## A Clockwork Tale

Daniele Teresi<br>daniele.teresi@ulb.ac.be

Service de Physique Théorique, Université Libre de Bruxelles, Belgium

# A Medieval Tale 

## DAniele Teresi

daniele.teresi@ulb.ac.be

Service de Physique Théorique, Université Libre de Bruxelles, Belgium

## Prologue:

## Making numbers small dynamically

## Naturalness from a relaxion [Graham, Kaplan, Rajendran, '15]

- slow-rolling pseudo NG boson: relaxion $\phi$, slope from $g \Lambda^{3} \phi$
- relaxion-dependent $H$ mass term: $\left(\Lambda^{2}-g \Lambda \phi\right) H^{\dagger} H$
- backreaction when $H$ vev: $f_{\pi}^{2} m_{\pi}^{2}(v) \cos (\phi / f)$
- $\Longrightarrow v \ll \Lambda$ dynamically selected:



## Clockworking the relaxion

- it requires tiny $g$, e.g. $g=O(v / \Lambda)^{4} \approx 10^{-50}$
- technically natural, NG shift symmetry for $g \rightarrow 0$, but still ...
- it requires trans-planckian $\Delta \phi$
- Solution: [Choi, Im, '15; Kaplan, Rattazzi, '15]
- $g$ from much larger period $F \gg f$ :

$\Longrightarrow g=\Lambda / F$
- $F=3^{N} f$ from clockwork chain:



## Clockworking the relaxion

- it requires tiny $g$, e.g. $g=O(v / \Lambda)^{4} \approx 10^{-50}$
- technically natural, NG shift symmetry for $g \rightarrow 0$, but still ...
- it requires trans-planckian $\Delta \phi$
- Solution: [Choi, Im, '15; Kaplan, Rattazzi, '15]
- $g$ from much larger period $F \gg f$ :

$$
\begin{aligned}
& -\mathcal{L} \supset\left[\Lambda^{2}-\Lambda^{2} \cos \left(\frac{\phi}{F}+\alpha\right)\right] H^{\dagger} H-\Lambda^{4} \cos \left(\frac{\phi}{F}+\alpha\right)-m_{B R}^{4}(v) \cos \frac{\phi}{f} \\
& \Longrightarrow g=\Lambda / F
\end{aligned}
$$

- $F=3^{N} f$ from clockwork chain:

$$
-\mathcal{L} \supset \epsilon\left(\Phi_{0}^{\dagger} \Phi_{1}^{3}+\Phi_{1}^{\dagger} \Phi_{2}^{3}+\ldots+\Phi_{N-1}^{\dagger} \Phi_{N}^{3}\right)+\frac{\phi_{1}}{\hat{f}} G \widetilde{G}+\frac{\phi_{N}}{\hat{f}} G \widetilde{G}
$$

## Get rid of the relaxion, keep the clockwork

- the last step itself is sufficient to generate hierarchies! [Giudice, McCullough, '16]
- clockwork mechanism $\rightarrow$ an elegant and economical way to generate tiny numbers/large hierarchies $X$ with only $\mathcal{O}(1)$ couplings and $N \sim \log X$ fields
- a framework for model building [Giudice, McCullough, '16], useful for:
- low-scale invisible axions [Giudice, McCullough, '16; Farina, Pappadopulo, Rompineve, Tesi, '16]
- hierarchy problem [Giudice, McCullough, '16]
- flavour puzzle?
- inflation [Kehagias, Riotto, '16]
- dark matter [Hambye, DT, Tytgat, '16] (used in this talk to explain main features)
- dark matter cosmologically stable if decays by $\operatorname{dim}-5\left(\Lambda \gg M_{P L}\right), \operatorname{dim}-6$ ( $\Lambda \sim M_{G U T}$ ), tiny couplings $\Longrightarrow$ all difficult to test
- clockwork mechanism $\rightarrow$ dark matter cosmologically stable although it decays into SM via $\mathcal{O}(1)$ interactions with TeV-scale particles!
- large interactions $\Longrightarrow$ dark matter is a thermal relic, i.e. a W\|MP


## Get rid of the relaxion, keep the clockwork

- the last step itself is sufficient to generate hierarchies! [Giudice, McCullough, '16]
- clockwork mechanism $\rightarrow$ an elegant and economical way to generate tiny numbers/large hierarchies $X$ with only $\mathcal{O}(1)$ couplings and $N \sim \log X$ fields
- a framework for model building [Giudice, McCullough, '16], useful for:
- low-scale invisible axions [Giudice, McCullough, '16; Farina, Pappadopulo, Rompineve, Tesi, '16]
- hierarchy problem [Giudice, McCullough, '16]
- flavour puzzle?
- inflation [Kehagias, Riotto, '16]
- dark matter [Hambye, DT, Tytgat, '16] (used in this talk to explain main features)
- dark matter cosmologically stable if decays by dim-5 $\left(\Lambda \gg M_{P L}\right)$, dim-6 ( $\Lambda \sim M_{G U T}$ ), tiny couplings $\Longrightarrow$ all difficult to test
- clockwork mechanism $\rightarrow$ dark matter cosmologically stable although it decays into SM via $\mathcal{O}(1)$ interactions with TeV -scale particles!
- large interactions $\Longrightarrow$ dark matter is a thermal relic, i.e. a WIMP

