled to the SM sector. The last
condition is necessary to justify the truncation of the ef-
fective Lagrangian at dimension six. After establishing
limits on Wilson coe�cients of the e↵ective theory, as
performed in Secs. III A-III B, we can now address the
implications for a specific UV model.
Two popular ways of addressing the Hierarchy problem

are composite Higgs models and supersymmetric theo-
ries. Let us quickly investigate in how far these con-
straints are relevant once we match the EFT expansion
to a concrete UV scenario.
In the strongly-interacting Higgs case, from the power-

counting arguments of Ref. [9, 100, 101], one typically
expects

cg ⇠ m2
W

16⇡2f2

y2t
g2⇢

, (10)

where g⇢ . 4⇡ and the compositeness scale is set by
⇤ ⇠ g⇢f . So our constraint translates into ⇤ & 2.8
TeV, which falls outside the e↵ective kinematic coverage
of the Higgs phenomenology at the LHC. This means that
new composite physics with a fundamental scale ⇤ & 2.8
TeV can naively not be probed in the Higgs sector alone.
However, new contributions, such as narrow resonances
around this mass can be discovered in di↵erent channels
such as weak-boson fusion [102] or Drell-Yan production
[103].
Matching, say, the MSSM stop contribution on the c̄g

operator, we have (see e.g. [57, 104, 105] for a more
detailed discussion)

cg =
m2

W
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1
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☛ deviations from the SM Higgs couplings pattern unavoidable in PC 

☛ UV complete picture should lend good UV properties off-resonance
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• BUT…. 

• longitudinal polarisations contribute mass suppressed in golden 
channels!

• VV amplitude growth highly suppressed, excess in cross section due 
to lack of absorptive contribution above the the Higgs mass 
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☛ Large N arguments (holography…)

4

depicted in Fig. 3

[1](s)� 2mq

�
[3]L(s) + [3]R(s)

�
= 0 , (18a)

[3]R(s) + [3]L(s)� [4]L(t) = 0 , (18b)
[2](s)� [3]R(s) = 0 , (18c)

where the subscripts denote the vertices’ couplings’ chi-
rality and the brackets embrace all couplings of the re-
spective graph.The Feynman graphs are functions of the
Mandelstam ivariable s = (p1 + p2)2 and t = (p1 � p3)2.

Plugging in the SM couplings and the propagators for
the quantum fields with canonical scaling dimension, we
realize quickly that gauge invariance and spontaneous
symmetry breaking enforces cancellation requirements of
Eq. (18) for s, t � mH . Particularly interesting for our
consideration is the requirement Eq. (18a). It becomes
becomes trivial in the chiral limit since mq, [1]! 0, and,
for non-vanishing fermion masses, it relates the quark
mass to the gauge interactions.

V. THE MODEL

1. Gauge-Higgs sector

We will focus on a model with bulk gauge group
SU(2)L ⇥ SU(2)R ⇥ U(1)X [22]. Gauging the SU(2)R

is phenomenoglogically required to avoid large custodial
Isospin violation [23]. We introduce a bulk Higgs field
H, which transforms under the bi-fundamental represen-
tation of SU(2)L⇥SU(2)R with X charge zero [24]. can
then be arranged to trigger spontaneous SM-like bulk-
symmetry breaking SU(2)L ⇥ SU(2)R ! SU(2)L+R,
while a UV boundary-localized potential controls the
Higgs UV boundary condition (see e.g. [6]). Further-
more, we reduce the field content on the UV brane to
the electroweak gauge group SU(2)R ⇥ U(1)X ! U(1)Y

by choosing the appropriate Dirichlet boundary condi-
tions. These can e↵ectively be realized by introducing
a boundary-localized Higgs mechanism in the decoupling
limit [25]. Color interactions are not important for our
purpose, and we will hencefore neglect (bulk) QCD in-
teractions except for trivial color factors contributing to
the numerical values of the cross sections.

2. Fermion sector

To account for a chiral low energy fermion spectrum,
that is going to participate in the gauge interactions we
have to introduce two 5d vector-like bulk fermions and
project to the low energy spectrum by boundary con-
ditions or, equally e�cient, by assigning the repsective
orbifold parities.

We now move on to consider qq̄ ! WW scattering
in the e↵ective theory derived from the boundary ac-
tion of the soft wall set up with bulk gauge symmetry
SU(2)L ⇥ SU(2)R ⇥ U(1)X . We first have to construct

the e↵ective interactions from the 5d action by integrat-
ing out the bulk according to Eq. (2). This gives rise to
operators with an arbitrary number of fields by insert-
ing bulk propagators as is shown in e.g. Fig. 4(c), whose
structure is determined by the 5d gauge theory. We fix
the underlying 5d parameters to recover the Thomson
limit for the qq̄A vertex. This fixes the photons’ inter-
action with all other fields, and hence their charge, but
does not a↵ect the other couplings since the photon ex-
hibits a flat wavefunction, independent of the underlying
5d geometry. mention S,T Zbb!!! The e↵ective vertices
can be determined along the lines of Sec. II. The func-
tional form of the Lagrangian is not important for our
purposes and we apply the method of Sec. II directly to
the computation of the scattering amplitude of massive
quarks qq̄ ! WW to investigate the amplitude’s uni-
tarity behaviour to leading order approximation. The
Feynman graphs of Fig. 3 translates to amplitudes via
graphs analogous to Fig. 4(c).

VI. PHENOMENOLOGY

Appendix A: Gamma matrix conventions

In this paper we work with the mostly-minus conven-
tion for the metric gMN = diag(1,�1,�1,�1,�1). We
choose the Dirac matrices to be
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2 0
0 2
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(A1)

with

{�̄µ}µ=0,...,3 = {�µ}µ=0,...,3 = (� 2, �
i) , (A2)

where the �

i are the familiar Pauli matrices.
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FIG. 4: 4d e↵ective vertices for (a) the WWZ interaction, (b)
the qQ̄W interaction, and (c) the e↵ective four point inter-
action due to-bulk Higgs exchange, recovered from the pre-
scription of Eq. (2) in the soft wall geometry explained in
Fig. 1.
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Michael ”Rübezahl” Spannowsky†
Eugene im Wald

High scale unitarity provides a window to guessing the right theory that might await us when
we will finally penetrate the TeV scale energy region during the upcomming Large Hadron Collider
era. While there is ....

I. INTRODUCTION

The actual realization of electroweak symmetry break-
ing remains far from being resolved. Apart from well-
motivated approaches like within the Standard Model or
Supersymmetry, applications of (approximately) confor-
mal sectors taking part in EWSB have received increasing
interest recently.

Perturbative unitarity at energy scales much larger
than e.g. the W mass, E � mW , is a necessary trait
of any model which indends to formulate physics at the
desired more fundamental level than the Standard model
(SM). Tree-level perturbative unitarity can be ultimately
traced back to an underlying spontaneously broken gauge
symmetry [1], which contributes to a working knowl-
egde of building models of electroweak symmetry break-
ing that do not face immediate conflicts with probablilty
conservation.

II. CONSTRUCTING THE EFFECTIVE
THEORY

We start with a generic 5d theory defined on an inter-
vall with metric

ds

2 = a

2(z)
�
⌘µ⌫ dx

µdx

⌫ � dz

2
�

= gMN (z) dx

Mdx

N
, (1)

with 0 < R0  z  R1, where R1 is not necessarily fi-
nite (see Fig. 1). This choice is the only one compatible
with 4d Lorentz invariance. It specializes to the usual
Randall-Sundrum scenario (RS) for a(z) = R/z, where
R ⇠ MPl ⇠ 1019 GeV denotes the inverse curvature of
the 5d Anti-de Sitter space (AdS5), which is obtained
from the S

1
/Z2 orbifold [2]. Eq. (1) leaves also enough

freedom to account for a plethora of phenomenologically
distinct scenarios. If we introduce a boundary at z = R1

(infrared brane), as it is done in the original RS1 pro-
posal, we obtain a discrete spectrum for the bulk fields

⇤
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FIG. 1: Sktech of the 5d set-up considered in this paper. The
shaded area depicts the “soft wall”, i.e. the departure from
the pure AdS5 metric. For comparisons we will also conisder
the soft wall by a “rigid” infrared (IR) brane located at z = R̃.

in the 4d e↵ective theory. Considering R1 ! 1 generi-
cally leads to theories which fit into the notion of unpar-
ticles [3, 4, 6]. Both limits are well-described in terms
of the AdS/CFT duality’s dictionary [11–13], in this pa-
per, however, we solely invoke the 5d picture to define a
strongly interacting sector with a UV cut-o↵.

An appropriate choice of a(z) can be used to generate
a mass gap by approaching a so-called soft-wall cut-o↵ [7,
9], where the AdS5 space gets deformed at values z ⇠ 1/µ

by choosing a(z) = .... This deformation leads to a mass
gap of order µ between the continuum and the lowest-
lying states. In the boundary-localized dual picture the
departure from AdS signalizes a soft explicit breaking of
conformality at low scales.

From the generating functional of the full 5d theory
one computes the n-point vertex functions �n,

�n(⇠1, . . . , ⇠n) =
�

n�[J ]
i

n
�J(⇠1) · · · J(⇠n)

, (2a)

where we use the notation ⇠ = (xµ
, z). By limit-

ing Eq. (2a) to boundary-localized sources of the form
J(⇠) = J(x)�(z � R), we define a 4d e↵ective boundary
action

e�[J ] =
X

n

i

n

n!

Z
· · ·

Z
d4

x1 · · · dxn
e�n(x1, . . . , xn)

⇥ J(x1) · · · J(xn) , (2b)
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a mass gap by approaching a so-called soft-wall cut-o↵ [7,
9], where the AdS5 space gets deformed at values z ⇠ 1/µ

by choosing a(z) = .... This deformation leads to a mass
gap of order µ between the continuum and the lowest-
lying states. In the boundary-localized dual picture the
departure from AdS signalizes a soft explicit breaking of
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From the generating functional of the full 5d theory
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☛ unitarity restored in general background geometries

☛ resonances take over the job in scenarios admitting canonical 
particle interpretations as a limit
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FIG. 1: Sample Feynman diagrams contributing to WW ! WW , the t-channel diagrams are not shown.

If additional resonances in V V scattering are present,
an identification will depend on their mass, width and
coupling strengths, fixed through high scale unitarity as
a function of their spin: The naive growth proportional to
s2 and s of the amplitude, depicted in Fig. 1, in the high

energy limit "µL(p) ⇠ pµ/mV is mitigated by imposing
sum rules that link quartic and trilinear gauge and Higgs
couplings (see also [15–17] for a similar discussion of the
pure Higgs-less case).
For SM-like WW scattering, the sum rules read

gWWWW = g2WW� +
X

i

g2WWZi
(1a)

4m2
W gWWWW =

X

i

3m2
i g

2
WWZi

+
X
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g2WWHi
, (1b)

and for WW ! ZZ (and crossed) scattering these are modified to

gWWZZ =
X

i

g2WiWZ (1c)
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i

◆
g2WiWZ +
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gWWHigZZHi . (1d)

In these sums the index i = 1 refers to the SM W , Z and
Higgs bosons, respectively, and i > 1 refer to a series of
isotriplet massive vector bosons W 0, Z 0 and isosinglet H 0

scalar bosons respectively.† Although we will not make
contact with a concrete model, one can think of the i > 1
states as Kaluza-Klein states that arise in models with
extra dimensions and dual interpretations thereof [9, 16]
as a guideline: Wi>1 can couple to SM W and Z bosons,
while Zi>1 can couple to a pair of SM W bosons etc.
In concrete scenarios [8, 9, 16] the above sum rules are
quickly saturated by the first i 6= 1 states. We assume
that custodial SU(2) is intact, which, in addition to the
correct tree-level Z/W mass ratio, will leave imprints in
the the additional resonances spectrum, see e.g. [9]. The
unitarity sum rules are independent of custodial isospin
and since the sum rules are quickly saturated, custodial
SU(2) is not important for our investigation, but remains
a testable concept in case of a discovery of additional
vector resonances.

