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A Standard Model Tale
Before the discovery of the Higgs boson - (Yang-Mills theories)
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After the discovery of the Higgs boson - complete Standard Model
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Calculation of 1* -> n amplitudes
Assume Lagrangian

         [More detail: Tree-level n-point Amplitudes on mass threshold]
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The amplitude is calculated using the LSZ reduction technique
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where the tree-level approximation is obtained via 

and  is a solution to the classical field equation  

         [More detail: Tree-level n-point Amplitudes on mass threshold]

6

The amplitude A
1!n

for the field � to create n particles in the �

4 theory,

L
⇢

(�) =
1

2
(@�)2 � 1

2
M

2

�

2 � 1

4
��

4 + ⇢ � ,

is derived by applying the LSZ reduction technique:

hn|�(x)|0i = lim
⇢!0

2

4
nY

j=1

lim
p

2
j!M

2

Z
d

4

x

j

e

ipj ·xj (M2 � p

2

j

)
�

�⇢(x
j

)

3

5 h0
out

|�(x)|0
in

i
⇢

.

Tree-level approximation is obtained via h0
out

|�(x)|0
in

i
⇢

�! �

cl

(x) where �
cl

(x)
is a solution to the classical field equation.

On mass threshold limit all outgoing particles are produced at rest, ~p
j

= 0
and we set all pµ

j

= (!,~0) and ⇢(x) = ⇢(t) = ⇢

0

(!) ei!t. Hence,

(M2 � p

2

j

)
�

�⇢(x
j

)
�! (M2 � !

2)
�

�⇢(t
j

)
=

�

�z(t
j

)
,

z(t) :=
⇢

0

(!) ei!t

M

2 � !

2 � i✏

:= z

0

e

i!t

, z

0

= finite const

IDEA: Fill whole phase-space with particles, i.e. produce all particles at mass threshold
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and
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Here QFT -> time-dep QM:
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Hence, the generating function of tree amplitudes on multi-particle thresholds 

is a classical solution. It solves an ordinary differential equation with no source 
term

         [More detail: Tree-level amplitudes in phi^4 on mass threshold]
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Several generalisations of this approach:         [More detail: also applies to phi^4 with SSB (Higgs-like)]
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• Higgs like, ie. phi^4 with vev:
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•Go beyond mass threshold (needs space-dep sol.):

[Brown 9209203]

[Khoze 1404.4876]

Similar story also holds in the Gauge-Higgs theory for tree-level 
amplitudes on multi-particle mass thresholds
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          VVK 1404.4876
These equations are solved by iterations (numerically) with Mathematica. The
double Taylor expansion of the generating functions takes the form:
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where d(n, 2k) and a(n, 2k) are determined from the iterative solution of EOM.
By repeatedly di↵erentiating these with respect to z and wa for the Higgs

to n Higgses and m longitudinal Z bosons threshold amplitude we get,
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Similar story also holds in the Gauge-Higgs theory for tree-level 
amplitudes on multi-particle mass thresholds
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Away from the multi-particle threshold, the external particles 3-momenta ~pi are

non-vanishing. In the non-relativistic limit, the leading momentum-dependent
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In the non-relativistic limit we have " ⌧ 1.

Tree-level Amplitudes above mass thresholds are determined by 
recursive solutions to classical equations — now include the 
kinematic dependence
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An important observation is that by exponentiating the order-n" contribution,

one obtains the expression for the amplitude which solves the original recursion

relation to all orders in (n")m in the large-n non-relativistic limit,
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remains a solution to the classical equation and the original recursion relations.
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        Can now integrate over the phase-space

Above the n-particle thresholds:  
solution of the recursion relations
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From amplitudes to cross sections
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we have e�
7
6 n "h ' 0.03 and similarly for m = 30 and "V = 0.1 we have e�1.7m "V ' 0.006 as

overall multiplicative factors in the amplitudes.
In the next section we will integrate these amplitudes over the phase space in order to

estimate the rates for these processes.

