

HEP@VUB

BRUSSELS

Higgsploding the

Hierarchy Problem
Michael Spannowsky
IPPP, Durham University

A Standard Model Tale

Before the discovery of the Higgs boson - (Yang-Mills theories)
Situation at tree-level
Multiplicity

Perturbative unitarity violated at high energies
model inconsistent (at high energies)

A Standard Model Tale

Before the discovery of the Higgs boson - (Yang-Mills theories)
Situation at tree-level
Multiplicity

Perturbative unitarity violated at high energies
model inconsistent (at high energies)

After the discovery of the Higgs boson - complete Standard Model
Situation at tree-level

After the discovery of the Higgs boson - complete Standard Model Situation at tree-level
Multiplicity

Perturbative unitarity violated at very high multiplicities
model inconsistent (at high multiplicities)

+ Hierarchy problem (Loop level)

Calculation of 1^{*}-> n amplitudes

Assume Lagrangian

$$
\mathcal{L}_{\rho}(\phi)=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} M^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4}+\rho \phi
$$

The amplitude is calculated using the LSZ reduction technique
[Brown '92]

$$
\langle n| \phi(x)|0\rangle=\lim _{\rho \rightarrow 0}\left[\prod_{j=1}^{n} \lim _{p_{j}^{2} \rightarrow M^{2}} \int d^{4} x_{j} e^{i p_{j} \cdot x_{j}}\left(M^{2}-p_{j}^{2}\right) \frac{\delta}{\delta \rho\left(x_{j}\right)}\right]\left\langle 0_{\text {out }}\right| \phi(x)\left|0_{\text {in }}\right\rangle_{\rho}
$$

where the tree-level approximation is obtained via $\left\langle 0_{\text {out }}\right| \phi(x)\left|0_{\mathrm{in}}\right\rangle_{\rho} \longrightarrow \phi_{\mathrm{cl}}(x)$ and $\phi_{\mathrm{cl}}(x)$ is a solution to the classical field equation

IDEA: Fill whole phase-space with particles, i.e. produce all particles at mass threshold with $\quad \vec{p}_{j}=0 \quad p_{j}^{\mu}=(\omega, \overrightarrow{0}) \quad$ and $\quad \rho(x)=\rho(t)=\rho_{0}(\omega) e^{i \omega t}$

Here QFT -> time-dep QM:

$$
\begin{aligned}
& \left(M^{2}-p_{j}^{2}\right) \frac{\delta}{\delta \rho\left(x_{j}\right)} \longrightarrow\left(M^{2}-\omega^{2}\right) \frac{\delta}{\delta \rho\left(t_{j}\right)}=\frac{\delta}{\delta z\left(t_{j}\right)} \\
& z(t):=\frac{\rho_{0}(\omega) e^{i \omega t}}{M^{2}-\omega^{2}-i \epsilon}:=z_{0} e^{i \omega t}, \quad z_{0}=\text { finite const }
\end{aligned}
$$

Hence, the generating function of tree amplitudes on multi-particle thresholds is a classical solution. It solves an ordinary differential equation with no source term

$$
\begin{gathered}
d_{t}^{2} \phi+M^{2} \phi+\lambda \phi^{3}=0 \\
\text { with } \quad \phi_{\mathrm{cl}}(t)=z(t)+\sum_{n=2}^{\infty} d_{n} z(t)^{n}, \quad z:=z_{0} e^{i M t}
\end{gathered}
$$

The coefficients d_{n} determine the actual amplitudes by differentiation w.r.t. z

$$
\begin{gathered}
\mathcal{A}_{1 \rightarrow n}=\left.\left(\frac{\partial}{\partial z}\right)^{n} \phi_{\mathrm{cl}}\right|_{z=0}=n!d_{n} \quad \text { Factorial growth!! } \\
\phi_{\mathrm{cl}}(t)=\frac{z(t)}{1-\frac{\lambda}{8 M^{2}} z(t)^{2}} \quad \mathcal{A}_{1 \rightarrow n}=n!\left(\frac{\lambda}{8 M^{2}}\right)^{\frac{n-1}{2}}
\end{gathered}
$$