Chapter 1:
How to do multiplications in QFT

## The clockwork mechanism

Based on the simple observation that:
$1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2 \times \ldots \times 1 / 2 \times$ can easily be tiny

## Use a chain of N fields


if clever symmetry

$\qquad$

For fermions use chiral symmetries

light $N \approx R_{0}$ $\qquad$ $N-L_{S M} \sim \mathbf{1} / \mathbf{q}^{\mathrm{N}}$

## The clockwork mechanism

Based on the simple observation that:
$1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2 \times \ldots \times 1 / 2 \quad$ can easily be tiny

Use a chain of N fields
$\phi_{0} \xrightarrow{1 / q} \phi_{1} \xrightarrow{1 / q} \phi_{2} \xrightarrow{1 / q} \phi_{3} \frac{1 / q}{l} \cdots \frac{1 / q}{} \phi_{N}-\quad$ SM
if clever symmetry $\longrightarrow \quad \phi_{\text {light }} \approx \phi_{0} \quad \Longrightarrow \quad \phi_{\text {light }}-\mathbf{S M} \sim \mathbf{1} / \mathbf{q}^{\mathbf{N}} \quad(q>1)$

For fermions use chiral symmetries

light $N \approx R_{0}$

## The clockwork mechanism

Based on the simple observation that:
$1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2 \times \ldots \times 1 / 2 \quad$ can easily be tiny

Use a chain of N fields

$$
\phi_{0} \xrightarrow{1 / q} \phi_{1} \xrightarrow{1 / q} \phi_{2} \quad \frac{1 / q}{} \phi_{3} \quad \frac{1 / q}{l} \cdots \quad \begin{aligned}
& 1 / q
\end{aligned} \phi_{N} \_\mathbf{S M}
$$

$$
\text { if clever symmetry } \quad \longrightarrow \quad \phi_{\text {light }} \approx \phi_{0} \quad \Longrightarrow \quad \phi_{\text {light }}-\mathbf{S M} \sim \mathbf{1} / \mathbf{q}^{\mathbf{N}} \quad(q>1)
$$

For fermions use chiral symmetries

$$
R_{0} \xrightarrow{m} \underbrace{L_{1} \quad R_{1}}_{q m} \stackrel{m}{L_{2} \quad R_{2}} \stackrel{m}{L_{2} \quad \underbrace{L_{3} \quad R_{3}}_{q m} \quad m} \cdots \underbrace{m}_{q m} \underbrace{L_{N} \quad R_{N}}-L_{S M}
$$

light $N \approx R_{0} \quad \Longrightarrow \quad N-L_{S M} \sim \mathbf{1} / \mathbf{q}^{\mathbf{N}}$

## Clockwork scalar

- For scalars, use a chain of $N+1$ symmetries: $U(1)_{0} \times U(1)_{1} \times \ldots \times U(1)_{N}$
- broken by $N$ spurions $m_{k}^{2} \equiv m^{2}$ with $\quad Q_{k}\left(m_{k}^{2}\right)=1, \quad Q_{k+1}\left(m_{k}^{2}\right)=-q \quad(q>1)$
- $\mathcal{L}=-\frac{f^{2}}{2} \sum_{k=0}^{N}\left|\partial U_{k}\right|^{2}+\frac{m^{2} f^{2}}{2} \sum_{k=0}^{N-1}\left(U_{k}^{\dagger} U_{k+1}^{q}+\right.$ h.c. $)$
- for the Goldstones $\phi_{k}, U_{k} \propto e^{i \phi_{k} / f}: \quad-\mathcal{L} \supset \frac{m^{2}}{2} \sum_{k=0}^{N-1}\left(\phi_{k}-q \phi_{k+1}\right)^{2}$ - unbroken $U(1)$ with $\mathcal{Q}=\sum_{k} \frac{Q_{k}}{q^{k}}$ $\Rightarrow \quad$ massless $\varphi_{0}=\mathcal{N} \sum \frac{\varphi_{t}}{q^{r}}$ - For instance, if $\mathcal{L} \supset \frac{\phi_{N}}{16 \pi^{2} f} G \widetilde{G}$