4 Integrating over the phase space

The scattering cross sections for multi-particle production rates arise from integrating the
squared amplitudes (3.49)-(3.50) over the Lorentz-invariant phase space,
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n!m!
|Ah⇤!n⇥h+m⇥ZL |2 , (4.1)

where 1/n! and 1/m! are the Bose statistics factors accounting for the n identical Higgses and
m identical longitudinal vector boson states, and we have dropped the overall flux factor on the
r.h.s. of (4.1). The next step is to integrate over phase space. The n-particle Lorentz-invariant
phase space volume element has the familiar form,
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but in order to use in (4.1) our results for the amplitudes (3.49) within their region of validity
– i.e. the high-multiplicity non-relativistic limit – the phase space integrations have to be
performed in the same non-relativistic approximation.

We note that it should not come as a surprise that the large-n small-" limit will amount to
a very small phase-space volume. Indeed, a very rough estimate for the phase-space volume in
this approximation will be �n / M3n⇥"3n/2. In dimensionless units, it arises from the product
of n three-dimensional spherical volumes obtained by integrating over each of the final particle
momenta |p|i . M

p
2". It is then not surprising that the resulting volume of the non-relativistic

n-particle phase-space reduces the cross section by the factor / "3n/2 which is ⌧ 1 in the limit
" ! 0 and n � 1. We will confirm this estimate with a more precise computation below, but
it is important to stress from the outset that the suppression of the resulting cross sections at
moderate energies is entirely caused by the non-relativistic approximation used in computing
the phase-space volume, and is not driven by the form of the amplitudes squared. In order to
compute the rate in the more realistic settings, one should integrate over a larger portion of the
phase-space. In the present paper we will not pursue this route as this would require knowing
the amplitudes beyond the non-relativistic limit.

The phase-space integration in the large-n non-relativistic limit with n"h fixed is easily
carried out by integrating over the d3np volume of the 3n-dimensional of radius |p| = Mh

p
2n"h.

The resulting non-relativistic phase space volume in the large-n limit is (see e.g. [15]),
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Figure 2: Amplitude coe�cients of Figure 1 in the form 2 log(md(n,m)) and 2 log(ma(n,m))
appearing in Eqs. (4.6)-(5.6). The label n = 0, 1, . . . , 32 is shown along the horizontal axis and
the sequence of curves corresponds to m = 0, 2, . . . , 32 with m increasing from bottom to top
(on the right of each plot).

Combining this with the n-Higgs amplitude squared (with m = 0 vector bosons), we get,
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Repeating the same steps for vector boson emissions we now can write down the rate for the
high multiplicity n-Higgs + m-vector boson production corresponding to the amplitude (3.49),
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The cross section arising from the amplitude (3.50) takes the same form as (4.5) but with
the 2 log a(n,m) factor on the right hand side. The numerical coe�cients d(n,m) and a(n,m)
were derived in [5] by solving recursion relations for the amplitudes on the multi-particle mass
threshold; they are plotted in Fig. 1.

At m = 0 all d-coe�cients are equal to one, hence the first term on the right hand side
vanishes in this case, 2 log d(n,m = 0) = 0. At higher values of m, however the coe�cients
d(n,m) and a(n,m) start growing. To somewhat tame the numerical growth of the Taylor
coe�cients we can rescale them with a factor of m and this can be nicely combined with the

observation that m log(g
2m
32

) = m log(2)+m log(�m
4

) which facilitates a re-write of (4.5) in the
form:
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The amplitudesTaylor coe�cients in the form 2 log(md(n,m)) and 2 log(ma(n,m)) appearing
on the right hand side are shown in Fig. 2.
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Figure 2: Amplitude coe�cients of Figure 1 in the form 2 log(md(n,m)) and 2 log(ma(n,m))
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How about loops?
Usual criticism: need to include loops to render cross section finite. 
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Keep in mind, we calculate exclusive rate of massive internal and 
outgoing particles -> no mass-divergencies and objects IR-safe

