

Christoph Englert

Compositeness, LHC and lattice

The Fate Of Naturalness

Brussels, 12.06.2016

based on [CE, Harris, Spannowsky, Takeuchi `15] [Del Debbio, CE, Zwicky `17]

The perturbative Standard Model

Compositeness = Naturalness?

- Higgs mass is the order parameter of the electroweak series convergence
- perturbativity (= unitarity, Higgs width, reliability of oblique corrections, etc) **tightly bound** to the Higgs mass parameter

- Higgs mass is the order parameter of the electroweak series convergence
- perturbativity (= unitarity, Higgs width, reliability of oblique corrections, etc) **tightly bound** to the Higgs mass parameter
- Higgs discovery seems to fall into this perturbative QFT paradigm but nothing's guaranteed at this stage in the LHC programme

- Higgs mass is the order parameter of the electroweak series convergence
- perturbativity (= unitarity, Higgs width, reliability of oblique corrections, etc) **tightly bound** to the Higgs mass parameter
- Higgs discovery seems to fall into this perturbative QFT paradigm but nothing's guaranteed at this stage in the LHC programme
- What do we know about the composite option?
- Is it enough to motivate complicated lattice investigations?
- Is the LHC fit for the future?

• interpret the electroweak scale as a radiative phenomenon, analogous to the pion mass splitting

• interpret the electroweak scale as a radiative phenomenon, analogous to the pion mass splitting

 interpret the electroweak scale as a radiative phenomenon, analogous to the pion mass splitting
 e.g. [Contino `10]

• not straightforward to this adapt to the Higgs case

e.g. [Contino `10]

trigger ELW symmetry breaking not just CW masses

respect global symmetries in the Higgs sector LEP precision measurements

e.g. [Contino, da Rold, Pomarol `07] [Agashe, Contino, Pomarol `06]

• not straightforward to this adapt to the Higgs case

e.g. [Contino `10]

fermions

trigger ELW symmetry breaking not just CW masses

respect global symmetries in the Higgs sector

LEP precision measurements

e.g. [Contino, da Rold, Pomarol `07] [Agashe, Contino, Pomarol `06]

vacuum mis-alignement from SU(2)_L x U(1)_Y direction requires the presence of heavy fermions
 gauge +

[Coleman, Weinberg `73]...

$$\hat{V}(\hat{h}) = \alpha \cos(2\hat{h}) - \beta \sin^2(2\hat{h})$$

fermions

A concrete model of compositeness

- gauge boson masses through symmetry choices [Agashe, Contino, Pomarol `06]
- fermion masses through mixing with baryonic matter (part. compositeness) [Kaplan `91]..... [Ferretti `16] [Sannino, Strumia, Vigiani `16]
- minimal pheno model $SO(5) \rightarrow SO(4) \simeq SU(2)_L \ge SU(2)_R$
- fermions (and hypercolour baryons) in a 5 of SO(5)

A concrete model of compositeness

- gauge boson masses through symmetry choices [Agashe, Contino, Pomarol `06]
- fermion masses through mixing with baryonic matter (part. compositeness) [Kaplan `91]..... [Ferretti `16] [Sannino, Strumia, Vigiani `16]
- minimal pheno model $SO(5) \rightarrow SO(4) \simeq SU(2)_L \ge SU(2)_R$
- fermions (and hypercolour baryons) in a 5 of SO(5)

so far no UV completion known for this!

- gauge boson masses through symmetry choices
- fermion masses through mixing with baryonic matter (part. compositeness)
- minimal pheno model $SO(5) \rightarrow SO(4) \simeq SU(2)_L \ge SU(2)_R$
- fermions (and hypercolour baryons) in a 5 of SO(5)

so far no UV completion known for this!

• but

$$\underbrace{SU(4)}_{G_{\rm HC}} \times \underbrace{SU(5) \times SU(3) \times SU(3)' \times U(1)_X \times U(1)'}_{G_F}$$
[Ferretti `14]

could work with

$$G_F/H_F = \frac{SU(5)}{SO(5)} \times \frac{SU(3) \times SU(3)'}{SU(3)} \times U(1)'$$

A concrete model of compositeness

• model predicts a number of exotics phenomenological implications

• perform a scan over the parameter space inputting available ATLAS and CMS measurements to constrain and motivate LEC measurements from the lattice.