## Clockwork scalar

- For scalars, use a chain of $N+1$ symmetries: $U(1)_{0} \times U(1)_{1} \times \ldots \times U(1)_{N}$
- broken by $N$ spurions $m_{k}^{2} \equiv m^{2}$ with $\quad Q_{k}\left(m_{k}^{2}\right)=1, \quad Q_{k+1}\left(m_{k}^{2}\right)=-q \quad(q>1)$
- $\mathcal{L}=-\frac{f^{2}}{2} \sum_{k=0}^{N}\left|\partial U_{k}\right|^{2}+\frac{m^{2} f^{2}}{2} \sum_{k=0}^{N-1}\left(U_{k}^{\dagger} U_{k+1}^{q}+\right.$ h.c. $)$
- for the Goldstones $\phi_{k}, U_{k} \propto e^{i \phi_{k} / f}: \quad-\mathcal{L} \supset \frac{m^{2}}{2} \sum_{k=0}^{N-1}\left(\phi_{k}-q \phi_{k+1}\right)^{2}$
- unbroken $U(1)$ with $\mathcal{Q}=\sum_{k} \frac{Q_{k}}{q^{k}} \quad \Longrightarrow \quad$ massless $\varphi_{0}=\mathcal{N} \sum_{k} \frac{\phi_{k}}{q^{k}}$
- For instance, if $\mathcal{L} \supset \frac{\phi_{N}}{16 \pi^{2} f} G \widetilde{G} \quad \Longrightarrow \quad \frac{\varphi_{0}}{16 \pi^{2} F} G \widetilde{G} \quad$ with $\quad F=f \frac{q^{N}}{\mathcal{N}} \gg f$


## Clockwork dark matter [Hambye, dt, Tytgat, '16]

- chiral symmetry group:
$U(1)_{R_{0}} \times U(1)_{L_{1}} \times U(1)_{R_{1}} \times \ldots \times U(1)_{L_{N}} \times U(1)_{R_{N}} \quad$ with $\quad U(1)_{R_{N}} \equiv U(1)_{L_{S M}}$
- scalars:
$S_{i} \sim(-1,1)$ under $U(1)_{R_{i}} \times U(1)_{L_{i+1}}$
$C_{i} \sim(1,-1)$ under $U(1)_{L_{i}} \times U(1)_{R_{i}}$
- chain of fields:
- clockwork mechanism when scalars acquire a vev:

$$
m=y_{s}\left\langle S_{i}\right\rangle \quad q m=y_{c}\left\langle C_{i}\right\rangle
$$

- Majorana mass $m_{N}$ for $R_{0}$, eigenstate $N \approx R_{0}$ is the dark-matter candidate


## Clockwork dark matter [Hambye, dt, Tytgat, '16]

- chiral symmetry group:
$U(1)_{R_{0}} \times U(1)_{L_{1}} \times U(1)_{R_{1}} \times \ldots \times U(1)_{L_{N}} \times U(1)_{R_{N}} \quad$ with $\quad U(1)_{R_{N}} \equiv U(1)_{L_{S M}}$
- scalars:

$$
S_{i} \sim(-1,1) \text { under } U(1)_{R_{i}} \times U(1)_{L_{i+1}} \quad C_{i} \sim(1,-1) \text { under } U(1)_{L_{i}} \times U(1)_{R_{i}}
$$

- chain of fields:

$$
\mathbf{R}_{\mathbf{0}} \xlongequal{S_{1}} L_{1} \xlongequal{C_{1}} R_{1} \xlongequal{S_{2}} L_{2} \xlongequal{C_{2}} \cdots \cdots \begin{aligned}
& C_{N} \\
& R_{N}
\end{aligned}
$$

- clockwork mechanism when scalars acquire a vev:

$$
m=y_{S}\left\langle S_{i}\right\rangle \quad q m=y_{C}\left\langle C_{i}\right\rangle
$$

- Majorana mass $m_{N}$ for $R_{0}$, eigenstate $N \approx R_{0}$ is the dark-matter candidate


## Clockwork fermion

- the Lagrangian is

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\text {kinetic }}-\sum_{i=1}^{N}\left(y_{S} S_{i} \bar{L}_{i} R_{i-1}-y_{C} C_{i} \bar{L}_{i} R_{i}+\text { h.c. }\right) \\
& -\left(y \bar{L}_{S M} \widetilde{H} R_{N}+\text { h.c. }\right)-\frac{1}{2}\left(m_{N} \overline{R_{0}^{c}} R_{0}+\text { h.c. }\right)
\end{aligned}
$$

- after the scalars acquire vevs $m=y_{S}\left\langle S_{i}\right\rangle, \quad q m=y_{C}\left\langle C_{i}\right\rangle$ :

$$
\mathcal{L} \supset-m \sum_{i=1}^{N}\left(\bar{L}_{i} R_{i-1}-q \bar{L}_{i} R_{i}\right)-\frac{m_{N}}{2} \overline{R_{0}^{c}} R_{0}+\text { h.c. }
$$