However, leading loop contributions can be resummed (only valid when         ):

[Smith ‘92]
[Voloshin ‘92]

[Voloshin ‘17]

Follow Brown’s program after Wick-rotating complex 
operator and using

The only non-trivial modification of the average field given by equation (11) is

related to the finite part of the average value of the square of quantum fluctuations

(eq.(22)), proportional to the constant factor F . If one seeks the solution of the

equation (11) in the form φ(t) = φ0(t; m̄, λ̄) + φ1(t), where the renormalization of

the constants is plugged into the functional dependence of the classical solution, the

equation for the correction φ1(τ) (i.e. on the τ axis) reads as

(

d2

dτ 2
− 1 +

24u2

(1 + u2)2

)

φ1 = −i18λ

√

8

λ
F

u5

(1 + u2)5
, (28)

the condition on the appropriate solution to this equation being that its expansion in

u starts with the fifth power, since only starting from final states with five particles the

threshold amplitudes develop an imaginary part, which in this calculation originates

in the imaginary part of F . The solution satisfying this condition is

φ1(τ) = −i
3λ

4

√

8

λ
F

u5

(1 + u2)3
, (29)

. Using equation (14) one can readily restore from here the response of the field in

terms of z(t) with the first quantum correction included:

φ0+1(t) =
z(t)

1 − (λ̄/8m̄2)z(t)2

(

1 −
3λ

4
F

(λ/8m2)2z(t)4

(1 − (λ/8m2)z(t)2)2

)

(30)

and by expanding in series in z(t) finally arrive at the result in equation (2).

The rotation (14) used here may invite the objection, that such rotation in the

path integral is obstructed by the infinite chain of poles parallel to the real axis of

t, which may give rise to extra contributions in the quantum effects. However it can

be explicitly shown that this does not happen at least at the one-loop level. Namely,

it is a straightforward (but rather cumbersome) exercise to verify that the recursion

relations for the sum of graphs for the propagator of the field φ with emission of n

on-shell particles all being at rest are equivalent to the differential equation for the

Green function of the operator (17) and then that the recursion relations for the loop

graphs are equivalent to the equation (28) on the τ axis. Another simple (and in no

way rigorous) check is to verify the formula (2) for few first n by direct computation

of the graphs. This also turned to be helpful in checking the relative coefficients and

signs in the equations of this paper. The remarkably simple form of the result (2)

suggests that there may be a way to calculate further quantum effects. In particular

9

one obtains for scalar loops

Multiple production of weakly interacting particles is naturally suppressed by a corre-

sponding high power of small coupling constant. However the number of graphs describing

the production amplitude also grows factorially so that the yield of, say n Higgs bosons, at

sufficiently high energy contains the factor n!λn that hints at the total cross section possibly

becoming large at large n, n > 1/λ as the factorial n! overcomes the high power of the small

Higgs coupling λ. The tantalizing prospect of finding a large yield in multiparticle weak

interaction processes had stimulated great interest and intensive studies in the early 1990’s

(a review can be found in Ref. [1]). The general conclusion from that past activity, although

not entirely certain, was that the seemingly large probability at large n, is likely a “mirage”

caused by extrapolation of low n results, and that the actual probability at large n is sup-

pressed by higher loop effects and/or a strong form factor cutoff [1, 2, 3]. Recently there

has been a certain revival of interest both to the methods developed in the course of those

studies, in particular in connection with the possibility of double Higgs boson production at

LHC [4], and to the idea of an observably large cross section for production of multiple weak

interaction bosons at multi TeV energies [5, 6, 7]. The latter idea is being discussed using the

past results found in simplified models. In particular, for a purely multi Higgs boson process