[Del Debbio, CE, Zwicky `17]

$$\begin{aligned} & \text{Low Energy Constants} \\ & \text{in units of } f \\ \hat{V}(\hat{h}) &= \alpha \cos(2\hat{h}) - \beta \sin^2(2\hat{h}) \\ & \text{SU(2)} \\ & \text{SU(2)} \\ & \text{correlator} \end{aligned} \qquad \begin{aligned} & \alpha &= -\hat{C}_{\text{LR}} \frac{1}{2} \left(3g^2 + g'^2 \right) < 0, \\ & 2\beta &= -y^2 \hat{C}_{\text{top}} + \dots \\ & \beta &= -y^2 \hat{C}_{\text{top}} + \dots \\ & \text{sce also [Golterman, Shamir `15]} \end{aligned} \qquad \begin{aligned} & \alpha &= -\hat{C}_{\text{LR}} \frac{1}{2} \left(3g^2 + g'^2 \right) < 0, \\ & \beta &= -y^2 \hat{C}_{\text{top}} + \dots \\ & \beta &= -y^2 \hat{C}_{\text{t$$

$$\hat{V}(\hat{h}) = \alpha \cos(2\hat{h}) - \beta \sin^{2}(2\hat{h})$$

$$\hat{V}(\hat{h}) = \alpha \cos(2\hat{h}) - \beta \sin^{2}(2\hat{h})$$

$$\hat{V}(\hat{h}) = 4\beta(\sin^{2}(\hat{h}) - \xi)^{2},$$

$$\hat{V}(\hat{h}) = \frac{1}{2}\beta(-\xi)^{2},$$

$$\hat{V}(\hat{h}) = \frac{$$

 $\hat{m}_{h}^{2} = \hat{V}''(\langle \hat{h} \rangle) = 32\beta\xi(1-\xi) = 8\beta - 2\alpha^{2}/\beta$

 $\frac{m_h^2}{v^2} = 32\beta(1-\xi) = 8(2\beta - \alpha) \simeq 0.258$ (ass. 20% radiative corrections)

triplet Higgs masses

$$V = \hat{C}_{\rm LR} \left(3g^2 + g'^2 \right) (2H^{\dagger}H + \frac{16}{3}\phi_+^{\dagger}\phi_+) + 8g^2\phi_0\phi_0 \right) + 8\hat{F}_{\rm LL}\phi_+^{\dagger}\phi_+$$

can expect small EWPD corrections compared to standard MCHM5 scenario

A concrete model of compositeness

• model predicts a number of exotics phenomenological implications

• top partner constraints

[Matsedonskyi, Panico, Wulzer `15]

- compatibility with exotics searches
- compatibility with Higgs signal strength measurements

[Del Debbio, CE, Zwicky in prep.]

results at a glance

- no constraints from charged Higgs searches
- doubly charged Higgs bosons produced via Drell Yan might be accessible at the LHC [CE, Schichtel, Spannowsky `16]

[Del Debbio, CE, Zwicky in prep.]

results at a glance

- no constraints from charge Higgs searches
- doubly charged Higgs bosons produced via Drell Yan might be accessible at the LHC in the future [CE, Schichtel, Spannowsky`16]
- Higgs signal strength no news here either

18.

[Del Debbio, CE, Zwicky in prep.]

results at a glance

 searches for extra scalar / pseudoscalar Higgs bosons with couplings to top quarks

• extra scalars with net bottom coupling avoid experimental detection

lots of parameter space available = let lattice do their thing

Top partner predictions

[CE, Kogler, Schulz, Spannowsky `15]

Higgs couplings 3/ab

• distributions over-constrain the system!

Implications for new physics

$$\overline{c}_g \sim \frac{m_W^2}{16\pi^2 f^2} \frac{y_t^2}{g_\rho^2}$$

 $\Lambda > 2.8 \, \text{TeV}$

resonances outside Higgs kinematic coverage, can be trusted

MSSM

Implications for new physics: Compositeness

- ► deviations from the SM Higgs couplings pattern unavoidable in PC SO(5)/SO(4) + extra states
- UV complete picture should lend good UV properties off-resonance
 - $\varepsilon_L^\mu = k^\mu / m_W + \mathcal{O}(m_W / E)$

O(10%) deviation from SM

Implications for new physics: Compositeness

- BUT....
- longitudinal polarisations contribute mass suppressed in golden channels!