Several generalisations of this approach:

- Higgs like, ie. phi^4 with vev:
[Brown 9209203]

$$
\mathcal{L}(h)=\frac{1}{2}(\partial h)^{2}-\frac{\lambda}{4}\left(h^{2}-v^{2}\right)^{2} \quad \forall \mathcal{A}_{1 \rightarrow n}=\left.\left(\frac{\partial}{\partial z}\right)^{n} h_{\mathrm{cl}}\right|_{z=0}=n!(2 v)^{1-n}
$$

- Gauge-Higgs theory:
[Khoze 1404.4876]
Higgs process

$$
\mathcal{A}\left(h \rightarrow n \times h+m \times Z_{L}\right)=(2 v)^{1-n-m} n!m!d(n, m)
$$

Z process $\quad \mathcal{A}\left(Z_{L} \rightarrow n \times h+(m+1) \times Z_{L}\right)=\frac{1}{(2 v)^{n+m}} n!(m+1)!a(n, m)$

- Go beyond mass threshold (needs space-dep sol.): [Khoze 1411.2925]

$$
\begin{aligned}
\text { DGL: }-\left(\partial^{\mu} \partial_{\mu}+M_{h}^{2}\right) \varphi=3 \lambda v \varphi^{2}+\lambda \varphi^{3} \quad \varepsilon=\frac{1}{n M_{h}} E_{n}^{\text {kin }}=\frac{1}{n} \frac{1}{2 M_{h}^{2}} \sum_{i=1}^{n} \vec{p}_{i}^{2} \\
\downarrow \\
\mathcal{A}_{n}\left(p_{1} \ldots p_{n}\right)=n!(2 v)^{1-n}\left(1-\frac{7}{6} n \varepsilon-\frac{1}{6} \frac{n}{n-1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)
\end{aligned}
$$

From amplitudes to cross sections

$$
\begin{gathered}
\sigma_{n, m}=\int d \Phi_{n, m} \frac{1}{n!m!}\left|\mathcal{A}_{h^{*} \rightarrow n \times h+m \times Z_{L}}\right|^{2} \quad \text { x flux factor } \\
\int d \Phi_{n}=(2 \pi)^{4} \delta^{(4)}\left(P_{\mathrm{in}}-\sum_{j=1}^{n} p_{j}\right) \prod_{j=1}^{n} \int \frac{d^{3} p_{j}}{(2 \pi)^{3} 2 p_{j}^{0}} \quad \begin{array}{c}
\text { Bose statistics factors for } n \text { identical } \\
\text { Higgs and m identical long. Vec. }
\end{array}
\end{gathered}
$$

Integration with $n \varepsilon_{h}$ fixed $\Phi_{n} \simeq \frac{1}{\sqrt{n}}\left(\frac{M_{h}^{2}}{2}\right)^{n} \exp \left[\frac{3 n}{2}\left(\log \frac{\varepsilon_{h}}{3 \pi}+1\right)+\frac{n \varepsilon_{h}}{4}+\mathcal{O}\left(n \varepsilon_{h}^{2}\right)\right]$

$$
\begin{aligned}
\sigma_{n, m} \sim & \exp \left[2 \log \left(\kappa^{m} d(n, m)\right)+n \log \frac{\lambda n}{4}+m \log \frac{\lambda m}{4}\right. \\
& \left.+\frac{n}{2}\left(3 \log \frac{\varepsilon_{h}}{3 \pi}+1\right)+\frac{m}{2}\left(3 \log \frac{\varepsilon_{V}}{3 \pi}+1\right)-\frac{25}{12} n \varepsilon_{h}-3.15 m \varepsilon_{V}+\mathcal{O}\left(n \varepsilon_{h}^{2}+m \varepsilon_{V}^{2}\right)\right]
\end{aligned}
$$

$2 \log d(n, m) \kappa^{m}$

How about loops?