1 → n, where one virtual Higgs particle produces n bosons, the behavior of the rate R in a

theory of the scalar field was shown [8, 9] to obey the scaling behavior R ∼ exp[nF (nλ, ϵ)]

in the limit n → ∞, λ → 0, nλ-fixed, and ϵ being the kinetic energy per final particle. The

amplitude for this process at ϵ = 0, i.e. exactly at the threshold for n scalar bosons, is in

fact known explicitly at the tree level [10, 11, 12] as well as with the one loop correction

generated by the scalar field self interaction [13, 14]:

An = n! (2v)1−n

[

1 + n(n− 1)

√
3λ

8π
+O(λ2)

]

, (1)

where v is the (classical) vacuum mean value of the scalar field, related to the coupling λ

and the scalar mass µ as µ2 = 2λ v2. Clearly, this expression is in agreement with the scaling

behavior, once the loop correction is exponentiated [8].

It should be pointed out however that the scaling behavior is only applicable in a theory

of one bosonic field with one coupling. In a theory where the considered scalar field interacts

with heavy particles the scaling behavior is in fact not sustainable and is generally broken by

loops with heavy particles. Indeed, if the scalar field four-momentum is neglected, integrating

out heavy particles produces an effective Lagrangian with powers of the considered bosonic

field φ: ξk φk, and where ξk are the corresponding couplings. One can readily verify that

inserting such vertex in interaction between n final particles results in a correction with

1

and including fermion loops it is argued cancellations can occur

relative value nk−2ξk. Clearly, the approximation where the four-momentum of the scalar

particles can be neglected is not applicable if the total mass of a cluster of k scalar bosons

is larger than the mass M of the particle in the loop. Thus the power of n in the relative

correction due to the loop is of order M/µ and at sufficiently large ratio of the masses

becomes larger than two in violation of the scaling law. In connection with this behavior in

the only case of potentially practical interest, i.e. for the actual Higgs field, the effect of the

top quark loop certainly merits a detailed consideration. In what follows the correction to

the amplitude An in Eq.(1) generated by a loop with a fermion acquiring all of its mass m

from the interaction with the Higgs field is calculated in the limit of large n. As expected

from the reasoning outlined above the power of n in this correction is determined by the

ratio of the masses r = m/µ:

An → An ×
[

1 + (−1)2r C(r)n4r−4 λ
]

(2)

With the coefficient C(r) given by Eq.(27) below. The imaginary part of the correction

contained in the factor (−1)2r corresponds to the unitary cut across the fermion loop. This

imaginary part vanishes when 2r is integer. This is a consequence of the property of ‘nulli-

fication’ [15] at integer ratio 2m/µ, i.e. of the exact cancellation to zero of all the on-shell

amplitudes for fermion-antifermion annihilation into any number of higgs bosons all being

at rest.

One can readily estimate that with m and µ being the actual top quark and Higgs boson

masses, m/µ ≈ 1.4, the power of n in the correction is 1.6 and is smaller than two. Thus the

purely bosonic correction in Eq.(1) formally exceeds the effect of the top loop at sufficiently

large n. However the coefficient C(r) is actually numerically large, (−1)2.8C(1.4) ≈ −(8.0−
i 5.8)

√
3/(8π). Thus the bosonic term equals the real part of the contribution of the top

loop at n0.4 ≈ 8 i.e. at n ≈ 180. Clearly, at such n each of the corrections becomes very

large and far beyond any reasonable justification for considering them in the first order. It

thus appears impossible, at the present level of understanding of multi boson processes, to

come to any conclusions about their phenomenological significance.

Furthermore, it not yet excluded that there exist heavy fermions and bosons that acquire

from the Higgs field a larger mass than that of the top quark. Their loops would then

generate corrections to the multi Higgs processes with the power of n larger than two, and

those contributions would thus explicitly violate the scaling behavior and be potentially very

important.