• VV amplitude growth highly suppressed, excess in cross section due to lack of absorptive contribution above the the Higgs mass

physics: Compositeness

$$\Gamma_n(\xi_1, \dots, \xi_n) = \frac{\delta^n \Gamma[J]}{i^n \, \delta J(\xi_1) \cdots J(\xi_n)}$$

$$\widetilde{\Gamma}[J] = \sum_n \frac{i^n}{n!} \int \cdots \int d^4 x_1 \cdots dx_n \, \widetilde{\Gamma}_n(x_1, \dots, x_n) \times J(x_1) \cdots J(x_n) \, .$$

unitarity restored in general background geometries

 resonances take over the job in scenarios admitting canonical particle interpretations as a limit

Implications for new physics: Compositeness

W

W

Implications for new physics: Compositeness

[[]CE, Harris, Spannowsky, Takeuchi `15]

fermiophobic = WBF
 [CE, Harris,Spannowsky, Takeuchi `15]

 fermiophilic = Drell-Yan
 [Pappadopulo, et al. `14]

- LHC run 2 will zero in on those states
- realistic spectra require lattice input

► Is PNGBism still natural?

Maybe yes, maybe no – only a first principle calculation can tell (need to go beyond χ PT).

Is PNGBism still natural?

Maybe yes, maybe no – only a first principle calculation can tell (need to go beyond χ PT).

Can the LHC provide hints?

Yes, within the kinematic coverage of the machine.

Is PNGBism still natural?

Maybe yes, maybe no – only a first principle calculation can tell (need to go beyond χ PT).

Can the LHC provide hints?

Yes, within the kinematic coverage of the machine.

Can the lattice provide hints? Most definitely yes, but this will take time.

Yang-Mills theories had to be right!

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How is this possible in perturbative Yang-Mills?

Yang-Mills theories had to be right!

`t Hooft, "Under the Spell of the Gauge Principle"

"spontaneous" symmetry breaking

Ws and Zs in 1983 at UA1/UA2 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

➡ <u>unique</u> answer to this in 1964

How is this possible in perturbative Yang-Mills?

> [Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]

- non-linear realisation of gauge symmetry in a Yang Mills+scalar sector is compatible with $\langle H \rangle \neq 0$
- massive gauge bosons, but no ghost problems at small distances
 order-by-order renormalizability and probability conservation

Yang-Mills theories had to be right!

• perturbative probability conservation in scattering processes potentially problematic for large momenta:

after July 4th 2012

SM seemingly complete after July 4th 2012 and evidence for $J^{CP}=0^+$ and couplings to (longitudinal) massive gauge bosons

Higgs properties sui generis:

particle relates to unitarity conservation and seems to be an excitation of an isotropic and translationally invariant background field

The Standard Model: taking stock

The Standard Model: hierarchies

- this is regularisation scheme dependent
- hence, no straightforward interpretation
- however, no argument why we should have

 $v(M_{\text{Planck}}) \ll M_{\text{Planck}}$

In this talk

Higgs boson coupling measurements

generic approaches to Higgs couplings and interpretation

based on **direct** measurements

► status of the top quark sector after the first LHC measurements

Example of new physics: a UV-complete composite Higgs model

In this talk

Higgs boson coupling measurements

differential distributions!

generic approaches to Higgs couplings and interpretation.

based on **direct** measurements

► status of the top quark sector after the first LHC measurements

Example of new physics: a UV-complete composite Higgs model

Status of LHC Higgs measurements

everything is consistent with the SM Higgs hypothesis (so far) but what are the implications for new physics?

Fingerprinting the lack of new physics

but no evidence for exotics!

coupling/scale separated BSM physics

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$

[Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

the SM is flawed!