- for $m_{N}=0$, the "right-handed" mass matrix satisfies $M^{\dagger} M \equiv M_{\text {scalar }}^{2}$
- clockwork mechanism for $m_{N} \lesssim q m \quad($ for $q \gg 1)$


## Chapter 2:

How clockwork matter became dark

## The spectrum

Take $q \gg 1$ for simplicity
$\mathrm{N}=15, \mathrm{q}=10 ., m_{N} / \mathrm{m}=5.0$

- the dark-matter Majorana fermion $N$ with mass $\approx m_{N}$ :

$$
N \approx R_{0}+\frac{1}{q^{1}} R_{1}+\frac{1}{q^{2}} R_{2}+\ldots+\frac{1}{q^{N}} R_{N}
$$

- a band of $N$ pseudo-Dirac $\psi_{i}$ with mass $\approx q m$ :

$$
\psi_{i} \approx \frac{1}{\sqrt{N}} \sum_{k} \mathcal{O}(1) L_{k}+\mathcal{O}(1) R_{k}
$$

- $N$ scalars $S_{i}$ and $C_{i}$ expected in the same mass range (not necessarily dynamic, but not discussed here)


Relevant sizeable interactions:

## The spectrum

Take $q \gg 1$ for simplicity

$$
\mathrm{N}=15, \mathrm{q}=10 ., m_{N} / \mathrm{m}=5.0
$$

- the dark-matter Majorana fermion $N$ with mass $\approx m_{N}$ :

$$
N \approx R_{0}+\frac{1}{q^{1}} R_{1}+\frac{1}{q^{2}} R_{2}+\ldots+\frac{1}{q^{N}} R_{N}
$$

- a band of $N$ pseudo-Dirac $\psi_{i}$ with mass $\approx q m$ :

$$
\psi_{i} \approx \frac{1}{\sqrt{N}} \sum_{k} \mathcal{O}(1) L_{k}+\mathcal{O}(1) R_{k}
$$

- $N$ scalars $S_{i}$ and $C_{i}$ expected in the same mass range (not necessarily dynamic, but not discussed here)


Relevant sizeable interactions:


## Cosmological (meta)stability of dark matter

$N$ can decay, e.g. $N \rightarrow \nu h, \nu Z, l W$, but
The coupling of dark matter to SM fermions is clockwork suppressed:


Dark matter cosmologically stable
The decay lifetime of $N$ longer than the age of the Universe with $O(1)$ couplings and TeV-scale states

- indirect detection $\Longrightarrow q^{2 N}>1.5 \times 10^{50}\left(\frac{m_{N}}{\mathrm{GeV}}\right) y^{2}$ for example: $m_{N} \sim 100 \mathrm{GeV}, y \sim 1, q \sim 10, N \sim 26$
- effect of clockwork gears $\psi_{j}$ in loop diagrams also clockwork-suppressed


## Cosmological (meta)stability of dark matter

$N$ can decay, e.g. $N \rightarrow \nu h, \nu Z, l W$, but
The coupling of dark matter to SM fermions is clockwork suppressed:

$$
\mathcal{L} \supset-\frac{y}{q^{N}} \bar{L}_{S M} \widetilde{H} N_{R}
$$

Dark matter cosmologically stable
The decay lifetime of $N$ longer than the age of the Universe with $\mathcal{O}(1)$ couplings and $\lesssim$ TeV-scale states

## Cosmological (meta)stability of dark matter

$N$ can decay, e.g. $N \rightarrow \nu h, \nu Z, l W$, but
The coupling of dark matter to SM fermions is clockwork suppressed:

$$
\mathcal{L} \supset-\frac{y}{q^{N}} \bar{L}_{S M} \widetilde{H} N_{R}
$$

## Dark matter cosmologically stable

The decay lifetime of $N$ longer than the age of the Universe with $\mathcal{O}(1)$ couplings and $\lesssim$ TeV-scale states

- indirect detection $\Longrightarrow q^{2 N}>1.5 \times 10^{50}\left(\frac{m_{N}}{\mathrm{GeV}}\right) y^{2}$ for example: $m_{N} \sim 100 \mathrm{GeV}, y \sim 1, q \sim 10, N \sim 26$
- effect of clockwork gears $\psi_{j}$ in loop diagrams also clockwork-suppressed


## Scenario A: $m_{S}<m_{N}$

Dominant process:

from $N \sim R_{0}, \Psi_{j} \supset L_{1}$ and $y_{S} S_{1} \bar{L}_{1} R_{0}$
not clockwork-suppressed!
$\Longrightarrow \mathbf{N}$ is a WIMP
perturbative $y_{S}<\sqrt{4 \pi} \simeq 3.5$
$\Longrightarrow \mathbf{N}$ and $\psi_{j}$ light enough

$$
m_{S_{1}}=150 \mathrm{GeV}
$$


$y_{S}$ needed for correct $\Omega_{D M}$

## Scenario B: $m_{N}<m_{S}$ and $2 m_{N}<m_{S}+m_{h}$

Dominant process:

$\theta_{S} \lesssim 0.4$ from colliders
$y_{s}$ non-perturbative for universal $\theta_{s}$ : $\theta_{S} \lesssim 0.4 / \sqrt{N}$
it works also near the $h$ and $S$ resonances, for universal $\theta_{S}$ too

$y_{s} \theta_{s}$ needed for correct $\Omega_{D M}$

## Other limits and prospects

- Indirect detection: annihilation is p-wave, but decays $N \rightarrow h \nu$ monochromatic
- $\psi_{j}$ in the hundreds of GeV range, coupled via $y \bar{L}_{S M} H R_{N}$ and $\psi_{j} \supset R_{N}$ $\Longrightarrow$ pseudo-Dirac RH neutrinos in the observable range, y sizeable
- EWPT: $\left|B_{l v,}\right|^{2} \equiv v^{2} v^{2} /\left(2 m^{2}\right) \leqq 10^{-3}$
- LFV: $B R(\mu \rightarrow e \gamma) \approx 8 \times 10^{-4}\left|B_{e \Psi}\right|^{2}\left|B_{\mu \Psi}\right|^{2}<4.2 \times 10^{-13}$
- direct L-conserving searches: up to $m_{\psi} \approx 200 \mathrm{GeV}$ with $300 \mathrm{fb}^{-1}$ [Das, Dev, Okada, '14]
- if $m_{N} \ll m^{\text {I }}$-violating searches: un to $m \approx 300 \mathrm{GeV}$ with $300 \mathrm{fb}^{-1}$ [Deppisch, Dev, Pilaftsis, '15]
- In scenario B $S_{1}$ needs to have large mixing with $h$, in A it can $\Longrightarrow$ limits and searches for scalar singlets [Falkoweki, Gross, Lehedev, '15. Robens, Stefaniak. 155]
- for $m_{S}<500 \mathrm{GeV}: \theta_{S}<0.3-0.4$ from direct searches
- for $m_{S}>500 \mathrm{GeV}: \theta_{S} \lesssim 0.3-0.4$ from FWPT


## Other limits and prospects

- Indirect detection: annihilation is p-wave, but decays $N \rightarrow h \nu$ monochromatic
- $\psi_{j}$ in the hundreds of GeV range, coupled via $y \bar{L}_{S M} H R_{N}$ and $\psi_{j} \supset R_{N}$
$\Longrightarrow$ pseudo-Dirac RH neutrinos in the observable range, y sizeable
- EWPT: $\left|B_{l \psi}\right|^{2} \equiv y^{2} v^{2} /\left(2 m_{\psi}^{2}\right) \lesssim 10^{-3}$
- LFV: $B R(\mu \rightarrow e \gamma) \approx 8 \times 10^{-4}\left|B_{e \Psi}\right|^{2}\left|B_{\mu \Psi}\right|^{2}<4.2 \times 10^{-13}$
- direct L -conserving searches: up to $m_{\psi} \approx 200 \mathrm{GeV}$ with $300 \mathrm{fb}^{-1}$ [Das, Dev, Okada, '14]
- if $m_{N} \ll m_{\psi}$ L-violating searches: up to $m_{\psi} \approx 300 \mathrm{GeV}$ with $300 \mathrm{fb}^{-1}$ [Deppisch, Dev, Pilaftsis, '15]
- In scenario B $S_{1}$ needs to have large mixing with $h$, in A it can $\Longrightarrow$ limits and searches for scalar singlets [Falkowski, Gross, Lebedev, '15; Robens, Stefaniak, '15]
- for $m_{S}<500 \mathrm{GeV}: \theta_{S}<0.3-0.4$ from direct searches
- for $m_{S}>500 \mathrm{GeV}: \theta_{S} \lesssim 0.3-0.4$ from EWPT


## Other limits and prospects

- Indirect detection: annihilation is p-wave, but decays $N \rightarrow h \nu$ monochromatic
- $\psi_{j}$ in the hundreds of GeV range, coupled via $y \bar{L}_{S M} H R_{N}$ and $\psi_{j} \supset R_{N}$ $\Longrightarrow$ pseudo-Dirac RH neutrinos in the observable range, y sizeable
- EWPT: $\left|B_{l \psi}\right|^{2} \equiv y^{2} v^{2} /\left(2 m_{\psi}^{2}\right) \lesssim 10^{-3}$
- LFV: $B R(\mu \rightarrow e \gamma) \approx 8 \times 10^{-4}\left|B_{e \Psi}\right|^{2}\left|B_{\mu \Psi}\right|^{2}<4.2 \times 10^{-13}$
- direct L-conserving searches: up to $m_{\psi} \approx 200 \mathrm{GeV}$ with $300 \mathrm{fb}^{-1}$ [Das, Dev, Okada, '14]
- if $m_{N} \ll m_{\psi}$ L-violating searches: up to $m_{\psi} \approx 300 \mathrm{GeV}$ with $300 \mathrm{fb}^{-1}$ [Deppisch, Dev, Pilaftsis, '15]
- In scenario B $S_{1}$ needs to have large mixing with $h$, in A it can
$\Longrightarrow$ limits and searches for scalar singlets [Falkowski, Gross, Lebedev, '15; Robens, Stefaniak, '15]
- for $m_{S}<500 \mathrm{GeV}: \theta_{S}<0.3-0.4$ from direct searches
- for $m_{S}>500 \mathrm{GeV}: \theta_{S} \lesssim 0.3-0.4$ from EWPT