The discovery of particles categorized as Eq. (1) in
the V V jj channels would provide a conclusive hint

†It is worth noting that similar sum rules cannot be formulated for
iso-tensors [18].

for the role of new resonances in electroweak symme-
try breaking. It is intriguing that both ATLAS and
CMS have observed non-significant excesses in (multi-
)lepton+/ET+jets searches [19].
In addition, recently, both ATLAS and CMS re-

ported on excesses in final states with reconstructed
hadronically-decaying di-vector boson final states with
an invariant mass mV V ' 2 TeV [20, 21]. ATLAS found
a global significance of 2.5 standard deviations. Both
vector bosons were reconstructed using fat jets and jet
substructure methods, i.e. mass-drop and filtering [22].
While WBF tagging jets are very energetic, they have
small transverse momentum. Hence, they are likely to
be overlooked in the reconstruction procedure applied.
We take this observation as another motivation for an
as model-independent as possible analysis of these final
states.
It is important to realize that due to SU(2)L invariance

(e.g. the absence of a quartic Z interaction) the reason-
ing along the above lines does not apply to ZZ ! ZZ
scattering. In the high energy regime the Higgs exchange
diagrams conspire

M(ZLZL ! ZLZL) ⇠ s+ t+ u = 4m2
Z , (2)

i.e. the scattering amplitude becomes independent of
the center of mass energy. Hence, on the one hand, in
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FIG. 2: W 0 and Z0 couplings to SM W and Z bosons as func-
tion of the Higgs coupling deviation following from Eq. (1).

scenarios where unitarity in WW and WZ scattering is
enforced by iso-vectors, we do not expect new resonant
structures in pp ! 4`+2j. On the other hand if unitarity
is conserved via the exchange of iso-scalar states, this
channel will provide a phenomenological smoking gun.
Obviously this is not a novel insight and under discussion
in the context of e.g. Higgs portal scenarios [23]. We will
not investigate the ZZ channel along this line in further
detail.

For the purpose of this paper we start with a mini-
mal, yet powerful set of assumptions, that can be recon-
ciled in models that range from (perturbative and large
N) AdS/CFT duality over SUSY to simple Higgs por-
tal scenarios. We will focus on a vectorial realization of
unitarity, assuming an electroweak doublet nature of the
Higgs boson.‡ This represents an alternative benchmark
of new resonant physics involved in the mechanism of
EWSB which has been largely ignored after the Higgs
discovery so far.

The first rules Eq. (1a), (1c) are typically a conse-
quence of gauge invariance [16] while the second rules
(1b), (1d) reflect the particular mechanism of EWSB.
Similar sum rules exist for massive qq̄ ! VLVL scatter-
ing, linking the Yukawa sector to the gauge sector [25].
We are predominantly interested in a modified Higgs phe-
nomenology in the standard WBF search channels. It
is however important to note that the latter sum rules
also predict new resonant states in Drell-Yan type pro-
duction [26] (for a recent comprehensive discussion see
also [27]) or gluon fusion induced V V jj production. For
this analysis, gluon fusion events can e�ciently be re-
moved by imposing selection criteria [28]; this process is
neglected further on (see below).

The presence of unitarizing spin one resonances is tan-

‡See [24] for a detailed discussion of WBF signatures in Higgs triplet
scenarios.

tamount to a modification of the 4-point gauge interac-
tions when we choose the trilinear couplings to be SM-
like. In higher dimensional and dual composite Higgs sce-
narios this fact is typically encoded in multiple definitions
of the tree-level Weinberg angle and a resulting constraint
from the ⇢ parameter. The quartic gauge couplings are
currently not well constrained and we use this freedom
to saturate the above sum rules via a non-standard value
of gWWWW and gWWZZ . The numerical modifications
away from the SM values as a function of the modified
Higgs couplings is small ' 0.1%, especially in the vicinity
of the SM when gWWZ0 = gW 0WZ = 0 are small and well
within the latest quartic coupling measurements’ uncer-
tainty as performed during the LEP era [29].§

II. RESULTS

A. Details of the simulation

Using Eq. (1), we have a simple parameterization of
new physics interactions in terms of mass and width of
the new vector state, and Higgs coupling modification
parameter. Since we do not specify a complete model
we treat the extra boson widths as nuisance parame-
ters. In concrete models the width can span a range
from rather narrow to extremely wide. Masses are typi-
cally constrained by electroweak precision measurements.
Since the sum rules give an independent prediction, we
will not consider these corrections further.

We use a modified version of Vbfnlo [30] to simulate
the weak boson fusion channel events for fully partonic
final states inputting the relevant model parameters men-
tioned above. Since WBF can be identified as “double-
DIS” we can e�ciently include the impact of higher order
QCD corrections on di↵erential distributions by dynam-
ically choosing the t-channel momentum transfer of the
electroweak bosons as the factorization and renormaliza-
tion scales [31] irrespective of new resonant structures
in the leptonic final state [32]. We generate the gluon
fusion contribution using again Vbfnlo, but find that
they are negligible for typical WBF requirements. As
benchmarks we consider the following parameter points,

§On a theoretical level, a modification of the quartic interactions
away from the the SM expectation introduces issues with Ward
identities which ultimately feed into the unitarity of the S matrix
beyond the tree-level approximation. Hence, Eqs. (1) need to be
understood as an e↵ective theory below the compositeness scale.
In concrete scenarios motivated from AdS/CFT, the fundamental
scale can be as high as 10 TeV [9, 16] and the SM-like ward iden-
tities need to be replaced by the corresponding 5d AdS relations.

�

[CE, Harris,Spannowsky, Takeuchi `15]
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FIG. 1: Sample Feynman diagrams contributing to WW ! WW , the t-channel diagrams are not shown.

If additional resonances in V V scattering are present,
an identification will depend on their mass, width and
coupling strengths, fixed through high scale unitarity as
a function of their spin: The naive growth proportional to
s2 and s of the amplitude, depicted in Fig. 1, in the high

energy limit "µL(p) ⇠ pµ/mV is mitigated by imposing
sum rules that link quartic and trilinear gauge and Higgs
couplings (see also [15–17] for a similar discussion of the
pure Higgs-less case).
For SM-like WW scattering, the sum rules read

gWWWW = g2WW� +
X

i

g2WWZi
(1a)

4m2
W gWWWW =

X

i

3m2
i g

2
WWZi

+
X

i

g2WWHi
, (1b)

and for WW ! ZZ (and crossed) scattering these are modified to

gWWZZ =
X

i

g2WiWZ (1c)

2(m2
W +m2

Z)gWWZZ =
X

i

✓
3m2

i �
(m2

Z �m2
W )2

m2
i

◆
g2WiWZ +

X

i

gWWHigZZHi . (1d)

In these sums the index i = 1 refers to the SM W , Z and
Higgs bosons, respectively, and i > 1 refer to a series of
isotriplet massive vector bosons W 0, Z 0 and isosinglet H 0

scalar bosons respectively.† Although we will not make
contact with a concrete model, one can think of the i > 1
states as Kaluza-Klein states that arise in models with
extra dimensions and dual interpretations thereof [9, 16]
as a guideline: Wi>1 can couple to SM W and Z bosons,
while Zi>1 can couple to a pair of SM W bosons etc.
In concrete scenarios [8, 9, 16] the above sum rules are
quickly saturated by the first i 6= 1 states. We assume
that custodial SU(2) is intact, which, in addition to the
correct tree-level Z/W mass ratio, will leave imprints in
the the additional resonances spectrum, see e.g. [9]. The
unitarity sum rules are independent of custodial isospin
and since the sum rules are quickly saturated, custodial
SU(2) is not important for our investigation, but remains
a testable concept in case of a discovery of additional
vector resonances.

The discovery of particles categorized as Eq. (1) in
the V V jj channels would provide a conclusive hint

†It is worth noting that similar sum rules cannot be formulated for
iso-tensors [18].

for the role of new resonances in electroweak symme-
try breaking. It is intriguing that both ATLAS and
CMS have observed non-significant excesses in (multi-
)lepton+/ET+jets searches [19].
In addition, recently, both ATLAS and CMS re-

ported on excesses in final states with reconstructed
hadronically-decaying di-vector boson final states with
an invariant mass mV V ' 2 TeV [20, 21]. ATLAS found
a global significance of 2.5 standard deviations. Both
vector bosons were reconstructed using fat jets and jet
substructure methods, i.e. mass-drop and filtering [22].
While WBF tagging jets are very energetic, they have
small transverse momentum. Hence, they are likely to
be overlooked in the reconstruction procedure applied.
We take this observation as another motivation for an
as model-independent as possible analysis of these final
states.
It is important to realize that due to SU(2)L invariance

(e.g. the absence of a quartic Z interaction) the reason-
ing along the above lines does not apply to ZZ ! ZZ
scattering. In the high energy regime the Higgs exchange
diagrams conspire

M(ZLZL ! ZLZL) ⇠ s+ t+ u = 4m2
Z , (2)

i.e. the scattering amplitude becomes independent of
the center of mass energy. Hence, on the one hand, in

7

Sample lepton cuts WBF cuts mT,3l

WZ+jets 2.20 0.61 0.47

tt̄+jets 0.013 0 0

mW 0,Z0 = 700 GeV, ↵ = 0.9 2.58 0.75 0.59

mW 0,Z0 = 1000 GeV, ↵ = 0.9 2.32 0.67 0.51

mW 0,Z0 = 1500 GeV, ↵ = 0.9 2.22 0.63 0.48

mW 0,Z0 = 2000 GeV, ↵ = 0.9 2.23 0.63 0.48

mW 0,Z0 = 700 GeV, ↵ = 0.5 4.01 1.22 1.06

mW 0,Z0 = 1000 GeV, ↵ = 0.5 2.82 0.84 0.68

mW 0,Z0 = 1500 GeV, ↵ = 0.5 2.40 0.69 0.54

mW 0,Z0 = 2000 GeV, ↵ = 0.5 2.31 0.66 0.50

TABLE III: Results for 3 lepton search. The cross sections are
given in femtobarn, corresponding to proton-proton collisions
at

p
s = 14 TeV. Further details on the cuts can be found in

the text.
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FIG. 6: Projections of the 3l + /ET + jj 95% confidence
level contours for 100/fb (green), 500/fb (orange) and 3000/fb
(red). The Higgs coupling deviation is ↵2 = 0.95.

The signal extraction is performed over a mass window of
0.3⇥mW 0 in the transverse mass Eq. (7). The calculated
significance follows from:

S =
N(BSM)�N(WBF,SM)p

N(bkg,non-WBF) +N(WBF,SM)
, (8)

where the individual Ns refer to the signal counts at a
given luminosity. Using this measure we can isolate a
statistically significant deviation from the SM WBF dis-
tribution outside the Higgs signal region, taking into ac-
count the irreducible background in the WZ channel.