The rest of this paper contains a somewhat detailed outline of the calculation of the
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In non-rel. limit the LO cross section for n-Higgs 
production scales like: 

with

for a scalar theory with SSB:

Resummed 1-loop contribution:

with

[Libanov, Rubakov, Son, Troitsky ’94]

[Smith ’92, Voloshin ’92]

We will thus use the following expression for the scalar field propagator
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where we traded the imaginary part of the self-energy for the energy-dependent decay width
�(p2), cf. Eq. (2.3),

�Z
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with the decay width being determined by the partial widths of n-particle decays at energies
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M is the amplitude for the 1⇤ ! n process and the integral is over the n-particle Lorentz-
invariant phase space.

In summary, for the UV-renormalised propagator �
R

(p) = Z

�1

�

, we will use the following

expression in terms of the pole mass m

2, the renormalised self-energy ⌃
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the physical width �(p2), and the renormalised coupling constant(s),
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All quantities in the expression above are UV-finite. The framework of using the propagator
for the Higgs boson with the energy-dependent width as the correct description, applicable for
all kinematic regions is widely used in the literature, see e.g. Refs. [12, 13], and is consistent
with our treatment.2 In the following section we will concentrate on the decay width �(s).

3 Multi-particle decay width of the Higgs boson

We now consider the ultra-high multiplicity Higgsplosions of highly energetic virtual particles
in the Standard Model. Specifically, we will describe the main features of the mechanism using
a simplified model for the Standard Model Higgs boson in terms of a QFT of a single real scalar
field h(x) with non-vanishing vacuum expectation value (VEV) hhi = v,

L =
1

2
@

µ

h @

µ

h � �

4

�
h

2 � v
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. (3.1)

This theory is a reduction of the SM Higgs sector in the unitary gauge to a single scalar degree of
freedom, h(x) which for our purposes we take to be stable, so there are no decays into fermions,
and we have also decoupled all vector bosons etc. The physical VEV-less scalar '(x) = h(x)�v,
describs the Higgs boson of mass M

h

=
p
2� v and satisfies the classical equation arising from

Eq. (3.1),
� (@µ

@
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+M

2

h

)' = 3�v '2 + �'

3

. (3.2)

2In this paper we focus exclusively on multi-Higgs decays and are not concerned with the decays of the Higgs
into lighter SM particles below its mass threshold. These can be readily incorporated.
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significant enhancement

(but higher corrections unknown)



Was argued that it could be used to assess what collider 
energy needed to test a breakdown of perturbativity

[Degrande, Khoze, Mattelaer ’16]
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Extreme energy dependence for 1  ->  n cross section*

including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . n

max

= E/M

h

. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A
1

⇤!n

(p
1

. . . p

n

) = n! (2v)1�n exp


�7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A

1

⇤!n

is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M
1!n

:= (s�M

2

h

) · A
1
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(p
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. . . p

n

) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where
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so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,
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or, equivalently, after the LSZ reduction of the incoming line,
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, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �

n/2

n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is
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|M(1 ! n)|2 , (3.8)

and the decay rates �
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(s) and the cross-sections �

n

(s) are obtained from R
n

(s) after an ap-
propriate overall rescaling with M

h

and s. Following in the steps of Refs. [8, 9], we obtain
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the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:
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In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n!

|M
n

|2 ⇠ n!�n ⇠ e

n log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = e

nF (�n, ")

, for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g

2

N

c

’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F

tree(�n, ") = f
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(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f

0

(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f

0
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However, previous calculations neglected ‘width’/self-energy 
contribution to scalar propagator