59 B-conserving operators \otimes flavor \otimes h.c., d=6 2499 parameters (reduces to 76 with N_f=1)

concrete models

- (N)MSSM
- Higgs portals
- compositeness

SILH Higgs phenomenology

$$\mathcal{L}_{SILH} = \frac{\tilde{c}_{H}}{2v^{2}} \partial^{\mu} (H^{\dagger}H) \partial_{\mu} (H^{\dagger}H) + \frac{\tilde{c}_{T}}{2v^{2}} (H^{\dagger}\overrightarrow{D^{h}}H) (H^{\dagger}\overrightarrow{D}_{\mu}H) - \frac{\tilde{c}_{6}\lambda}{v^{2}} (H^{\dagger}H)^{3} \\ + \left(\frac{\tilde{c}_{u,i}y_{u,i}}{v^{2}}H^{\dagger}H\bar{u}_{L}^{(i)}H^{c}u_{R}^{(i)} + h.c.\right) + \left(\frac{\tilde{c}_{d,i}y_{d,i}}{v^{2}}H^{\dagger}H\bar{d}_{L}^{(i)}Hd_{R}^{(i)} + h.c.\right) \\ + \frac{i\tilde{c}_{W}g}{2m_{W}^{2}} (H^{\dagger}\sigma^{i}\overrightarrow{D^{h}}H) (D^{\nu}W_{\mu\nu})^{i} + \frac{i\tilde{c}_{R}g'}{2m_{W}^{2}} (H^{\dagger}\overrightarrow{D^{h}}H) (\partial^{\nu}B_{\mu\nu}) \\ + \frac{i\tilde{c}_{R}Wg}{m_{W}^{2}} (D^{\mu}H)^{\dagger}\sigma^{i}(D^{\nu}H)W_{\mu\nu}^{i} + \frac{i\tilde{c}_{R}Bg'}{m_{W}^{2}} (D^{\mu}H)^{\dagger} (D^{\nu}H)B_{\mu\nu} \\ + \frac{\tilde{c}_{\gamma}g'^{2}}{m_{W}^{2}}H^{\dagger}HB_{\mu\nu}B^{\mu\nu} + \frac{\tilde{c}_{g}g_{S}^{2}}{m_{W}^{2}}H^{\dagger}HG_{\mu\nu}^{a}G^{a\mu\nu}.$$
[Giudice, Grojean, Pomarol, Rattazzi '07]
$$\underbrace{h - e^{-h}}_{Higgs} h Higgs decay$$
Higgs production
Higgs decay

Strongly Interacting Light Higgs phenomenology

Fingerprinting the lack of new physics

<u>consistent</u> differential distributions

$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i$

 $\mathrm{d}\sigma = \mathrm{d}\sigma^{\mathrm{SM}} + \mathrm{d}\sigma^{\{O_i\}}/\Lambda^2$ $2\operatorname{Re}\{\mathcal{M}_{\mathrm{SM}}\mathcal{M}_{d=6}^*\}$

A word of caution

not necessarily positive definite (cf. fixed order NⁿLO)

conservative probe of validity of d=6 extension

similar analyses [Isidori, Trott `13] [Biekötter, Knochel, Krämer, Liu, Riva `14]

- evolution from renormalization group equations, choice of scales [Alam, Dawson, Szalapski `97] ... [Grojean, Jenkins, Manohar, Trott `13] [Jenkins, Manohar, Trott `13] [Alonso et al. `13]
- consistent interpretation requires communication of resolved scales

[Isidori, Trott `13] [CE, Spannowsky `14]

- evolution from renormalization group equations, choice of scales [Alam, Dawson, Szalapski `97] ... [Grojean, Jenkins, Manohar, Trott `13] [Jenkins, Manohar, Trott `13] [Alonso et al. `13]
- consistent interpretation requires communication of resolved scales

[Isidori, Trott `13] [CE, Spannowsky `14]

How can we interpret EFT measurements?