Already for a target luminosity of run 2 of 100/fb, a
large parameter region can be explored in the 3l+ /ET+jj
channel. A crucial parameter in this analysis is the width
of the additional resonance, which we take as a free pa-
rameter in our analysis. With an increasing width the

signal decouples quickly, but stringent constraints can
still be formulated at a high-luminosity LHC, especially
if new physics gives rise to only a percent-level defor-
mation of the SM Higgs interactions, see Fig. 6. Note
that the signal decouples very quickly with an increased
value of the width. Hence, if there in scenarios where
the extra vector bosons have a large coupling to the top
as expected in some composite models, the sensitivity
in the WBF search might not be su�cient to constrain
the presence of such states. It is worthwhile to stress
the complementarity of the WBF searches as outlined
in the previous sections to the aforementioned Drell-Yan
like production in this regard. Both ATLAS and CMS
have published limits of searches for W 0 and Z 0 reso-
nances in third quark generation final states [39–42]. If
the states we investigate in this paper have a sizeable
coupling to massive fermions, these searches will even-
tually facilitate a discovery. In this case, however, the
search for WBF resonances still provides complementary
information about the nature of electroweak symmetry
breaking. In particular WBF production will act as a
consistency check of the excesses around 2 TeV seen by
CMS and ATLAS [20, 21].

In Fig. 7 we show the cross section for a 2 TeV reso-
nance in WBF correlated with the Higgs boson on-shell
signal strengths for the scenario where the extra reso-
nances width solely arises from the partial width to SM
gauge bosons. This is optimistic in the sense that the ex-
pected signal rate is maximised; the Higgs phenomenol-
ogy is only modified via the interactions with the gauge
bosons (see above). As can be seen from the inclusive
cross section in Fig. 7 the expected cross section before
reconstruction is far to small to account for a ⇠ 1 fb
signal cross section required to explain the ATLAS and
CMS anomalies. If these excesses become statistically
significant, this means that the observed particle(s) do
not stand in relation relation to longitudinal gauge boson
unitarization. Alternative scenarios are discussed in [43].

H ! ZZ⇤
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FIG. 7: Cross section of 2 TeV diboson resonance in WBF
for single lepton inclusive cuts at 8 TeV center of mass energy.
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☛ fermiophobic = WBF 

☛ fermiophilic = Drell-Yan 

☛ LHC run 2 will  zero in 
on those states 

☛ realistic spectra require 
lattice input[CE, Harris, Spannowsky, Takeuchi `15]

[Pappadopulo, et al. `14]

[CE, Harris,Spannowsky, Takeuchi `15]
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Summary

☛ Is PNGBism still natural?                                                                                            
Maybe yes, maybe no — only a first principle calculation can tell 
(need to go beyond "PT). 

☛ Can the LHC provide hints?                                                                                              
Yes, within the kinematic coverage of the machine. 

☛ Can the lattice provide hints?                                                                                                    
Most definitely yes, but this will take time.  
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`t Hooft, “Under the Spell of the Gauge Principle”

Ws and Zs in 1983 at UA1/UA2
mW � 80.42 GeV

mZ � 91.19 GeV

☛ unique answer to this in 1964 [Higgs `64] [Brout, Englert `64]  
[Guralnik, Hagen, Kibble `64]

• non-linear realisation of gauge symmetry in a Yang Mills+scalar 
sector is compatible with                                                                                         

• massive gauge bosons, but no ghost problems at small distances

�H� �= 0

☛ "spontaneous" symmetry breaking

☛ order-by-order renormalizability and probability conservation

How is this possible in  perturbative 
Yang-Mills?
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• perturbative probability conservation in scattering processes potentially 
problematic for large momenta:
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SM seemingly complete after July 4th 2012 and evidence for JCP= 0+ 
and couplings to (longitudinal) massive gauge bosons

Higgs properties sui generis:  
particle relates to unitarity conservation and seems to be an excitation 
of an isotropic and translationally invariant background field
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after July 4th 2012



The Standard Model: taking stock

SM QFT external symmetriesinternal symmetries massive, light fermions

massless vectors

massive vectors + scalars

chiral symmetry, 
marginal Yukawas

gauge symmetry

gauge + Higgs systems

Mind Map

all SM symmetries have been “used up” to 
guarantee renormalizability and a priori unitarity, 

we have no protection fundamental mass scales 
☛ ultraviolet catastrophe of the 21st century

39

very 
relevant 

operators!



The Standard Model: hierarchies

�m2
H �

�m2
H � UV cuto�/threshold(s) [Veltman `81]

• this is regularisation scheme dependent  
• hence, no straightforward interpretation  
• however, no argument why we should have

� (m2
H + 2m2

W + m2
Z � 4m2
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= 0 ?
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☛ Higgs boson coupling measurements 

☛ generic approaches to Higgs couplings and interpretation 

☛ status of the top quark sector after the first LHC measurements 

☛ Example of new physics: a UV-complete composite Higgs model
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☛ Higgs boson coupling measurements 

☛ generic approaches to Higgs couplings and interpretation 

☛ status of the top quark sector after the first LHC measurements 

☛ Example of new physics: a UV-complete composite Higgs model
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In this talk
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Status of LHC Higgs measurements

☛ everything is consistent with the SM Higgs hypothesis (so far) 
but what are the implications for new physics?
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coupling/scale 
separated BSM physics

Effective Field Theory concrete models
• (N)MSSM

• Higgs portals

• compositeness

• …

[Buchmüller, Wyler `87]  
[Hagiwara, Peccei, Zeppenfeld, Hikasa `87] 
[Giudice, Grojean, Pomarol, Rattazzi `07] 
[Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

L = LSM +
�

i

ci

�2
Oi

Fingerprinting the lack of new physics
but no evidence 

for exotics!the SM is flawed!

59 B-conserving operators ⊗ flavor ⊗ h.c., d=6
2499 parameters (reduces to 76 with Nf=1)



SILH Higgs phenomenology

2

narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 39])

LSILH =
c̄H
2v2

@µ
�
H†H

�
@µ

�
H†H

�
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄6�

v2
�
H†H

�3

+
⇣ c̄u,iyu,i

v2
H†Hū(i)

L Hcu(i)
R + h.c.

⌘
+
⇣ c̄d,iyd,i

v2
H†Hd̄(i)L Hd(i)R + h.c.

⌘

+
ic̄W g

2m2
W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄Bg0

2m2
W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2
W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HBg0

m2
W

(DµH)†(D⌫H)Bµ⌫

+
c̄�g0

2

m2
W

H†HBµ⌫B
µ⌫ +

c̄gg2S
m2

W

H†HGa
µ⌫G

aµ⌫ .

(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 21, 40])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [21].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [41]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [42], which we have
cross checked and introduced in [43]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [44] that inter-

faces FeynArts, FormCalc, and LoopTools [45, 46]
using a model file output by FeynRules [47–49] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.

[Giudice, Grojean, Pomarol, Rattazzi `07]

Higgs production Higgs decay
consistent 

differential cross 
sections

h h h energy etc
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(b) Correlation of Higgs transverse momentum and partonic
centre-of-mass energy (at tree-level) for a typical 2 ! 2 process

(here pp ! HZ in the SM).

FIG. 1: Comparison of pp ! HZ and pp ! H + j for large partonic centre-of-mass energy
p
ŝ and a particular value of c̄g,

rescaled to obtain a SM-signal strength in gluon fusion.

We consider the production modes pp ! H, pp !
H +j, pp ! tt̄H, pp ! WH, pp ! ZH and pp ! H +2j
(via gluon fusion and weak boson fusion) in a fully dif-
ferential fashion by including the di↵erential Higgs trans-
verse momentum distributions to setting constraints. As
we demonstrate, including energy-dependent di↵erential
information whenever possible, is key to setting most
stringent constraints on the dimension six extension by
including the information of the distributions’ shapes
beyond the total cross section, especially when prob-
ing blind directions in the signal strength, as shown in
Fig. 1(a). Note that for the underlying 2 ! 2 and
2 ! 3 processes in the regions of detector acceptance,
the Higgs transverse momentum is highly correlated with
the relevant energy scales that probe the new interac-
tions, Fig. 1(b). Again, expanding the cross sections to
the correct order in the Wilson coe�cients as done in this
work is not a mere technical twist, but essential to obtain
a theoretically consistent description of the high-pT cross
sections and a meaningful exclusion as a consequence.

The operator (H†H)3 and o↵-shell Higgs production
in the EFT framework [50, 57, 58] deserve additional
comments. Dihiggs production is the only process which
provides direct sensitivity to c6 [59] and factorises from
the global fit, at least at leading order. Hence, the c̄6
can be separated from the other directions to good ap-
proximation. While Higgs pair production process can
serve to lift yt-degeneracies in the dimension six exten-
sion [60, 61], the sensitivity to c̄6 is typically small when
we marginalise over c̄u3. The latter can be constrained
either in pp ! t̄tH, pp ! ZZ in the Higgs o↵-shell
regime [50, 57, 58] or pp ! H + j [62–64], however only
the former of these processes provides direct sensitivity to
c̄u3 without significant limitations due to marginalisation
over the other operator directions.

While the expected sensitivity to pp ! HH(+jets) still
remains experimentally vague at this stage in the LHC
programme [65, 66], the potential to observe pp ! t̄tH is
consensus. We therefore do not include pp ! HH to our

production process included sensitivity

pp ! H

c̄g, c̄u3, c̄H
pp ! H + j
pp ! H + 2j (gluon fusion)
pp ! tt̄H
pp ! V H

c̄W , c̄B , c̄HW , c̄HB , c̄� , c̄Hpp ! H + 2j (weak boson fusion)

TABLE I: Tree-level sensitivity of the various production
mechanisms.

projections and also omit o↵-shell Higgs boson produc-
tion, since experimental e�ciencies during the LHC high
luminosity phase will significantly impact the sensitivity
in this channels. We leave a more dedicated discussion
of these channels to future work [67].

Due to the small Yukawa couplings of first and second
generation quarks and leptons, we limit ourselves to mod-
ified top-Higgs and bottom-Higgs couplings throughout
and neglect modifications of the lepton-Higgs system too.
An overview of the tree-level sensitivity of the production
channels considered in this work is given in Tab. I.

III. ANALYSIS

Throughout our analysis we normalise our results to
the recommendation of the Higgs cross section work-
ing group [68–70]. Predicted rates are using the narrow
width approximation of Eq. (2). We construct pseudo-
measurements to asses the sensitivity of the LHC with
a centre-of-mass energy of 14 TeV to the set of opera-
tors considered in this work. The theoretically predicted
number of events for a specific final state Nth is obtained
by multiplying by additional branching ratios if necessary

[Contino et al `13]
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narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 39])
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In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 21, 40])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [21].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [41]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [42], which we have
cross checked and introduced in [43]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [44] that inter-

faces FeynArts, FormCalc, and LoopTools [45, 46]
using a model file output by FeynRules [47–49] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.

[Giudice, Grojean, Pomarol, Rattazzi `07]S,T≃0 from LEP: c̄T = 0, c̄W = �c̄B
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Due to the absence of tantalising hints for new physics during the LHC’s run 1, the extension
of the Higgs sector by dimension six operators will provide the new phenomenological standard for
searches of non-resonant extensions of the Standard Model. Using all dominant and subdominant
Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant
dimension six operators in a global and correlated fit. We show in how far these constraints can be
improved by new Higgs channels becoming accessible at higher energy and luminosity, both through
inclusive cross sections as well as through highly sensitive di↵erential distributions. This allows
us to discuss the sensitivity to new e↵ects in the Higgs sector that can be reached at the LHC
if direct hints for physics beyond the SM remain elusive and the impact of these constraints on
well-motivated BSM scenarios.