## Majorana neutrino masses [Hambye, dt, Tytgat, '16]

- SM leptons interact with TeV -scale $\psi_{i}$ with large Yukawas $\Longrightarrow$ huge $m_{\nu}$ ???
- Clockwork at work: if there were no $R_{0} \Longrightarrow$ no chiral partner for $\nu \mathrm{s}$ but effect of $R_{0}$ has to go through the whole clockwork chain:

$$
m_{\nu} \simeq \frac{m_{D}^{2}}{q^{2 N} m_{N}}
$$

- suppression here is smaller than for DM: $q=10, m_{N}=1 \mathrm{TeV} \Longrightarrow N \approx 7$
$-\geq 2$ nonzero $m_{\nu} \Longrightarrow$ at least 2 clockwork chains
- a suggestive possibility: 1 chain for dark matter, 2 chains for neutrino masses
-     + resonant leptogenesis? Starting from 2 degenerate, a small mass splitting can be generated by interactions with the clockwork gears...
- many model-building variants (not discussed here)


## Majorana neutrino masses [Hambye, dt, Tytgat, '16]

- SM leptons interact with TeV-scale $\psi_{i}$ with large Yukawas $\Longrightarrow$ huge $m_{\nu}$ ???
- Clockwork at work: if there were no $R_{0} \Longrightarrow$ no chiral partner for $\nu \mathrm{s}$ but effect of $R_{0}$ has to go through the whole clockwork chain:

$$
m_{\nu} \simeq \frac{m_{D}^{2}}{q^{2 N} m_{N}}
$$

- suppression here is smaller than for DM: $q=10, m_{N}=1 \mathrm{TeV} \Longrightarrow N \approx 7$
- $\geq 2$ nonzero $m_{\nu} \Longrightarrow$ at least 2 clockwork chains
- a suggestive possibility: 1 chain for dark matter, 2 chains for neutrino masses
-     + resonant leptogenesis? Starting from 2 degenerate, a small mass splitting can be generated by interactions with the clockwork gears...
- many model-building variants (not discussed here)

Chapter 3:
One more dimension

## Clockwork from a flat extra dimension [Hambye, DT, Tytgat, '16]

- the clockwork Lagrangian can come from a discretized 5th dimension
- flat-spacetime construction for fermion:
- 1 Dirac fermion with mass M in the 5D bulk $\rightarrow L_{i}, R_{i}$

-     + Wilson term $-\frac{a}{2} \partial_{Z} \bar{\psi} \partial_{Z} \psi=-\frac{a}{2} \partial_{Z} \bar{L} \partial_{Z} R$ removes 1 hopping direction
- to get light mode, 1 chiral fermion on one brane $\rightarrow R_{0}$
(or Dirichlet b.c. $L(0)=0$ )
- SM chiral leptons on the other brane $\rightarrow L_{S M}$

- clockwork with $m=\frac{1}{a}$



## Clockwork from a flat extra dimension [Hambye, dt, Tytgat, '16]

- the clockwork Lagrangian can come from a discretized 5th dimension
- flat-spacetime construction for fermion:
- 1 Dirac fermion with mass M in the 5D bulk $\rightarrow L_{i}, R_{i}$

$$
\mathcal{L}_{5} \supset \bar{\psi}\left(i \overleftrightarrow{\phi_{D}}-M\right) \psi=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+\left[\frac{1}{2}\left(\bar{L} \partial_{Z} R-\left(\partial_{Z} \bar{L}\right) R\right)-M \bar{L} R+\text { h.c. }\right]
$$

-     + Wilson term $-\frac{a}{2} \partial_{Z} \bar{\psi} \partial_{Z} \psi=-\frac{a}{2} \partial_{Z} \bar{L} \partial_{Z} R$ removes 1 hopping direction
- to get light mode, 1 chiral fermion on one brane $\rightarrow R_{0}$ (or Dirichlet b.c. $L(0)=0$ )
- SM chiral leptons on the other brane $\rightarrow L_{S M}$
- discretized Lagrangian $\mathcal{L} \supset$