- evolution from renormalization group equations [Alam, Dawson, Szalapski `97] ... [Grojean, Jenkins, Manohar, Trott `13] [Jenkins, Manohar, Trott `13] [Alonso et al. `13]
- consistent interpretation requires **communication of resolved scales**

[Isidori, Trott `13] [CE, Spannowsky `14]

A word of caution

- evolution from renormalization group equations
 [Alam, Dawson, Szalapski `97] ... [Grojean, Jenkins, Manohar, Trott `13] [Jenkins, Manohar, Trott `13] [Alonso et al. `13]
- consistent interpretation requires communication of resolved scales
 - [Isidori, Trott `13] [CE, Spannowsky `14]
- effects can be in the $\sim 10\%$ range, not relevant at this stage

Search channel	energy \sqrt{s}	μ	SM signal comp	osition [in %]		_							
CMS $m \to H \to \infty \ (t\bar{t})$ [83]	8 TeV	1.24+4-23	0.0 0.1 0.1	0.2	99.5					_	10		
CMS $\mu\mu \to H \to \gamma\gamma$ (<i>itH</i> lepton) [83]	8 TeV	$3.52^{+3.89}$	0.0 0.0 0.3	0.5	90.2		Hi	ord o	ate	• 1	18	' 'e	
CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (t <i>t</i> H tags) [83]	7 TeV	$0.71^{+6.20}_{-3.56}$	0.0 0.1 0.4	0.4	99.2		111	SS ^D U	ac	l. I		IC	∕ ♥
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 0) [83]	7 TeV	$1.97^{+1.51}_{-0.5}$	12.1 18.7 23.3	8 24.0	21.3								
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 0) [83]	8 TeV	$0.13^{+1.09}_{-0.74}$	6.7 16.7 20.3	5 18.4	37.7								
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 1) [83]	7 TeV	$1.23^{+0.98}_{-0.88}$	30.6 17.4 20.5	9 19.5	11.7								
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 1) [83]	8 TeV	(· · · · · · · · · · · · · · · · · · ·											
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 2) [83]	7 TeV	1 Sear	h channel				energy \sqrt{s}	μ	S	M signal	composi	tion [in 9	6]
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 2) [83]	8 TeV	1							ggH	VBF	WH	ZH	ttH
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 3) [83]	7 TeV	2 ATL	AS $pp \rightarrow H \rightarrow \gamma \gamma$ (ce	ntral high p	T) [82]		8 TeV	$1.62^{+1.00}_{-0.83}$	7.1	25.4	20.1	21.0	26.4
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 3) [83]	8 TeV	(ATL	AS $pp \rightarrow H \rightarrow \gamma \gamma$ (ce	ntral low p_T	r) [82]		8 TeV	$0.62^{+0.42}_{-0.40}$	31.8	22.2	18.5	19.9	7.7
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 4) [83]	8 TeV	1 ATL	As $pp \rightarrow H \rightarrow \gamma \gamma$ (fo	rward high	p_T) [82]		8 TeV	$1.73^{+1.34}_{-1.18}$	7.1	26.2	23.1	23.6	20.1
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 0) [83]	7 TeV	4 ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (fo	rward low p	m) [82]		8 TeV	$2.03^{+0.57}$	29.0	20.9	21.2	21.9	7.1
CMS $pp \to H \to \gamma \gamma$ (VBF dijet 0) [83]	8 TeV	ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ ($t\bar{t}$)	H hadronic)	[82]		8 TeV	$-0.84^{+3.23}$	0.1	0.1	0.2	0.4	99.1
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 1) [83]	7 TeV	2 ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (tt)	H leptonic)	[82]		8 TeV	$2.42^{+3.21}$	0.0	0.0	2.9	1.4	95.6