I. INTRODUCTION

Since the Higgs boson’s discovery in 2012 [1, 2], ATLAS
and CMS have quickly established a picture of consis-
tency with the Standard Model (SM) expectation of the
Higgs sector [3, 4]. By now, a multitude of constraints
have been formulated across many dominant and sub-
dominant Higgs production modes [5]. All these mea-
surements, as well as the absence of a direct hint for
new physics from exotics searches, seem to suggest that
the scale of new physics is well separated from the elec-
troweak scale. This motivates⇤ the extension of the Higgs
sector by dimension six operators [7–11]

LHiggs = LSM
Higgs +

X

i

ci
⇤2

Oi (1)

to capture new interactions beyond the Standard Model
(BSM) in a model-independent way - within the generic
limitations of e↵ective field theories. Constraints on these
operators from a series of run 1 measurements have been
provided [12–24].

A question that arises at this stage in the LHC pro-
gramme is the ultimate extent to which we will be able to
probe the presence of such interactions. Or asked di↵er-
ently: what are realistic estimates of Wilson coe�cient
constraints that we can expect after run 2 or the high lu-
minosity phase if direct hints for new physics will remain
elusive? With a multitude of additional Higgs search
channels as well as di↵erential measurements becoming
available, the complexity of a fit of the relevant dimension
six operators becomes immense.

It is the purpose of this work to provide these esti-
mates. Using the Gfitter [25–28] and Professor [29]

⇤Note, however, that current Higgs measurements still allow for
models with light degrees of freedom, see e.g. [6].

frameworks, we construct predictions of fully-di↵erential
cross sections, evaluated to the correct leading order ex-
pansion in the dimension six extension d� = d�SM +
d�{Oi}/⇤2. We derive constraints on the Wilson coe�-
cients in a fit of the dimension six operators relevant for
the Higgs sector, inputting a multitude of present as well
as projections of future LHC Higgs measurements.

This paper is outlined as follows. In Sec. II we intro-
duce our approach in more detail. In particular, we dis-
cuss the involved Higgs production and decay processes
and review our interpolation methods in the dimension
six operator space, as well as introduce the key elements
of our fit procedure.
In Sec. III we present our results. Firstly, in Sec. IIIA,

we compare our results to existing and related work of
run 1 data, and set the stage for the extrapolation to
14 TeV LHC centre-of-mass energy in Sec. III B, where
we give estimates of the sensitivity that can be expected
at the LHC for the operators that we consider in this
work. We give a discussion of our results and conclude
in Sec. V.
Throughout this work we will use the so-called

strongly-interacting light Higgs basis [9] adopting the
“bar notation” (this choice is not unique and can be re-
lated to other bases [30]), and constrain deviations from
the SM with leading order electroweak precision. A series
of publications have extended the dimension six frame-
work to next-to-leading order [31–38]. Including these
e↵ects is beyond the scope of this work.

II. FRAMEWORK AND ASSUMPTIONS

We perform a global fit within a well defined Higgs
boson EFT framework assuming SM gauge and global
symmetries and a SM field content. We focus on the
phenomenology of the Higgs boson that can be cast into
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narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 39])
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(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 21, 40])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [21].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [41]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [42], which we have
cross checked and introduced in [43]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [44] that inter-

faces FeynArts, FormCalc, and LoopTools [45, 46]
using a model file output by FeynRules [47–49] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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I. INTRODUCTION

Since the Higgs boson’s discovery in 2012 [1, 2], ATLAS
and CMS have quickly established a picture of consis-
tency with the Standard Model (SM) expectation of the
Higgs sector [3, 4]. By now, a multitude of constraints
have been formulated across many dominant and sub-
dominant Higgs production modes [5]. All these mea-
surements, as well as the absence of a direct hint for
new physics from exotics searches, seem to suggest that
the scale of new physics is well separated from the elec-
troweak scale. This motivates⇤ the extension of the Higgs
sector by dimension six operators [7–11]

LHiggs = LSM
Higgs +

X
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⇤2

Oi (1)

to capture new interactions beyond the Standard Model
(BSM) in a model-independent way - within the generic
limitations of e↵ective field theories. Constraints on these
operators from a series of run 1 measurements have been
provided [12–24].

A question that arises at this stage in the LHC pro-
gramme is the ultimate extent to which we will be able to
probe the presence of such interactions. Or asked di↵er-
ently: what are realistic estimates of Wilson coe�cient
constraints that we can expect after run 2 or the high lu-
minosity phase if direct hints for new physics will remain
elusive? With a multitude of additional Higgs search
channels as well as di↵erential measurements becoming
available, the complexity of a fit of the relevant dimension
six operators becomes immense.

It is the purpose of this work to provide these esti-
mates. Using the Gfitter [25–28] and Professor [29]

⇤Note, however, that current Higgs measurements still allow for
models with light degrees of freedom, see e.g. [6].

frameworks, we construct predictions of fully-di↵erential
cross sections, evaluated to the correct leading order ex-
pansion in the dimension six extension d� = d�SM +
d�{Oi}/⇤2. We derive constraints on the Wilson coe�-
cients in a fit of the dimension six operators relevant for
the Higgs sector, inputting a multitude of present as well
as projections of future LHC Higgs measurements.

This paper is outlined as follows. In Sec. II we intro-
duce our approach in more detail. In particular, we dis-
cuss the involved Higgs production and decay processes
and review our interpolation methods in the dimension
six operator space, as well as introduce the key elements
of our fit procedure.
In Sec. III we present our results. Firstly, in Sec. IIIA,

we compare our results to existing and related work of
run 1 data, and set the stage for the extrapolation to
14 TeV LHC centre-of-mass energy in Sec. III B, where
we give estimates of the sensitivity that can be expected
at the LHC for the operators that we consider in this
work. We give a discussion of our results and conclude
in Sec. V.
Throughout this work we will use the so-called

strongly-interacting light Higgs basis [9] adopting the
“bar notation” (this choice is not unique and can be re-
lated to other bases [30]), and constrain deviations from
the SM with leading order electroweak precision. A series
of publications have extended the dimension six frame-
work to next-to-leading order [31–38]. Including these
e↵ects is beyond the scope of this work.

II. FRAMEWORK AND ASSUMPTIONS

We perform a global fit within a well defined Higgs
boson EFT framework assuming SM gauge and global
symmetries and a SM field content. We focus on the
phenomenology of the Higgs boson that can be cast into
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FIG. 6: (a) Individual cross section contributions to
p(g)p(g) → ZZ → e+e−µ+µ− as a function of the param-
eters of Eq. (15), subject to the constraint µon

ZZ = 1. Note
that cT shifts mZ away from its SM value, which is tightly
constrained by the T parameter [39]. The modification of the
intermediate Z boson mass is not reflected in the SM con-
tinuum distribution, which is purely SM. We also show the
impact of the dominant LSILH operators in the full cross sec-
tion, taking into account all interference effects, relative to the
SM expectation in panel (b). We choose Wilson coefficients
of size civ

2/f2
≃ 0.25 in both panels.

posed to the experimentally clean ZZ → 4ℓ signature†,
the signal-to-background ratio in e.g. pp → hj → τ+τ−

is of the order of 0.1 [47]. A measurement of the differen-

†For instance, a measurement of the off-shell cross section is already
available with the 8 TeV data set although the inclusive signal
cross section is significantly smaller compared to Z-associated and
jet-associated Higgs production
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FIG. 7: Comparison of the off-shell measurement of pp →

ZZ → light leptons with associated pp → hZ → bb̄ℓ+ℓ−

(ℓ = e, µ) and pp → hj → τ+τ−.

tial distributions as shown in Fig. 7 in these channels will
be complicated: While the acceptance in the fully lep-
tonic ZZ final state at large invariant four-lepton masses
is close to unity [21, 22], the signal rates in associated
and monojet production are vastly reduced (for details
see e.g. [45] and [47]). Therefore, off-shell measurements
in the pp→ ZZ channel will not only provide crucial in-
formation to limit the presence of higher dimensional op-
erators but also provide complementary information, in
particular due to a larger kinematically accessible phase
space range.

IV. RESONANT BSM PHYSICS

In contrast to the non-resonant physics scenarios dis-
cussed in the previous sections, we can imagine the off-
shell measurement to be impacted by the presence of ad-
ditional iso-singlet scalar resonances. To work in a con-
sistent framework, we will focus on so-called Higgs por-
tal scenarios [48] in the following, which directly link the
presence of new scalar states to a universal Higgs cou-
pling suppression. We focus on the minimal extension of
the Higgs sector

LHiggs = µ2|H |2 − λ|H |4 + η|H |2|φ|2 + µ̃2|φ|2 − λ̃|φ|4 .
(17)

If both the Higgs doublet H and the extra singlet φ ob-
tain a vacuum expectation value, the η-induced linear
mixing introduces a characteristic mixing angle cosχ to
single Higgs phenomenology via rotating the Lagrangian
eigenstates (L) to the mass eigenbasis (M)‡

(

h
φ

)

L

=

(

cosχ − sinχ
sinχ cosχ

)(

h
φ

)

M

. (18)

‡Multi-Higgs phenomenology can be vastly different [49].
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I. INTRODUCTION

Since the Higgs boson’s discovery in 2012 [1, 2], ATLAS
and CMS have quickly established a picture of consis-
tency with the Standard Model (SM) expectation of the
Higgs sector [3, 4]. By now, a multitude of constraints
have been formulated across many dominant and sub-
dominant Higgs production modes [5]. All these mea-
surements, as well as the absence of a direct hint for
new physics from exotics searches, seem to suggest that
the scale of new physics is well separated from the elec-
troweak scale. This motivates⇤ the extension of the Higgs
sector by dimension six operators [7–11]

LHiggs = LSM
Higgs +
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to capture new interactions beyond the Standard Model
(BSM) in a model-independent way - within the generic
limitations of e↵ective field theories. Constraints on these
operators from a series of run 1 measurements have been
provided [12–24].

A question that arises at this stage in the LHC pro-
gramme is the ultimate extent to which we will be able to
probe the presence of such interactions. Or asked di↵er-
ently: what are realistic estimates of Wilson coe�cient
constraints that we can expect after run 2 or the high lu-
minosity phase if direct hints for new physics will remain
elusive? With a multitude of additional Higgs search
channels as well as di↵erential measurements becoming
available, the complexity of a fit of the relevant dimension
six operators becomes immense.

It is the purpose of this work to provide these esti-
mates. Using the Gfitter [25–28] and Professor [29]

⇤Note, however, that current Higgs measurements still allow for
models with light degrees of freedom, see e.g. [6].

frameworks, we construct predictions of fully-di↵erential
cross sections, evaluated to the correct leading order ex-
pansion in the dimension six extension d� = d�SM +
d�{Oi}/⇤2. We derive constraints on the Wilson coe�-
cients in a fit of the dimension six operators relevant for
the Higgs sector, inputting a multitude of present as well
as projections of future LHC Higgs measurements.