4.1 Unitarity

We will now argue that as soon as the cross-sections have reached the observable level, any
subsequent increase in the available energy will not result in the unbounded growth of the rates.
Instead, the cross-sections will actually decrease, and there will be no violation of perturbative
unitarity. For concreteness, consider the simplest process with a single intermediate o↵-shell
Higgs propagator.4 The amplitude for this process reads (cf. Eq. (4.1)):
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where �(s) is the energy-dependent total width of the Higgs at the scale s, and it will lead to
the Higgspersion of the total cross-section at asymptotically high energies. In other words, the
o↵-shell current A

h

⇤!n⇥h

in Eq. (4.1) includes the full dressed propagator times the amplitude
M

h

⇤!n⇥h

.
In the limit s � M
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and asymptotes to 1/R in the limit R ! 1. The inclusion of the decay width is of course
only relevant when �(s) becomes comparable to s/M

h

. This conclusion is general and applies
to higher-order polygons with more than one internal Higgs propagator.

In summary the multi-particle high-energy cross-section has the behaviour of the type,

�
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⇠
(
R : for R . 1

1/R ! 0 : for R � 1 at s ! 1 .

(4.4)

The first line in the equation above is the result of Higgsplosion and the second line is the
consequence of the Higgspersion mechanism.

4.2 A comment on the Källén-Lehmann formula

It can also be helpful to address potential unitarity violations in the theory [23, 24] using the
Källén-Lehmann representation of the propagator for a scalar field �,

�
�
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Z 1

0
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2

⇢(s) , (4.5)

where ⇢(s) is the spectral density function, see e.g. [25],
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4This corresponds to the contribution of triangle diagrams to the gluon fusion production. The processes
from all higher-order polygons, with more than one intermediate Higgs propagator can be dealt with in a similar
fashion.
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Higgspersion [Khoze, MS ’17]

4.1 Unitarity

We will now argue that as soon as the cross-sections have reached the observable level, any
subsequent increase in the available energy will not result in the unbounded growth of the rates.
Instead, the cross-sections will actually decrease, and there will be no violation of perturbative
unitarity. For concreteness, consider the simplest process with a single intermediate o↵-shell
Higgs propagator.4 The amplitude for this process reads (cf. Eq. (4.1)):
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where �(s) is the energy-dependent total width of the Higgs at the scale s, and it will lead to
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and asymptotes to 1/R in the limit R ! 1. The inclusion of the decay width is of course
only relevant when �(s) becomes comparable to s/M
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. This conclusion is general and applies
to higher-order polygons with more than one internal Higgs propagator.

In summary the multi-particle high-energy cross-section has the behaviour of the type,

�

gg!n⇥h

⇠
(
R : for R . 1

1/R ! 0 : for R � 1 at s ! 1 .

(4.4)

The first line in the equation above is the result of Higgsplosion and the second line is the
consequence of the Higgspersion mechanism.

4.2 A comment on the Källén-Lehmann formula

It can also be helpful to address potential unitarity violations in the theory [26, 27] using the
Källén-Lehmann representation of the propagator for a scalar field �,
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4This corresponds to the contribution of triangle diagrams to the gluon fusion production. The processes
from all higher-order polygons, with more than one intermediate Higgs propagator can be dealt with in a similar
fashion.
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Higgsploding the Hierarchy Problem

which is essentially a single perturbation in terms of the self-energy.

This derivation, however, breaks down completely when the Im⌃(s) explodes rather than
falls o↵ at s ! 1, which is precisely the case of interest for our consideration. In this case the
contour in (4.11) cannot be closed up at infinity and the dispersion relation (4.11) is invalid. We
thus conclude that the formal justification of the perturbative Källén-Lehmann representation
for the propagator in (4.7) or equivalently (4.9) is meaningful only for a su�ciently well-behaved
imaginary part of the self-energy expression at large s. this sentence needs refining: When, on
the other hand, decay rates do not tend to vanish at infinity, one cannot use the dispersion
relation to restore the real part from the imaginary part of the self-energy by closing up the
contour, and the Källén-Lehmann representation in the form (4.7), (4.9) simply becomes invalid.
Hence the growing multi-particle decay rates do not necessarily imply the breakdown of unitarity
of the theory. In the previous sub-section we have already argued that the relevant physical
cross-sections in this case do not blow up and hence do not destroy unitarity either.