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 1) [83]	8 TeV	ATL	AS $pp \to H \to \gamma\gamma$ (V)	BF loose) [8	2		8 TeV	$1.33^{\pm 0.92}$	3.7	90.5	1.9	1.7	2.2
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 2) [83]	8 TeV	ATL ATL	$AS pp \rightarrow H \rightarrow arr (V)$	BF tight) [8] -0]		8 TeV	0.68+0.67	1.4	96.3	0.3	0.4	1.7
CMS $pp \rightarrow H \rightarrow \gamma \gamma \ (VH \text{ dijet}) \ [83]$	7 TeV	ATL ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (V)	Dr tignt) [0 U ditet) [99]	1		e TaV	$0.08_{-0.51}$ $0.02^{+1.67}$	1.4	30.3	46.0	40.2	0.5
CMS $pp \rightarrow H \rightarrow \gamma \gamma \ (VH \ dijet) \ [83]$	8 TeV	ATL	$H \to pp \to H \to \gamma\gamma (V)$	H cujet) [62	() (0)		o lev	0.23-1.39	1.9	2.2	40.0	49.0	29.2
$CMS \ pp \to H \to \gamma\gamma \ (VH \ E_T^{max}) \ [83]$	7 TeV	4 AIL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (V)	$H E_T$ [8	2]		8 lev	3.01 - 2.42	0.2	1.1	22.0	47.0	10.6
$CMS \ pp \to H \to \gamma\gamma \ (VH \ E_T^{minw}) \ [83]$	8 Tev	(ATL	As $pp \to H \to \gamma\gamma \ (V)$	H 1ℓ) [82]	1 [00]		8 TeV	0.41 - 1.06	0.0	0.1	80.4	8.9	10.0
CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (VH loose) [83]	7 TeV	8 ATL	AS $pp \to H \to \tau \tau$ (be	posted, 7had?	η _{had}) [90]		7/8 TeV	$3.60^{+2.00}_{-1.60}$	6.9	21.1	38.1	33.9	0.0
$CMS pp \to H \to \gamma\gamma (VH \text{ loose}) [83]$ $CMS pp \to H \to \gamma\gamma (VH \text{ loose}) [83]$	8 TeV	J ATL	AS $pp \to H \to \tau \tau$ (V)	BF, $\tau_{had}\tau_{ha}$	d) [90]		7/8 TeV	$1.40^{+0.50}_{-0.70}$	2.6	97.4	0.0	0.0	0.0
$CMS pp \rightarrow H \rightarrow \gamma\gamma (VH \text{ tight) [so]}$ $CMS pp \rightarrow H \rightarrow \gamma\gamma (VH \text{ tight) [so]}$	3 10V	ATL	AS $pp \rightarrow H \rightarrow \tau \tau$ (be	bosted, $\tau_{lep}\tau$	had) [90]		7/8 TeV	$0.90^{+1.00}_{-0.90}$	8.5	24.6	35.6	31.4	0.0
$CMS pp \rightarrow H \rightarrow p\mu [ei]$ $CMS m \rightarrow H \rightarrow n\pi \ (0 \text{ int}) \ [01]$	7/8 TeV	ATL ATL	AS $pp \to H \to \tau \tau$ (V)	BF, $\tau_{lep}\tau_{had}$	1) [90]		7/8 TeV	$1.00^{+0.60}_{-0.50}$	1.3	98.7	0.0	0.0	0.0
$CMS \ pp \to H \to \tau\tau \ (0 \ \text{jet}) \ [s1]$ $CMS \ rm \to H \to \tau\tau \ (1 \ \text{jet}) \ [91]$	7/8 TeV	ATL	AS $pp \rightarrow H \rightarrow \tau \tau$ (be	posted, $\eta_{ep}\tau$	_{Jep}) [90]		7/8 TeV	$3.00^{+1.90}_{-1.70}$	9.8	47.1	26.5	16.7	0.0
$CMS \ pp \rightarrow H \rightarrow WW \rightarrow 2Ppr (0/1 \ iot) [88]$	7/8 TeV	ATL	AS $pp \rightarrow H \rightarrow \tau \tau$ (V)	BF, $\tau_{lep}\tau_{lep}$) [90]		7/8 TeV	$1.80^{+1.10}_{-0.90}$	1.1	98.9	0.0	0.0	0.0
$CMS \ m \to H \to WW \to 222\nu \ (b) \ [66]$ $CMS \ m \to H \to WW \to 222\nu \ (VBF) \ [88]$	7/8/TeV	, ATL	AS $pp \rightarrow H \rightarrow WW$ -	$\rightarrow l \nu l \nu $ (ggH	I enhanced)	[86, 87]	7/8 TeV	$1.01^{+0.27}_{-0.25}$	55.6	11.1	11.1	11.1	11.1