This paper is outlined as follows. In Sec. II we intro-
duce our approach in more detail. In particular, we dis-
cuss the involved Higgs production and decay processes
and review our interpolation methods in the dimension
six operator space, as well as introduce the key elements
of our fit procedure.
In Sec. III we present our results. Firstly, in Sec. IIIA,

we compare our results to existing and related work of
run 1 data, and set the stage for the extrapolation to
14 TeV LHC centre-of-mass energy in Sec. III B, where
we give estimates of the sensitivity that can be expected
at the LHC for the operators that we consider in this
work. We give a discussion of our results and conclude
in Sec. V.
Throughout this work we will use the so-called

strongly-interacting light Higgs basis [9] adopting the
“bar notation” (this choice is not unique and can be re-
lated to other bases [30]), and constrain deviations from
the SM with leading order electroweak precision. A series
of publications have extended the dimension six frame-
work to next-to-leading order [31–38]. Including these
e↵ects is beyond the scope of this work.

II. FRAMEWORK AND ASSUMPTIONS

We perform a global fit within a well defined Higgs
boson EFT framework assuming SM gauge and global
symmetries and a SM field content. We focus on the
phenomenology of the Higgs boson that can be cast into
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narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 39])

LSILH =
c̄H
2v2
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+
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H†HGa
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(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 21, 40])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [21].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [41]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [42], which we have
cross checked and introduced in [43]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [44] that inter-

faces FeynArts, FormCalc, and LoopTools [45, 46]
using a model file output by FeynRules [47–49] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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Due to the absence of tantalising hints for new physics during the LHC’s run 1, the extension
of the Higgs sector by dimension six operators will provide the new phenomenological standard for
searches of non-resonant extensions of the Standard Model. Using all dominant and subdominant
Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant
dimension six operators in a global and correlated fit. We show in how far these constraints can be
improved by new Higgs channels becoming accessible at higher energy and luminosity, both through
inclusive cross sections as well as through highly sensitive di↵erential distributions. This allows
us to discuss the sensitivity to new e↵ects in the Higgs sector that can be reached at the LHC
if direct hints for physics beyond the SM remain elusive and the impact of these constraints on
well-motivated BSM scenarios.

I. INTRODUCTION

Since the Higgs boson’s discovery in 2012 [1, 2], ATLAS
and CMS have quickly established a picture of consis-
tency with the Standard Model (SM) expectation of the
Higgs sector [3, 4]. By now, a multitude of constraints
have been formulated across many dominant and sub-
dominant Higgs production modes [5]. All these mea-
surements, as well as the absence of a direct hint for
new physics from exotics searches, seem to suggest that
the scale of new physics is well separated from the elec-
troweak scale. This motivates⇤ the extension of the Higgs
sector by dimension six operators [7–11]

LHiggs = LSM
Higgs +

X

i

ci
⇤2

Oi (1)

to capture new interactions beyond the Standard Model
(BSM) in a model-independent way - within the generic
limitations of e↵ective field theories. Constraints on these
operators from a series of run 1 measurements have been
provided [12–24].

A question that arises at this stage in the LHC pro-
gramme is the ultimate extent to which we will be able to
probe the presence of such interactions. Or asked di↵er-
ently: what are realistic estimates of Wilson coe�cient
constraints that we can expect after run 2 or the high lu-
minosity phase if direct hints for new physics will remain
elusive? With a multitude of additional Higgs search
channels as well as di↵erential measurements becoming
available, the complexity of a fit of the relevant dimension
six operators becomes immense.

It is the purpose of this work to provide these esti-
mates. Using the Gfitter [25–28] and Professor [29]

⇤Note, however, that current Higgs measurements still allow for
models with light degrees of freedom, see e.g. [6].

frameworks, we construct predictions of fully-di↵erential
cross sections, evaluated to the correct leading order ex-
pansion in the dimension six extension d� = d�SM +
d�{Oi}/⇤2. We derive constraints on the Wilson coe�-
cients in a fit of the dimension six operators relevant for
the Higgs sector, inputting a multitude of present as well
as projections of future LHC Higgs measurements.

This paper is outlined as follows. In Sec. II we intro-
duce our approach in more detail. In particular, we dis-
cuss the involved Higgs production and decay processes
and review our interpolation methods in the dimension
six operator space, as well as introduce the key elements
of our fit procedure.
In Sec. III we present our results. Firstly, in Sec. IIIA,

we compare our results to existing and related work of
run 1 data, and set the stage for the extrapolation to
14 TeV LHC centre-of-mass energy in Sec. III B, where
we give estimates of the sensitivity that can be expected
at the LHC for the operators that we consider in this
work. We give a discussion of our results and conclude
in Sec. V.
Throughout this work we will use the so-called

strongly-interacting light Higgs basis [9] adopting the
“bar notation” (this choice is not unique and can be re-
lated to other bases [30]), and constrain deviations from
the SM with leading order electroweak precision. A series
of publications have extended the dimension six frame-
work to next-to-leading order [31–38]. Including these
e↵ects is beyond the scope of this work.

II. FRAMEWORK AND ASSUMPTIONS

We perform a global fit within a well defined Higgs
boson EFT framework assuming SM gauge and global
symmetries and a SM field content. We focus on the
phenomenology of the Higgs boson that can be cast into
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Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant
dimension six operators in a global and correlated fit. We show in how far these constraints can be
improved by new Higgs channels becoming accessible at higher energy and luminosity, both through
inclusive cross sections as well as through highly sensitive di↵erential distributions. This allows
us to discuss the sensitivity to new e↵ects in the Higgs sector that can be reached at the LHC
if direct hints for physics beyond the SM remain elusive and the impact of these constraints on
well-motivated BSM scenarios.

I. INTRODUCTION

Since the Higgs boson’s discovery in 2012 [1, 2], ATLAS
and CMS have quickly established a picture of consis-
tency with the Standard Model (SM) expectation of the
Higgs sector [3, 4]. By now, a multitude of constraints
have been formulated across many dominant and sub-
dominant Higgs production modes [5]. All these mea-
surements, as well as the absence of a direct hint for
new physics from exotics searches, seem to suggest that
the scale of new physics is well separated from the elec-
troweak scale. This motivates⇤ the extension of the Higgs
sector by dimension six operators [7–11]

LHiggs = LSM
Higgs +

X

i

ci
⇤2

Oi (1)

to capture new interactions beyond the Standard Model
(BSM) in a model-independent way - within the generic
limitations of e↵ective field theories. Constraints on these
operators from a series of run 1 measurements have been
provided [12–24].

A question that arises at this stage in the LHC pro-
gramme is the ultimate extent to which we will be able to
probe the presence of such interactions. Or asked di↵er-
ently: what are realistic estimates of Wilson coe�cient
constraints that we can expect after run 2 or the high lu-
minosity phase if direct hints for new physics will remain
elusive? With a multitude of additional Higgs search
channels as well as di↵erential measurements becoming
available, the complexity of a fit of the relevant dimension
six operators becomes immense.

It is the purpose of this work to provide these esti-
mates. Using the Gfitter [25–28] and Professor [29]

⇤Note, however, that current Higgs measurements still allow for
models with light degrees of freedom, see e.g. [6].

frameworks, we construct predictions of fully-di↵erential
cross sections, evaluated to the correct leading order ex-
pansion in the dimension six extension d� = d�SM +
d�{Oi}/⇤2. We derive constraints on the Wilson coe�-
cients in a fit of the dimension six operators relevant for
the Higgs sector, inputting a multitude of present as well
as projections of future LHC Higgs measurements.

This paper is outlined as follows. In Sec. II we intro-
duce our approach in more detail. In particular, we dis-
cuss the involved Higgs production and decay processes
and review our interpolation methods in the dimension
six operator space, as well as introduce the key elements
of our fit procedure.
In Sec. III we present our results. Firstly, in Sec. IIIA,

we compare our results to existing and related work of
run 1 data, and set the stage for the extrapolation to
14 TeV LHC centre-of-mass energy in Sec. III B, where
we give estimates of the sensitivity that can be expected
at the LHC for the operators that we consider in this
work. We give a discussion of our results and conclude
in Sec. V.
Throughout this work we will use the so-called

strongly-interacting light Higgs basis [9] adopting the
“bar notation” (this choice is not unique and can be re-
lated to other bases [30]), and constrain deviations from
the SM with leading order electroweak precision. A series
of publications have extended the dimension six frame-
work to next-to-leading order [31–38]. Including these
e↵ects is beyond the scope of this work.

II. FRAMEWORK AND ASSUMPTIONS

We perform a global fit within a well defined Higgs
boson EFT framework assuming SM gauge and global
symmetries and a SM field content. We focus on the
phenomenology of the Higgs boson that can be cast into
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narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 39])

LSILH =
c̄H
2v2
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2v2
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+
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(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 21, 40])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [21].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [41]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [42], which we have
cross checked and introduced in [43]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [44] that inter-

faces FeynArts, FormCalc, and LoopTools [45, 46]
using a model file output by FeynRules [47–49] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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of the Higgs sector by dimension six operators will provide the new phenomenological standard for
searches of non-resonant extensions of the Standard Model. Using all dominant and subdominant
Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant
dimension six operators in a global and correlated fit. We show in how far these constraints can be
improved by new Higgs channels becoming accessible at higher energy and luminosity, both through
inclusive cross sections as well as through highly sensitive di↵erential distributions. This allows
us to discuss the sensitivity to new e↵ects in the Higgs sector that can be reached at the LHC
if direct hints for physics beyond the SM remain elusive and the impact of these constraints on
well-motivated BSM scenarios.

I. INTRODUCTION

Since the Higgs boson’s discovery in 2012 [1, 2], ATLAS
and CMS have quickly established a picture of consis-
tency with the Standard Model (SM) expectation of the
Higgs sector [3, 4]. By now, a multitude of constraints
have been formulated across many dominant and sub-
dominant Higgs production modes [5]. All these mea-
surements, as well as the absence of a direct hint for
new physics from exotics searches, seem to suggest that
the scale of new physics is well separated from the elec-
troweak scale. This motivates⇤ the extension of the Higgs
sector by dimension six operators [7–11]

LHiggs = LSM
Higgs +

X

i

ci
⇤2

Oi (1)

to capture new interactions beyond the Standard Model
(BSM) in a model-independent way - within the generic
limitations of e↵ective field theories. Constraints on these
operators from a series of run 1 measurements have been
provided [12–24].

A question that arises at this stage in the LHC pro-
gramme is the ultimate extent to which we will be able to
probe the presence of such interactions. Or asked di↵er-
ently: what are realistic estimates of Wilson coe�cient
constraints that we can expect after run 2 or the high lu-
minosity phase if direct hints for new physics will remain
elusive? With a multitude of additional Higgs search
channels as well as di↵erential measurements becoming
available, the complexity of a fit of the relevant dimension
six operators becomes immense.

It is the purpose of this work to provide these esti-
mates. Using the Gfitter [25–28] and Professor [29]

⇤Note, however, that current Higgs measurements still allow for
models with light degrees of freedom, see e.g. [6].

frameworks, we construct predictions of fully-di↵erential
cross sections, evaluated to the correct leading order ex-
pansion in the dimension six extension d� = d�SM +
d�{Oi}/⇤2. We derive constraints on the Wilson coe�-
cients in a fit of the dimension six operators relevant for
the Higgs sector, inputting a multitude of present as well
as projections of future LHC Higgs measurements.

This paper is outlined as follows. In Sec. II we intro-
duce our approach in more detail. In particular, we dis-
cuss the involved Higgs production and decay processes
and review our interpolation methods in the dimension
six operator space, as well as introduce the key elements
of our fit procedure.
In Sec. III we present our results. Firstly, in Sec. IIIA,

we compare our results to existing and related work of
run 1 data, and set the stage for the extrapolation to
14 TeV LHC centre-of-mass energy in Sec. III B, where
we give estimates of the sensitivity that can be expected
at the LHC for the operators that we consider in this
work. We give a discussion of our results and conclude
in Sec. V.
Throughout this work we will use the so-called

strongly-interacting light Higgs basis [9] adopting the
“bar notation” (this choice is not unique and can be re-
lated to other bases [30]), and constrain deviations from
the SM with leading order electroweak precision. A series
of publications have extended the dimension six frame-
work to next-to-leading order [31–38]. Including these
e↵ects is beyond the scope of this work.