5 Higgsplosion of heavy states below their mass-threshold

To outline the Higgsplosion approach as a solution to the Hierarchy problem in the Standard
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where h is the Higgs boson. We need to specify here more what the properties of X are.
X appears here stable and decays like X ! hh are not possible, but rather processes like
X

⇤ ! Xhh. Just to specify the broad realm of applicability we should be very explicit.
Calculating the contribution to the Higgs boson mass from the scalar X, we find
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The reasoning above equally applies to any heavy modes, as far as they have a non-vanishing
interaction with the Higgs. These modes could be the heavy 1012 GeV sterile neutrinos which
are important for the standard thermal Leptogenesis [26, 27, 28], a heavy inflaton [29, 30], GUT-
scale particles [31, 32], flavons [33, 34], or the heavy degrees of freedom that would appear at
the f

a

' 1011 GeV scale relevant for the axion [35, 36, 37, 38].

At one-loop level, one can always estimate the contributions to the Higgs mass from the
heavy states of any spin with generic interactions with the Higgs boson using the Coleman-
Weinberg e↵ective potential,
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STr = Tr(�1)F is the supertrace and M

X

(h) denotes the Higgs-field-dependent contribution to
the heavy field mass in the h(x) background. The main point, as above, is that the integral
over the loop momenta is cut-o↵ at the relatively low scale

p
s

?

where the Higgsplosion of the
heavy states takes place.

It is remarkable that the Hierarchy problem introduced into the Standard Model by the
existence of a microscopic light Higgs boson is addressed in this approach by Higgsploding the
heavy states into the original light Higgs bosons. The underlying cause of the apparent problem
provides its own solution.

6 Conclusions

The discovery of the Higgs boson, roughly 50 years after its prediction, marked one of the great-
est successes of the SM. While its interactions with all other particles ensures the restoration
of perturbative unitarity in 2 ! 2 scattering processes, it was long argued that the presence
of a scalar particle in the theory could lead to unitarity violation in multi-Higgs production
processes already at energies of O(100) TeV. Further, the Higgs boson, as an elementary scalar
particle, su↵ers from the well-known Hierarchy problem. We have reexamined and connected
both issues, thereby providing a simultaneous solution to both questions: We introduced the
Higgsplosion mechanism, arguing that the rapid increase of the decay rate of very heavy or
highly energetic particles is a physical e↵ect, but that this e↵ect leads to Higgspersion, i.e.
it restores perturbative unitarity in multi-Higgs boson production processes. While the cross
section of mutli-Higgs production processes can still reach observable levels, its exponential
growth is avoided and the SM retains self-consistency to highest energies. Quantum corrections
of heavy particles to the Higgs boson’s mass are driving the Hierarchy problem. If however, the
heavy particle’s width increases rapidly beyond a certain energy threshold, these contributions
are tamed and the Hierarchy problem can be avoided.
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Hence, the contribution to the Higgs mass amounts to

and thus mends the Hierarchy problem by

X
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If Higgsplosion is not a mathematical artefact but realised in nature:

Energy

Multiplicity
Situation at tree-level

W

W

W

W

W
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W

Wγ
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W

W

WZ

W

W

W

W
W

W

W

WH

W

W

W

Wγ
W

W

W

WZ

+    Hierarchy problem (Loop level)

SM heals itself, retains self-consistency 
to very high energies and multiplicities
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Higgspersion

Higgsplosion



Summary

But you cannot be indifferent
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Higgs boson can be cause and cure for its 
Hierarchy Problem

Obvious question: 

If Higgsplosion realised in nature, what does it imply for 

physics beyond O(100) TeV?

You can join one of two camps

Believer
-> build O(100) TeV collider

Denier
-> work on QFT



VUB               The Fate of Naturalness      Michael Spannowsky             12.06.2017                   18