CMS $m \rightarrow H \rightarrow ZZ \rightarrow 4\ell \ (0/1 \text{ iet}) \ [85, 131]$	7/8 TeV	ATL	AS $pp \rightarrow H \rightarrow WW$ -	$\rightarrow \ell \nu \ell \nu$ (VB	F enhanced)) [86, 87]	7/8 TeV	$1.27\substack{+0.53\\-0.45}$	2.0	98.0	0.0	0.0	0.0
CMS $m \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ (2 jet) [85, 131]	7/8 TeV	1 ATL	As $pp \rightarrow H \rightarrow ZZ \rightarrow$	4ℓ (ggH-lik	e) [84]		7/8 TeV	$1.66^{+0.51}_{-0.44}$	22.7	18.2	18.2	18.2	22.7
CMS $pp \rightarrow t\bar{t}H \rightarrow 2\ell$ (same sign) [96]	8 TeV	ATL	As $pp \rightarrow H \rightarrow ZZ \rightarrow$	4ℓ (VBF/V	'H-like) [84]		7/8 TeV	$0.26^{+1.64}_{-0.94}$	2.2	32.6	32.6	32.6	0.0
CMS $pp \rightarrow t\bar{t}H \rightarrow 3\ell$ [96]	8 TeV	s ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	ons (127had) [97]		8 TeV	$-9.60^{+9.60}_{-0.70}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow 4\ell$ [96]	8 TeV	– ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	ons (2007had) [97]		8 TeV	$2.80^{+2.10}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$ [96]	7/8 TeV	(ATL	AS $pp \rightarrow ttH \rightarrow lepto$	ons (2l17bad) [97]		8 TeV	$-0.90^{+3.10}_{-2.00}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}\gamma\gamma$ [96]	8 TeV	2 ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	ons (3) [97]			8 TeV	$2.80^{+2.20}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}r\tau$ [96]	7/8 TeV	- ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	ons (4) [97]			8 TeV	$1.80^{+6.90}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow H \rightarrow \tau \tau$ (VBF) [91]	7/8 TeV	(ATL	AS $m \rightarrow t\bar{t}H \rightarrow t\bar{t}h\bar{h}$	[05]			8 TeV	1.50 - 6.90 1.50 + 1.10	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow WH \rightarrow \ell \nu b \bar{b}$ [93]	7/8 TeV	1 ATL	As $p_{\mu} \rightarrow vH \rightarrow V\bar{h}$	(04) [92]			7/8 TeV	$-0.35^{+0.55}$	0.0	0.0	13.2	86.8	0.0
CMS $pp \rightarrow ZH \rightarrow 2\ell b \overline{b}$ [93]	7/8 TeV		$AS pp \rightarrow VH \rightarrow V\bar{W}$	(14) [02]			7/0 TeV	-0.53 -0.52	0.0	0.0	04.4	50.5	0.0
CMS $pp \to ZH \to \nu\nu b\bar{b}$ [93]	7/8 TeV	1 ATL	$ho pp \to VH \to V00$	(14) [92]			7/0 TeV	0.04+0.88	0.0	0.0	94.4	0.0	0.0
CMS $pp \rightarrow VH \rightarrow \tau \tau$ [91]	7/8 TeV	(ATL	$H \supset pp \rightarrow VH \rightarrow V00$	(20) [92] W (00) [ord			7/8 TeV	$0.94_{-0.79}$	0.0	0.0	0.0	100.0	0.0
CMS $pp \rightarrow VH \rightarrow WW \rightarrow 2\ell 2\nu$ [88]	7/8 TeV	(ATL	$H \supset pp \rightarrow VH \rightarrow VW$	W (22) [87]			7/8 TeV	3.70-1.80	0.0	0.0	74.3	25.7	0.0
CMS $pp \rightarrow VH \rightarrow VWW$ (hadronic V) [89]	7/8 TeV	1 ATL	As $pp \rightarrow VH \rightarrow VW$	W (3ℓ) [87]			7/8 TeV	$0.72^{+1.00}_{-1.10}$	0.0	0.0	78.8	21.2	0.0
CMS $pp \rightarrow WH \rightarrow WW \rightarrow 3\ell 3\nu$ [88]	7/8 TeV	(ATL	AS $pp \rightarrow VH \rightarrow VW$	$W(4\ell)$ [87]			7/8 TeV	$4.90^{+4.00}_{-3.10}$	0.0	0.0	0.0	100.0	0.0