II. FRAMEWORK AND ASSUMPTIONS

We perform a global fit within a well defined Higgs
boson EFT framework assuming SM gauge and global
symmetries and a SM field content. We focus on the
phenomenology of the Higgs boson that can be cast into
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3

CKM matrix elements for convenience)

M = i
GF√
2

M2
W

ŝ−M2
W

(s̄aca)V −A(ūbdb)V −A

= −i
GF√
2
(s̄aca)V−A(ūbdb)V −A +O

(

ŝ

M2
W

)

, (3)

assuming a diagonal CKM matrix and (V − A) re-
ferring to the Lorentz structure γµ(1 − γ5) (we have
made the color indices a and b of the spinors explicit).
While the expansion using an effective operator Ô2 =
(ˆ̄saĉa)V −A(ˆ̄ubd̂b)V −A preserves the Lorentz structure of
the interaction, the kinematics due to the exchange of a
W boson is omitted, which is only valid if the partonic
centre of mass energy ŝ = (ps̄ + pc)2 ≪ M2

W .
It is worth noting that higher-order corrections can in-

crease the numbers of operators necessary to describe a
process. Including higher order corrections to the am-
plitude in Eq. (3), i.e. gluon exchange between different
quark legs, two linearly independent operators, indicat-
ing a different color flow, will contribute to the ampli-
tude. After performing a matching calculation between
the effective and full theory, we can express the ampli-
tude in leading-log approximation using effective opera-
tors as [17]

iM = C1⟨Ô1⟩+ C2⟨Ô2⟩ (4)

with renormalised‡ matrix elements ⟨Ôi⟩
√
2

GF
⟨Ô1⟩ =

(

1 + 2CF
αs

4π
log

µ2

ŝ

)

S1

+
αs

4π
log

µ2

ŝ
S1 − 3

αs

4π
log

µ2

ŝ
S2,

√
2

GF
⟨Ô2⟩ =

(

1 + 2CF
αs

4π
log

µ2

ŝ

)

S2

+
αs

4π
log

µ2

ŝ
S2 − 3

αs

4π
log

µ2

ŝ
S1, (5)

and

S1 = (s̄acb)V −A(ūbda)V−A ,

S2 = (s̄aca)V −A(ūbdb)V−A , (6)

where CF , CA are the casimirs of the fundamental and
adjoint representations respectively. The Wilson coeffi-
cients C1 and C2, as a result of the matching calculation,
are given by [17]

C1 = −3
αs

4π
log

M2
W

µ2

C2 = 1 +
αs

4π
log

M2
W

µ2
. (7)

‡For a discussion of the renormalisation scheme dependence of Wil-
son coefficients see [17].

As the operators in this process have mass dimension
6, the couplings have the form Ci⟨Ôi⟩/Λ2

NP ∼ g2i /M
2
W ,

i.e. they represent ratios between dimensionless cou-
plings and the validity scale of the effective theory. The
unphysical factorisation scale µ in Eqs. (5) and (7) con-
stitutes a formal separation between long and short dis-
tance physics, i.e. the matrix element ⟨Ôi⟩ and the Wil-
son coefficient Ci. It becomes obvious that, depending
on the ratio of the two scales ŝ and M2

W and the choice
of µ, large logarithms of the form αs(µ) log(M2

W /µ2) can
appear which degrade the reliability of the fixed-order
calculation.
To enhance the reliability of the perturbative series one

typically reverts to RG-improved calculations that par-
tially resum these logarithms to a given formal logarith-
mic and perturbative accuracy. This yields an improved
formulation of physics at energies significantly lower than
the new physics scale Λ = MW , for example the scale

√
ŝ

at which the measurement is performed.

As we perform a calculation in EFT with higher dimen-

sional bare interactions∼ C(0)
i Ôi(ˆ̄u(0)d̂(0) ˆ̄s(0)ĉ(0)) there is

an additional multiplicative renormalisation of the Wil-
son coefficients necessary to arrive at the above result;
just like all couplings of the renormalisable part of the
Lagrangian we can think of the Wilson coefficients as
coupling constants that can be renormalised in a straight-
forward fashion (we will discuss explicit examples fur-
ther below).§ This renormalisation implies the mentioned
RGE for the Wilson coefficients

dCi

d logµ
= γijCj , (8)

where the anomalous dimension matrix γij is typically
non-diagonal, hence leading to scale-dependent operator
mixing under the RG flow. The RGEs resum potentially
large logarithms that arise from evolving the operator
from where we define the EFT to the scale at which we
probe it. Thus, the evolution is entirely encoded in γij
and the Wilson coefficients at different scales

√
ŝ, follow-

ing from the solution of Eq. (8) is given to leading log
approximation by

Ci(
√
ŝ) ≃

(

δij + γij(
√
ŝ) log

√
ŝ

µ

)

Cj(µ) . (9)

The anomalous dimension is related to the multiplica-
tive (counter term) renormalisation of the bare couplings
C(0) = ZCC = (1 + δC)C.

γ = − lim
ε→0

d logZC

d logµ
(10)

§The anomalous dimension for e.g. the strong coupling gs is the β
function divided by gs due to a choice of conventions.
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FIG. 1: New Physics interpretation of constraint on new op-
erators C(ΛNP)⟨ÔNP⟩ ∼ (gNP/ΛNP)

2 (black line). The red
vertical line indicates the validity cut-off of the effective the-
ory. Only the parameter space captured the by green-shaded
area is constrained using the effective theory approach.

shaded area). A large part of the parameter space is not
constrained by the measurement (white-shaded area).
We note that our ignorance of physics at scales higher

than the kinematic LHC cut-off for a given integrated
luminosity needs to be strict in this picture. If we spec-
ify a model whose spectrum is resolved we can always
define an effective theory at scales lower than the low-
est new particle mass, but if this mass scale is resolved
by the LHC, the only theoretically correct way to con-
strain models is to include the full model dependence on
the propagating degrees of freedom. While the numer-
ical effects can be small depending on the model, their
full inclusion is well possible given the state-of-the-art of
current Monte Carlo event generators.

IV. DIJETS AND CONTACT INTERACTIONS
AT THE LHC

Let us come back to the contact interaction model in-
troduced in Sec. II. To make our discussion transparent,
we use these results for all contributing quark flavour-
changing partonic subprocesses (and neglect the factor
GF /

√
2 in the operator definitions). We define the new

physics scale and the resulting EFT at (i) ΛNP = 14 TeV,
outside the kinematic LHC coverage of the run 2 start-
up energy

√
s = 13 TeV and (ii) at the maximum energy

of a low statistics phase during run 2 following Sec. III
in a toy MC analysis. To take into account the opera-
tor mixing and to reflect the energy dependence of the
Wilson coefficients when probed at different centre-of-
mass energies

√
ŝ, we can solve the RGE resulting from

Eqs. (8) and (11) and evaluate the effective Lagrangian at
a specific energy scale on an event-by-event basis. Setting
the correct scale at which we evaluate {Ci(µ)} involves
some freedom, similar to choosing an appropriate scale,
at which we evaluate the running of αs in SM-like sim-
ulations of hadron collider processes. In this particular
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FIG. 2: Transverse momentum distribution of dijet events at
the LHC with

√
s = 13 TeV. We show the SM and two scenar-

ios including the effective operators of Sec. II. Scenario 1 (2)
refers to a choice of the Wilson coefficient of C1 = C2 = 10.
“fixed” refers to the non-RGE improved distributions and
“RGE” refers to distributions obtained by fixing the effective
Lagrangian at Λ = 14 TeV and using the RGEs to consis-
tently resum QCD effects to the measurement scale

√
ŝ. The

ratio panel gives the differential impact of including the RGE
running, displaying the ratio of “fixed” and “RGE”.

case we choose µ =
√
ŝ, which is also chosen to be the

relevant scale for parton densities and the running of the
strong coupling.
In Fig. 2 we display the differential impact of taking

into account the RGE-improved separation of ΛNP =
14 TeV from the scale at which the effective Lagrangian
is probed as a function of the jets’ transverse momentum
pT,j .¶

Generally the absolute effects dominated over the RGE
improved event simulation as becomes obvious from the
logarithmic plot in Fig. 2. The induced relative difference
turns out to be of order O(10%) in this particular exam-
ple. Depending on the size of the data sample and the
systematic uncertainty this could in principle be the level
at which the LHC will be able to probe jet distributions
at large luminosities during run 2.
Obviously, for our choice of ΛNP, the impact of RGE

¶These results have been obtained with a modified version of MadE-
vent/MadGraph v5 [22], inputting a Ufo [23] model file generated
with FeynRules [24]. We select jets in |ηj | ≤ 2.5 using the Monte
Carlo’s default settings. The toy model could be thought of in
terms of an already constrained very massive W ′ boson. We have
checked that an analogous Z′ model leads to similar results.

evolve

[Alam, Dawson, Szalapski `97] … [Grojean, Jenkins, Manohar, Trott `13] [Jenkins, Manohar, Trott `13] [Alonso et al. `13]

[CE, Spannowsky `14]
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• effects can be in the      10% range, not relevant at this stage�
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FIG. 3: Result of the limit setting analysis as detailed in the text. Excluded regions are indicated by boxes (not including RGE
running) and crosses (including the RGE evolution to a common scale set by the maximum scale probed in a toy Monte Carlo
analysis of a sample of L = 1/fb, ΛNP ≃ 8 TeV (a) and outside the run 2 energy coverage ΛNP = 14 TeV (b)). To allow for
direct a comparison we rescale the Wilson coefficients by [14 TeV/maxminv]2 for (a).

effects are not very large and will not account for the
dominant uncertainties on non-standard interactions at
the beginning of run 2 (see Refs. [25, 26] for a discus-
sion of systematic uncertainties of jet measurements at
the LHC). Given the 10% relative impact of a theoreti-
cally clean separation of new physics and measurement
scale as demonstrated in Fig. 2, we can turn the argu-
ment around to validate the practitioner’s approach of
setting limits on the presence of the new operators with-
out taking into account the running of RGEs, since their
numerical impact is not too large.

The latter point is demonstrated in Fig. 3. There we
show a scan of the jet pT distribution in a toy analysis
to set constraints for new physics effects. Neglecting in-
tricate and sophisticated experimental techniques to set
limits we consider a parameter point in the (C1, C2) as
constrained when a bin in the differential distribution
depart from the SM hypothesis by 3σ at L = 1/fb. We
thereby constrain the “fixed” distribution of Fig. 2 at
a certain scale µ; this yields the yellow box exclusion
contour as indicated in Fig. 3. The overlayed contour in-
dicated by the crosses shows how the former contour will
be modified if we solve the RGEs upon inputting the dif-
ferential measurement. While the overall modifications
can be quite significant, the relative shape between the
two choices of ΛNP is small. Since dijet production has
a large cross section we start to explore the tail of the
distribution very early on during run 2.