Usual criticism: need to include loops to render cross section finite.
Keep in mind, we calculate exclusive rate of massive internal and outgoing particles $->$ no mass-divergencies and objects IR-safe

However, leading loop contributions can be resummed (only valid when $n \lambda<1$):
Follow Brown's program after Wick-rotating complex operator and using
[Smith `92] [Voloshin `92]

$$
\phi_{0+1}(t)=\frac{z(t)}{1-\left(\bar{\lambda} / 8 \bar{m}^{2}\right) z(t)^{2}}\left(1-\frac{3 \lambda}{4} F \frac{\left(\lambda / 8 m^{2}\right)^{2} z(t)^{4}}{\left(1-\left(\lambda / 8 m^{2}\right) z(t)^{2}\right)^{2}}\right)
$$

one obtains for scalar loops

$$
A_{n}=n!(2 v)^{1-n}\left[1+n(n-1) \frac{\sqrt{3} \lambda}{8 \pi}+O\left(\lambda^{2}\right)\right]
$$

and including fermion loops it is argued cancellations can occur

$$
A_{n} \rightarrow A_{n} \times\left[1+(-1)^{2 r} C(r) n^{4 r-4} \lambda\right] \quad\left[\text { Voloshin }{ }^{`} 17\right]
$$

(exponentiate for $n \lambda>1$)? in SM subleading to scalar loops

Assuming $\quad \mathcal{L}=\frac{1}{2} \partial^{\mu} h \partial_{\mu} h-\frac{\lambda}{4}\left(h^{2}-v^{2}\right)^{2}$
where $\langle h\rangle=v$ and in unit. gauge $\varphi(x)=h(x)-v$
In non-rel. limit the LO cross section for n-Higgs production scales like:

$\sigma_{n} \propto \exp \left[\frac{1}{\lambda} F_{\text {h.g. }}(\lambda n, \varepsilon)\right] \quad$ with $\quad \frac{1}{\lambda} F_{\text {h.g. }}(\lambda n, \varepsilon)=\frac{\lambda n}{\lambda}\left(f_{0}(\lambda n)+f(\varepsilon)\right)$
for a scalar theory with SSB: $\quad f_{0}(\lambda n)=\log \frac{\lambda n}{4}-1 \quad$ at tree level
[Libanov, Rubakov, Son, Troitsky '94] $\quad f(\varepsilon) \rightarrow \frac{3}{2}\left(\log \frac{\varepsilon}{3 \pi}+1\right)-\frac{25}{12} \varepsilon \quad$ for $\varepsilon \ll 1$
Resummed 1-loop contribution:

$$
\begin{aligned}
& \mathcal{A}_{1 \rightarrow n}=\mathcal{A}_{1 \rightarrow n}^{\text {tree }} \times \exp \left[B \lambda n^{2}+\mathcal{O}(\lambda n)\right] \quad \text { with } \quad \mathrm{B}=+\lambda n \frac{\sqrt{3}}{4 \pi} \\
& f_{0}(\lambda n)=\log \frac{\lambda n}{4}-1+\lambda n \frac{\sqrt{3}}{4} \quad \text { significant enhancement } \\
& \text { (but higher corrections unknown) } \\
& f(\epsilon) \rightarrow \frac{3}{2}\left(\log \frac{3}{3 \pi}+1\right)-\frac{25}{12} \epsilon \quad \text { for } \epsilon \ll 1
\end{aligned}
$$

Was argued that it could be used to assess what collider energy needed to test a breakdown of perturbativity

[Degrande, Khoze, Mattelaer '16]

Explosive growth of $1->n$ process
$h \quad h$
$h h$

h h
h

Extreme energy dependence for $1^{*}->n$ cross section including 1-loop result reduces 'ignition' scale