- clockwork with $m=\frac{1}{a}$


## Clockwork from a flat extra dimension [Hambye, dt, Tytgat, '16]

- the clockwork Lagrangian can come from a discretized 5th dimension
- flat-spacetime construction for fermion:
- 1 Dirac fermion with mass M in the 5D bulk $\rightarrow L_{i}, R_{i}$

$$
\mathcal{L}_{5} \supset \bar{\psi}\left(i \overleftrightarrow{\phi_{D}}-M\right) \psi=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+\left[\frac{1}{2}\left(\bar{L} \partial_{Z} R-\left(\partial_{Z} \bar{L}\right) R\right)-M \bar{L} R+\text { h.c. }\right]
$$

-     + Wilson term $-\frac{a}{2} \partial_{Z} \bar{\psi} \partial_{Z} \psi=-\frac{a}{2} \partial_{Z} \bar{L} \partial_{Z} R$ removes 1 hopping direction
- to get light mode, 1 chiral fermion on one brane $\rightarrow R_{0}$ (or Dirichlet b.c. $L(0)=0$ )
- SM chiral leptons on the other brane $\rightarrow L_{S M}$
- discretized Lagrangian $\mathcal{L} \supset \sum_{i=0}^{N-1} \frac{1}{a} \bar{L}_{i+1} R_{i}-\sum_{i=1}^{N}\left(\frac{1}{a}+M\right) \bar{L}_{i} R_{i}$
- clockwork with $m=\frac{1}{a}, \quad q m=\frac{1}{a}+M, \quad q^{N}=\left(1+\frac{\pi R M}{N}\right)^{N} \rightarrow e^{\pi R M}$


## Clockwork from the metric [Giudice, McCullough, '16]

- curved-spacetime construction for scalar:
- curved metric $d s^{2}=X(|Z|) d x^{2}+Y(|Z|) d Z^{2}$
- massless scalar in the 5D bulk:

$$
\mathcal{S}=-2 \int_{0}^{R} d Z \int d^{4} x \sqrt{-g} \frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi=-\int_{0}^{R} d Z \int d^{4} x X^{2} Y^{1 / 2}\left[\frac{\left(\partial_{\mu} \phi\right)^{2}}{X}+\frac{\left(\partial_{Z} \phi\right)^{2}}{Y}\right]
$$

- discretized Lagrangian:

$$
\mathcal{L} \supset \sum_{j=0}^{N-1} m_{j}^{2}\left(\phi_{j}-q_{j} \phi_{j+1}\right)^{2} \quad \text { with } m_{j}^{2}=\frac{X_{j}}{a^{2} Y_{j}}, \quad q_{j}=\frac{X_{j}^{1 / 2} Y_{j}^{1 / 4}}{X_{j+1}^{1 / 2} Y_{j+1}^{1 / 4}}
$$

- clockwork if $X_{j} \propto Y_{j}$
finite for $N \rightarrow \infty$ if $X_{j} \propto Y_{j} \propto e^{-\frac{4}{3} k a j}$


## Clockwork from the metric [Giudice, McCullough, '16]

- curved-spacetime construction for scalar:
- curved metric $d s^{2}=X(|Z|) d x^{2}+Y(|Z|) d Z^{2}$
- massless scalar in the 5D bulk:

$$
\mathcal{S}=-2 \int_{0}^{R} d Z \int d^{4} x \sqrt{-g} \frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi=-\int_{0}^{R} d Z \int d^{4} x X^{2} Y^{1 / 2}\left[\frac{\left(\partial_{\mu} \phi\right)^{2}}{X}+\frac{\left(\partial_{Z} \phi\right)^{2}}{Y}\right]
$$

- discretized Lagrangian:

$$
\mathcal{L} \supset \sum_{j=0}^{N-1} m_{j}^{2}\left(\phi_{j}-q_{j} \phi_{j+1}\right)^{2} \quad \text { with } m_{j}^{2}=\frac{X_{j}}{a^{2} Y_{j}}, \quad q_{j}=\frac{X_{j}^{1 / 2} Y_{j}^{1 / 4}}{X_{j+1}^{1 / 2} Y_{j+1}^{1 / 4}}
$$

- clockwork if $X_{j} \propto Y_{j}$ finite for $N \rightarrow \infty$ if $X_{j} \propto Y_{j} \propto e^{-\frac{4}{3} k a j}$
- $m=\frac{1}{a}, \quad q=e^{k a}, \quad q^{N}=e^{\pi k R}$


## The clockwork metric

- in the continuum: $d s^{2}=e^{\frac{4}{3} k|Z|}\left(d x^{2}+d Z^{2}\right)$
- Kaluza-Klein modes for massless scalar

$$
\begin{array}{ll}
\psi_{0}(Z) \simeq \sqrt{k \pi R} e^{-k \pi R} & \Longrightarrow \frac{d P}{d Z} \propto e^{2 k Z} \\
\psi_{n}(Z)=e^{-k Z} \times \text { oscillatory } & \Longrightarrow \frac{d P}{d Z}=\text { oscillatory }
\end{array}
$$

- what about Large Extra Dimension or Randall-Sundrum?