V. APPLICATIONS TO HIGGS
PHENOMENOLOGY

A. Impact of operator running: Higgs+jet searches

As a first application to Higgs physics and to get an
idea of the typical size of the RGE effects for Higgs phe-
nomenology, we discuss the impact of operator running
on Higgs+jet production [19, 20]. Higgs+jet production
is highly relevant for H → invisible [27] and the mea-
surement of Higgs couplings in the SM and beyond [20].
While the former scenarios involve new degrees of free-
dom at low energy scales, it can be expected that “gen-
uine” modifications of Higgs physics result from new dy-
namics at scales much higher than the electroweak scale.
In fact, if we interpret the Higgs boson as a pseudo
Nambu-Goldstone boson following [8], the new physics
scale can easily be pushed to the multi-TeV regime or
even beyond the kinematic LHC coverage if we admit
some degree of fine-tuning. Strong interactions-induced
deviations from the SM Higgs phenomenology will be as-
sociated with new resonant phenomena at the compos-
iteness scale in these scenarios. In the following we will
again assume that those states are outside the direct sen-
sitivity range of the LHC by defining ΛNP = 14 TeV.
The pp → H + jet cross section receives modifications

from a modified Yukawa and effective ggH sector [19, 20].
To keep our discussion transparent at this stage we only
focus on the latter operator in the following (i.e. we
choose like Yukawa interaction mt = ytv/

√
2); to lead-

ing logarithmic approximation the two effective operator
contributions are decoupled and the effective ggH sector

ÔG =
g2s

2Λ2
NP

Ĥ†ĤĜa
µνĜ

aµν (12)

gives rise to a form-invariant class of new interactions un-

• evolution from renormalization group equations 

• consistent interpretation requires communication of resolved scales
[Isidori, Trott `13] [CE, Spannowsky `14]

[Alam, Dawson, Szalapski `97] … [Grojean, Jenkins, Manohar, Trott `13] [Jenkins, Manohar, Trott `13] [Alonso et al. `13]

kinematic endpoint outside run II coverage
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• current status (plethora of run 1 analyses included, narrow width) 5

gc
0.1− 0.05− 0 0.05 0.1

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

Hc
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

u3c
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

Wc
10− 8− 6− 4− 2− 0 2 4 6 8 10

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

HWc
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

γc
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

HBc
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

d3c
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

FIG. 2: Confronting the Lagrangian Eq. (3) with the 8 TeV LHC run 1 measurements. Solid lines correspond to a fit with
theoretical uncertainties included, dashed lines show results without theoretical uncertainties, the band shows the impact of
these. Grey lines and bands denote the individual constraints on a given parameter, and blue refers to the marginalised results.
For details see the main text.
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FIG. 2: Confronting the Lagrangian Eq. (3) with the 8 TeV LHC run 1 measurements. Solid lines correspond to a fit with
theoretical uncertainties included, dashed lines show results without theoretical uncertainties, the band shows the impact of
these. Grey lines and bands denote the individual constraints on a given parameter, and blue refers to the marginalised results.
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• good agreement with fits by 
ATLAS and other theory 
groups

• not terribly sensitive at this 
stage, coupling deviations of 
order 10% allowed 

• systematic uncertainties not too 
limiting anymore more on that later

marginalised 

individual
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narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 44, 45])

LSILH =
c̄H
2v2

@µ
�
H†H

�
@µ

�
H†H

�
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄6�

v2
�
H†H

�3

+
⇣ c̄u,iyu,i

v2
H†Hū(i)

L Hcu(i)
R + h.c.

⌘
+
⇣ c̄d,iyd,i

v2
H†Hd̄(i)L Hd(i)R + h.c.

⌘

+
ic̄W g

2m2
W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄Bg0

2m2
W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2
W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HBg0

m2
W

(DµH)†(D⌫H)Bµ⌫

+
c̄�g0

2

m2
W

H†HBµ⌫B
µ⌫ +

c̄gg2S
m2

W

H†HGa
µ⌫G

aµ⌫ .

(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 22, 46])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [22, 47].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [48]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [49], which we have
cross checked and introduced in [50]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [51] that inter-

faces FeynArts, FormCalc, and LoopTools [52, 53]
using a model file output by FeynRules [54–56] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 44, 45])
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(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 22, 46])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [22, 47].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [48]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [49], which we have
cross checked and introduced in [50]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [51] that inter-

faces FeynArts, FormCalc, and LoopTools [52, 53]
using a model file output by FeynRules [54–56] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.

theoretical &  
experimental  
uncertainty
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• extrapolation to 300/fb, 3/ab based on signal strength measurements
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2

narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 44, 45])

LSILH =
c̄H
2v2

@µ
�
H†H

�
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�
H†H

�
+
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2v2
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H† !DµH
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+
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v2
H†Hū(i)

L Hcu(i)
R + h.c.

⌘
+
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v2
H†Hd̄(i)L Hd(i)R + h.c.
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+
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⌘
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(DµH)†�i(D⌫H)W i
µ⌫ +
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m2
W

(DµH)†(D⌫H)Bµ⌫

+
c̄�g0

2

m2
W

H†HBµ⌫B
µ⌫ +

c̄gg2S
m2

W

H†HGa
µ⌫G

aµ⌫ .

(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 22, 46])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [22, 47].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [48]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [49], which we have
cross checked and introduced in [50]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [51] that inter-

faces FeynArts, FormCalc, and LoopTools [52, 53]
using a model file output by FeynRules [54–56] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay
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parts in the following.
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In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 22, 46])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [22, 47].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [48]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [49], which we have
cross checked and introduced in [50]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [51] that inter-

faces FeynArts, FormCalc, and LoopTools [52, 53]
using a model file output by FeynRules [54–56] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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H†Hū(i)

L Hcu(i)
R + h.c.

⌘
+
⇣ c̄d,iyd,i

v2
H†Hd̄(i)L Hd(i)R + h.c.

⌘

+
ic̄W g

2m2
W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄Bg0

2m2
W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2
W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HBg0

m2
W

(DµH)†(D⌫H)Bµ⌫

+
c̄�g0

2

m2
W

H†HBµ⌫B
µ⌫ +

c̄gg2S
m2

W

H†HGa
µ⌫G

aµ⌫ .

(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 22, 46])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [22, 47].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [48]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [49], which we have
cross checked and introduced in [50]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [51] that inter-

faces FeynArts, FormCalc, and LoopTools [52, 53]
using a model file output by FeynRules [54–56] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.



56

• …switch on differential distributions: unfolded Higgs pT
8

gc
0.1− 0.05− 0 0.05 0.1

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

Hc
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

u3c
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

Wc
10− 8− 6− 4− 2− 0 2 4 6 8 10

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

HWc
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

γc
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

HBc
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

d3c
50− 40− 30− 20− 10− 0 10 20 30 40 50

3−10×

2 χ
∆

0
1
2
3
4
5
6
7
8
9
10

σ1

σ2

σ3

FIG. 4: Confronting the Lagrangian Eq. (3) with the 14 TeV LHC run 2 measurements with L = 300 (green) and 3000 fb�1

(orange). We include the full pT,H distribution and the signal strength measurement for pp ! H production in the limit setting
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narrow width approximation calculations,

�(pp! H ! X) = �(pp! H)BR(H ! X) . (2)

Therefore, we can divide the simulation of the underlying
dimension six phenomenology into production and decay

of the Higgs boson. We discuss our approach to these
parts in the following.

We consider the set of operators known as the strongly-
interacting light Higgs basis in bar convention (for details
see Refs. [9, 11, 44, 45])
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H†Hū(i)

L Hcu(i)
R + h.c.

⌘
+
⇣ c̄d,iyd,i

v2
H†Hd̄(i)L Hd(i)R + h.c.

⌘

+
ic̄W g

2m2
W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄Bg0

2m2
W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2
W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HBg0

m2
W

(DµH)†(D⌫H)Bµ⌫

+
c̄�g0

2

m2
W

H†HBµ⌫B
µ⌫ +

c̄gg2S
m2

W

H†HGa
µ⌫G

aµ⌫ .

(3)

In particular we assume flavour-diagonal dimension six
e↵ects and in order to directly reflect the oblique cor-
rection subset of LEP measurements of S, T we decrease
the number of degrees of freedom in the fit by identifying
(see also [9, 11, 22, 46])

c̄T = 0 , c̄W + c̄B = 0 . (4)

We do not include anomalous triple gauge vertices to our
fit [22, 47].

A. Higgs Production and Decay

We rely on eHdecay to include the correct Higgs
branching ratios in the dimension six extended Standard
Model [48]. We sample a broad range of dimension six
parameter choices and interpolate them using the Pro-
fessor method detailed in the appendix A. This also
allows us to identify already at this stage a “meaningful”
Wilson coe�cient range with a positive-definite Higgs de-
cay phenomenology.

We find an excellent interpolation of the eHdecay out-
put (independent of the interpolated sample’s size and
choice) and we typically obtain per mille-level accuracy
of the Higgs partial decay widths and branching ratios,
which is precise enough for the limits we can set. Inter-
polation using Professor is key to performing the fit in
the high dimensional space of operators and observables
in a very fast and accurate way.

For the production we rely on an implementation of
dimension six operators analogous to [49], which we have
cross checked and introduced in [50]. The Monte-Carlo
integration of the Higgs production processes is per-
formed with a modified version ofVbfnlo [51] that inter-

faces FeynArts, FormCalc, and LoopTools [52, 53]
using a model file output by FeynRules [54–56] and we
only consider “genuine” dimension six e↵ects that arise
from the interference of the dimension six amplitude with
the SM. Writing

M = MSM +Md=6 , (5)

we obtain a squared matrix element of the form

|M|2 = |MSM|2 + 2Re{MSMM⇤
d=6}+O(1/⇤4) , (6)

and we consistently neglect the dimension eight contribu-
tions that arise from squaring the dimension six e↵ects.
Similar to higher order electroweak or QCD calculations,
the di↵erential cross sections are not necessarily positive
definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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definite in this expansion, but negative bin entries pro-
vide a means to judge the validity of the Wilson coe�-
cient and the dimension six approach in general.
For parameter choices close to the SM, including

|Md=6|2 is typically not an issue and the parameters c2i
are often numerically negligible for inclusive observables
such as signal strengths. However, to obtain an inclusive
measurement, we marginalise over a broad range of ener-
gies at the LHC and a positive theoretical cross section
might be misleading as momentum dependencies of some
dimension six operators violate a naive scaling c2i < ci in
the tails of momentum-dependent distributions. For this
reason, we choose to calculate cross sections to the exact
order ⇠ 1/⇤2 and later reject Wilson coe�cient choices
that lead to a negative di↵erential cross section for in-
tegrated bins of a given LHC setting when this part of
the phase space is resolved; such negative cross sections
signal bigger contributions of the d = 6 terms than we
expect in the SM, and we cannot justify limiting our anal-
ysis to dimension six operators if new physics becomes as
important as the SM in observable phase space regions.
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• distributions over-constrain the system! 11
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FIG. 7: Marginalised 95% confidence level constraints for the dimension-six operator coe�cients for current data (blue),
the LHC at 14 TeV with an integrated luminosity of 300 fb�1 (green) and 3000 fb�1 (orange). The expected constraints are
centered around zero by construction, since the pseudo-data are generated by using the SM hypothesis. The left panel shows
the constraints obtained using signal strength measurements only, and on the right di↵erential pT,H measurements are included.
The inner error bar depicts the experimental uncertainty, the outer error bar shows the total uncertainty.

where ht ⌘ yts� , Xt ⌘ At � µ cot� and mQ̃ and mt̃R
denote the soft masses of the left and right-handed stops
respectively. To ensure the validity of our EFT approach
based on di↵erential distributions, we have to make the
strong assumption that all supersymmetric particles are
heavier than the momentum transfer probed in all pro-
cesses that are involved in of our fit [37, 106] (see also
[43, 107] for discussions of (non-)resonant signatures in
BSM scenarios and EFT). For convenience, we addition-
ally assume that all supersymmetric particles except the
lightest stop t̃1 are very heavy and decouple from cg.
The largest value for pT,H we expect to probe during the
LHC high-luminosity runs, based on our leading-order
theory predictions is 500 GeV. And we can therefore
trust the e↵ective field theory approach for mt̃1 > 600
GeV. For instance, fixing the soft masses mQ̃ = mt̃ = m,
µ = 200 GeV and tan� = 30 we can understand the con-
straints on cg as constraints in the At �m plane, Fig. 6.
Similar interpretations are, of course, possible with the
other Wilson coe�cients.