$\log \sigma_{n}^{\text {loop }}$

$$
\begin{aligned}
& \mathcal{R}_{n}(s):=\frac{1}{2 M_{h}^{2}} \int d \Pi_{n}|\mathcal{M}(1 \rightarrow n)|^{2} \\
& \mathcal{R}(\lambda ; n, \varepsilon)=\exp \left[n\left(\log \frac{\lambda n}{4}-1\right)+\frac{3 n}{2}\left(\log \frac{\varepsilon}{3 \pi}+1\right)-\frac{25}{12} n \varepsilon\right]
\end{aligned}
$$

Explosive growth of $1->n$ process

Extreme energy dependence for $1^{*}->n$ cross section including 1-loop result reduces 'ignition' scale

energy low

energy beyond threshold

Higgspersion

However, previous calculations neglected 'width'/self-energy contribution to scalar propagator

Analytic expression for process
$\mathcal{M}_{g g \rightarrow h^{*}} \times \frac{i}{p^{2}-M_{h}^{2}+i M_{h} \Gamma\left(p^{2}\right)} \times \mathcal{M}_{h^{*} \rightarrow n \times h}$
results in limit $s \gg M_{h}^{2}, m_{t}^{2}$ in

$$
\sigma_{g g \rightarrow n \times h}^{\Delta} \sim y_{t}^{2} m_{t}^{2} \log ^{4}\left(\frac{m_{t}}{\sqrt{s}}\right) \times \frac{1}{s^{2}+M_{h}^{4} \mathcal{R}^{2}} \times \mathcal{R}_{n}
$$

For large R cross section small $\sigma_{g g \rightarrow n \times h} \sim \begin{cases}\mathcal{R} & : \text { for } \mathcal{R} \lesssim 1 \\ 1 / \mathcal{R} \rightarrow 0 & : \text { for } \mathcal{R} \gg 1 \text { at } s \rightarrow \infty\end{cases}$
-> no violation of perturbative unitarity for large multiplicities

$$
\Delta M_{h}^{2} \sim \lambda_{P} \int \frac{d^{4} p}{16 \pi^{4}} \frac{1}{M_{X}^{2}-p^{2}+i \operatorname{Im} \Sigma_{X}\left(p^{2}\right)}
$$

$$
=\lambda_{P} \int \frac{d^{4} p}{16 \pi^{4}}\left(\frac{M_{X}^{2}-p^{2}}{\left(M_{X}^{2}-p^{2}\right)^{2}+\left(\operatorname{Im} \Sigma_{X}\left(p^{2}\right)\right)^{2}}-\frac{i \operatorname{Im} \Sigma_{X}\left(p^{2}\right)}{\left(M_{X}^{2}-p^{2}\right)^{2}+\left(\operatorname{Im} \Sigma_{X}\left(p^{2}\right)\right)^{2}}\right)
$$

Due to Higgsplosion the multi-particle contribution to the width of X explode at $p^{2}=s_{\star}$ where $\sqrt{s_{\star}} \simeq \mathcal{O}(25) \mathrm{TeV}$

It provides a sharp UV cut-off in the integral, possibly at $s_{\star} \ll M_{X}^{2}$

Hence, the contribution to the Higgs mass amounts to

$$
\Delta M_{h}^{2} \propto \lambda_{P} \frac{s_{\star}}{M_{X}^{2}} s_{\star} \ll \lambda_{P} M_{X}^{2}
$$

and thus mends the Hierarchy problem by $\left(\frac{\sqrt{s_{\star}}}{M_{X}}\right)^{4} \simeq\left(\frac{25 \mathrm{TeV}}{M_{X}}\right)^{4}$

If Higgsplosion is not a mathematical artefact but realised in nature:
Situation at tree-level
Multiplicity

SM heals itself, retains self-consistency to very high energies and multiplicities

Higgs boson can be cause and cure for its Hierarchy Problem

Obvious question:
If Higgsplosion realised in nature, what does it imply for physics beyond $\mathrm{O}(100) \mathrm{TeV}$?

You can join one of two camps

But you cannot be indifferent