[Buckley, CE, Ferrando, Miller, Moore, Russell, White `15]

Top EFT status

operators

$$\begin{split} O_{qq}^{(1)} &= (\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q) \\ O_{qq}^{(3)} &= (\bar{q}\gamma_{\mu}\tau^{I}q)(\bar{q}\gamma^{\mu}\tau^{I}q) \\ O_{uu} &= (\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u) \\ O_{qu}^{(8)} &= (\bar{q}\gamma_{\mu}T^{A}q)(\bar{u}\gamma^{\mu}T^{A}u) \\ O_{qd}^{(8)} &= (\bar{q}\gamma_{\mu}T^{A}q)(\bar{d}\gamma^{\mu}T^{A}d) \\ O_{ud}^{(8)} &= (\bar{u}\gamma_{\mu}T^{A}u)(\bar{d}\gamma^{\mu}T^{A}d) \,. \end{split}$$

$$O_{uW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}u)\tilde{\phi}W^{I}_{\mu\nu}$$
$$O_{uG} = (\bar{q}\sigma^{\mu\nu}T^{A}u)\tilde{\phi}G^{A}_{\mu\nu}$$
$$O_{G} = f_{ABC}G^{A\nu}_{\mu}G^{B\lambda}_{\nu}G^{C\mu}_{\lambda}$$
$$O_{\tilde{G}} = f_{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\lambda}_{\nu}G^{C\mu}_{\lambda}$$
$$O_{\phi G} = (\phi^{\dagger}\phi)G^{A}_{\mu\nu}G^{A\mu\nu}$$

$$O_{\phi q}^{(3)} = i(\phi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \phi)(\bar{q} \gamma^{\mu} \tau^{I} q)$$

$$O_{\phi q}^{(1)} = i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{q} \gamma^{\mu} q)$$

$$O_{uB} = (\bar{q} \sigma^{\mu\nu} u) \widetilde{\phi} B_{\mu\nu}$$

$$O_{\phi u} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi)(\bar{u} \gamma^{\mu} u)$$

$$O_{\phi \tilde{G}} = (\phi^{\dagger} \phi) \tilde{G}_{\mu\nu}^{A} G^{A\mu\nu}$$

- consider CP even operators
- neglect operators with chiral suppression for the interference with SM
- top pair production, single top production, top pair + Z production decay observables
- include differential distributions where reported

Top EFT status

Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	Ref.			
Top pair pr	oduction									
Total cross-sections:				Differential cross-sections:						
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{t\bar{t}}, y_{t\bar{t}} $	1407.0371			
ATLAS	7	dilepton	1202.4892	CDF	1.96	$M_{t\bar{t}}$	0903.2850			
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1211.2220			
ATLAS	7	lepton w/o $b~{\rm jets}$	1201.1889	CMS	8	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1505.04480			
ATLAS	7	lepton w/ b jets	1406.5375	DØ	1.96	$M_{t\bar{t}}, p_T(t), y_t $	1401.5785			
ATLAS	7	tau+jets	1211.7205							
ATLAS	7	$t\bar{t}, Z\gamma, WW$	1407.0573	Charge asymmetries:						
ATLAS	8	dilepton	1202.4892	ATLAS	7	$A_{\rm C}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1311.6742			
CMS	7	all hadronic	1302.0508	CMS	7	$A_{\rm C}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1402.3803			
CMS	7	dilepton	1208.2761	CDF	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1211.1003			
CMS	7	lepton+jets	1212.6682	DØ	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1405.0421			
CMS	7	lepton+tau	1203.6810							
CMS	7	tau+jets	1301.5755	Top widths:						
CMS	8	dilepton	1312.7582	DØ	1.96	$\Gamma_{ m top}$	1308.4050			
$CDF + D\emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	$\Gamma_{ m top}$	1201.4156			
Single top production			W-boson helicity fractions:							
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.2484			
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.4523			
CMS	7	t-channel (total)	1406.7844	CMS	1.96		1308.3879			
CMS	8	t-channel (total)	1406.7844	DØ	1.96		1011.6549			
DØ	1.96	s-channel (total)	0907.4259							
DØ	1.96	t-channel (total)	1105.2788							
Associated	production			Run II data						
ATLAS	7	$t\bar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.05302			
ATLAS	8	$t\bar{t}Z$	1509.05276							
CMS	8	$t\bar{t}Z$	1406.7830							

Top quark pair production

[Buckley, CE, Ferrando, Miller, Moore, Russell, White `15]

Summary of the top sector