V. DISCUSSION, CONCLUSIONS AND
OUTLOOK

Even though current measurements as performed by
ATLAS and CMS show good agreement with the SM
hypothesis for the small statistics collected during LHC
run 1, the recently discovered Higgs boson remains one of
the best candidates that could be a harbinger of physics
beyond the SM. If new physics is heavy enough, modi-
fications to the Higgs boson’s phenomenology from inte-
grating out heavy states can be expressed using e↵ective
field theory methods.

In this paper we have constructed a scalable fitting
framework, based on adapted versions of Gfitter, Pro-
fessor, Vbfnlo, and eHdecay and have used an abun-
dant list of available single-Higgs LHC measurements to
constrain new physics in the Higgs sector for the results
of run 1. In these fits we have adopted the leading order
strongly-interacting light Higgs basis assuming vanishing
tree-level T and S parameters and flavour universality of
the new physics sector. Our results represent the latest
incarnation of fits at 8 TeV, and update results from the
existing literature. The main goal of this work, however,
is to provide an estimate of how these constraints will

signal strength

distribution pT,H

depends on 
improved 

systematics!
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• operators

• consider CP even operators 
• neglect operators with chiral suppression for the interference with SM 
• top pair production, single top production, top pair + Z production 

decay observables 

• include differential distributions where reported

expressed in the so-called ‘Warsaw basis’ of Ref. [48]†

O(1)

qq = (q̄�µq)(q̄�
µq) OuW = (q̄�µ⌫⌧ Iu)�̃W I

µ⌫ O(3)

�q = i(�† !D I
µ�)(q̄�µ⌧ Iq)

O(3)

qq = (q̄�µ⌧
Iq)(q̄�µ⌧ Iq) OuG = (q̄�µ⌫TAu)�̃GA

µ⌫ O(1)

�q = i(�† !D µ�)(q̄�µq)

Ouu = (ū�µu)(ū�µu) OG = fABCGA⌫
µ GB�

⌫ GCµ
� OuB = (q̄�µ⌫u)�̃Bµ⌫

O(8)

qu = (q̄�µT
Aq)(ū�µTAu) O

˜G = fABCG̃A⌫
µ GB�

⌫ GCµ
� O�u = (�†i

 !
D µ�)(ū�µu)

O(8)

qd = (q̄�µT
Aq)(d̄�µTAd) O�G = (�†�)GA

µ⌫G
Aµ⌫ O� ˜G = (�†�)G̃A

µ⌫G
Aµ⌫

O(8)

ud = (ū�µT
Au)(d̄�µTAd) . (3)

It should be noted that the operators OuW , OuG and OuB are not hermitian and so may

have complex coe�cients, which, along with O
˜G and O� ˜G lead to CP-violating e↵ects.

These do not contribute to Standard Model spin-averaged cross-sections, though they are

in principle sensitive to polarimetric observables such as spin correlations, and should

therefore be treated as independent operators. However, measurements that would be

sensitive have been extracted by making model-specific assumptions that preclude their

usage in our global fit, e.g. ...... We will discuss this issue in more detail in the next

section. With these caveats, a total of 14 constrainable CP-even dimension-six operators

model top quark production and decay at leading order in the SMEFT.

3 Methodology

3.1 Experimental inputs

The experimental measurements used [55–92] in the fit are included in Table 1. All these

measurements are quoted in terms of ‘parton-level’ quantities; that is, top quarks and

their direct decay products. This is advantageous for speed, since parton-level theory

predictions can be directly compared to data this way, without the need for a full analysis

chain reaching from parton level over shower and hadronization all the way to including

detector e↵ects at each point in the parameter space. However, there is the downside that

the unfolding procedure introduces additional systematic uncertainties. AB: MC speed

here is a bit of a red herring, since we then go on to paramaterise the obs and

the way that they were made does not factor anymore. Also, showering will

(annoyingly) introduce further theory uncertainties, although hopefully ones

with only small e↵ect.

The importance of including kinematic distributions is manifest here. For top pair

production, for instance, we have a total of 100 measurements, 85 of which come from

di↵erential observables. This size of fit is unprecedented in top physics, which underlines

the need for a systematic fitting approach, as provided by Professor. Indeed top pair

†Given the simplicity of how it captures modifications to SM fermion couplings, this basis is well-suited
to top EFT. For basis choices of interest in Higgs physics, see e.g. Refs. [49–53], and Ref. [54] for a tool
for translating between them.
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Dataset
p

s (TeV) Measurements arXiv ref. Dataset
p

s (TeV) Measurements Ref.

Top pair production

Total cross-sections: Di↵erential cross-sections:

ATLAS 7 lepton+jets 1406.5375 ATLAS 7 pT (t), Mt¯t, |yt¯t| 1407.0371

ATLAS 7 dilepton 1202.4892 CDF 1.96 Mt¯t 0903.2850

ATLAS 7 lepton+tau 1205.3067 CMS 7 pT (t), Mt¯t, yt, yt¯t 1211.2220

ATLAS 7 lepton w/o b jets 1201.1889 CMS 8 pT (t), Mt¯t, yt, yt¯t 1505.04480

ATLAS 7 lepton w/ b jets 1406.5375 D/0 1.96 Mt¯t, pT (t), |yt| 1401.5785

ATLAS 7 tau+jets 1211.7205

ATLAS 7 tt̄, Z�, WW 1407.0573 Charge asymmetries:

ATLAS 8 dilepton 1202.4892 ATLAS 7 A
C

(inclusive+Mt¯t, yt¯t) 1311.6742

CMS 7 all hadronic 1302.0508 CMS 7 A
C

(inclusive+Mt¯t, yt¯t) 1402.3803

CMS 7 dilepton 1208.2761 CDF 1.96 AFB (inclusive+Mt¯t, yt¯t) 1211.1003

CMS 7 lepton+jets 1212.6682 D/0 1.96 AFB (inclusive+Mt¯t, yt¯t) 1405.0421

CMS 7 lepton+tau 1203.6810

CMS 7 tau+jets 1301.5755 Top widths:

CMS 8 dilepton 1312.7582 D/0 1.96 �
top

1308.4050

CDF + D/0 1.96 Combined world average 1309.7570 CDF 1.96 �
top

1201.4156

Single top production W -boson helicity fractions:

ATLAS 7 t-channel (di↵erential) 1406.7844 ATLAS 7 1205.2484

CDF 1.96 s-channel (total) 1402.0484 CDF 1.96 1211.4523

CMS 7 t-channel (total) 1406.7844 CMS 1.96 1308.3879

CMS 8 t-channel (total) 1406.7844 D/0 1.96 1011.6549

D/0 1.96 s-channel (total) 0907.4259

D/0 1.96 t-channel (total) 1105.2788

Associated production Run II data

ATLAS 7 tt̄� 1502.00586 CMS 13 tt̄ (dilepton) 1510.05302

ATLAS 8 tt̄Z 1509.05276

CMS 8 tt̄Z 1406.7830

Table 1: The measurements entering our fit. Details of each are described in the text.

The importance of including kinematic distributions is manifest here. For top pair

production, for instance, we have a total of 100 measurements, 85 of which come from

di↵erential observables. This size of fit is unprecedented in top physics, which underlines

the need for a systematic fitting approach, as provided by Professor. Indeed top pair

production cross-sections make of the bulk of measurements that are used in the fit. Single

top production cross-sections comprise the next dominant contribution to the fit. We

also make use of data from charge asymmetries in top pair production, as well as inclusive

measurements of top pair production in association with a photon or a Z (tt̄� and tt̄Z) and

observables relating to top quark decay. We take each of these categories of measurement

in turn, discussing which operators are relevant and the constraints obtained on them from

data.

3.2 Treatment of uncertainties

The uncertainties entering our fit can be classed into three categories:

Experimental uncertainties: We generally have no control over these. In cases where

statistical and systematic (and luminosity) errors are recorded separately, we add them in

5
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60Figure 3: 68%, 95% and 99% confidence intervals for selected combinations of operators

contributing to top pair production, with all remaining operators marginalised over. The

star marks the best fit point, indicating good agreement with the Standard Model.

Tevatron, as illustrated in Figure 4. It is interesting to see that although Tevatron data

are naively more sensitive to four-quark operators, after the LHC run 1 and early into run

2, the LHC data size and probed energy transfers lead to comparably stronger constraints.

In our fit this is highlighted by the simple fact that LHC data comprise more than 80% of

the bins in our fit, so have a much larger pull. This stresses the importance of collecting

large statistics as well as using sensitive discriminating observables.

4.2 Single top production

The next most abundant source of top quark data is from single top production. In our

fit we consider production in the t and s channels, and omit Wt-associated production.

Though measurements of the latter process have been published, they are not suitable for

inclusion in a fit involving parton level theory predictions. As is well-known, Wt production

interferes with top pair production at NLO and beyond (in a five-flavour scheme [115–117]),

or at LO in a four-flavour one. Its separation from top pair production is then a delicate

issue, discussed in detail in Refs. [118–121]. We thus choose to postpone the inclusion of

Wt production to a future study, going beyond parton level. The operators that could lead

10

best fit point
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Figure 6: 95% confidence intervals for the dimension-six operators that we consider here,

with all remaining operators set to zero (red) and marginalised over (blue). In cases where

there are constraints on the same operator from di↵erent classes of measurement, the

strongest limits are shown here. The lack of marginalised constraints for the final three

operators is discussed in the next section.

for instance, contains the 6 top pair operators in 8, plus the following

LD6

� CuW

⇤2

(q̄�µ⌫⌧ Iu) '̃ W I
µ⌫ +

CuB

⇤2

(q̄�µ⌫u) '̃ Bµ⌫ +
C(3)

'q

⇤2

i('† !D I
µ')(q̄�µ⌧ Iq)

+
C(1)

'q

⇤2

i('† !D µ')(q̄�µq) +
C'u

⇤2

('†i
 !
D µ')(ū�µu) .

(13)

There is overlap between this operator set and those relevant for single top production,

so it is interesting to see the complementarity of constraints from each. Unfortunately there

is currently insu�cient data to set simultaneous limits on these operators in a global fit.

There are only two cross-section measurements available for this process, and 11 Wilson

coe�cients to fit them, i.e. the system is under-constrained. The best that can be done is

to set limits on each of these individually i.e. without marginalising over other operators.

The bottom line constraints on all the operators considered so far are displayed in Figure 6.

14

tt̄Z

�

axigluons
M � 1.6 TeV

W’
M � 1.5 TeV

top EFT still has a 
long way to go

[Buckley , CE, Ferrando, Miller, Moore, Russell, White `15]