## The clockwork metric

- in the continuum: $d s^{2}=e^{\frac{4}{3} k|Z|}\left(d x^{2}+d Z^{2}\right)$
- Kaluza-Klein modes for massless scalar

$$
\begin{array}{ll}
\psi_{0}(Z) \simeq \sqrt{k \pi R} e^{-k \pi R} & \Longrightarrow \frac{d P}{d Z} \propto e^{2 k Z} \\
\psi_{n}(Z)=e^{-k Z} \times \text { oscillatory } & \Longrightarrow \frac{d P}{d Z}=\text { oscillatory }
\end{array}
$$

- what about Large Extra Dimension or Randall-Sundrum?

|  | $m_{j}$ | $q_{j}$ |
| :---: | :---: | :---: |
| LED | $\frac{1}{a}$ | 1 |
| RS | $\frac{1}{a} e^{-\hat{k} a j}$ | $e^{\hat{k} a}$ |
| clockwork | $\frac{1}{a}$ | $e^{\hat{k} a}$ |

## Chapter 4: <br> Clockwork naturalness

## Clockwork graviton

- discrete clockwork: $N+1$ copies of 4D gravity $g_{j}^{\mu \nu}$
- linear approximation: $g_{j}^{\mu \nu}=\eta_{j}^{\mu \nu}+2 h_{j}^{\mu \nu} / M_{j}$
- clockwork Pauli-Fierz mass terms

$$
\mathcal{L}=-\frac{m^{2}}{2} \sum_{j=0}^{N-1}\left(\left[h_{j}^{\mu \nu}-q h_{j+1}^{\mu \nu}\right]^{2}-\left[\eta_{\mu \nu}\left(h_{j}^{\mu \nu}-q h_{j+1}^{\mu \nu}\right)\right]^{2}\right)
$$

- invariant under $h_{j}^{\mu \nu} \rightarrow h_{j}^{\mu \nu}+\frac{1}{q^{j}}\left(\partial^{\mu} A^{\nu}+\partial^{\nu} A^{\mu}\right)$
- $\Longrightarrow$ massless graviton $\mathfrak{h}_{0}^{\mu \nu}$ localized at $j=0$ :

- but... multi-gravity theories are dodgy $\rightarrow$ continuum limit


## Clockwork graviton

- discrete clockwork: $N+1$ copies of 4D gravity $g_{j}^{\mu \nu}$
- linear approximation: $g_{j}^{\mu \nu}=\eta_{j}^{\mu \nu}+2 h_{j}^{\mu \nu} / M_{j}$
- clockwork Pauli-Fierz mass terms

$$
\mathcal{L}=-\frac{m^{2}}{2} \sum_{j=0}^{N-1}\left(\left[h_{j}^{\mu \nu}-q h_{j+1}^{\mu \nu}\right]^{2}-\left[\eta_{\mu \nu}\left(h_{j}^{\mu \nu}-q h_{j+1}^{\mu \nu}\right)\right]^{2}\right)
$$

- invariant under $h_{j}^{\mu \nu} \rightarrow h_{j}^{\mu \nu}+\frac{1}{q^{j}}\left(\partial^{\mu} A^{\nu}+\partial^{\nu} A^{\mu}\right)$
- $\Longrightarrow$ massless graviton $\mathfrak{h}_{0}^{\mu \nu}$ localized at $j=0$ :

$$
\frac{1}{M_{N}} h_{N}^{\mu \nu} T_{\mu \nu} \longrightarrow \frac{1}{M_{P}} \mathfrak{h}_{0}^{\mu \nu} T_{\mu \nu} \quad \text { with } \quad M_{P}=\frac{q^{N} M_{N}}{\mathcal{N}}
$$

- but... multi-gravity theories are dodgy $\rightarrow$ continuum limit


## Clockwork graviton

- discrete clockwork: $N+1$ copies of 4D gravity $g_{j}^{\mu \nu}$
- linear approximation: $g_{j}^{\mu \nu}=\eta_{j}^{\mu \nu}+2 h_{j}^{\mu \nu} / M_{j}$
- clockwork Pauli-Fierz mass terms

$$
\mathcal{L}=-\frac{m^{2}}{2} \sum_{j=0}^{N-1}\left(\left[h_{j}^{\mu \nu}-q h_{j+1}^{\mu \nu}\right]^{2}-\left[\eta_{\mu \nu}\left(h_{j}^{\mu \nu}-q h_{j+1}^{\mu \nu}\right)\right]^{2}\right)
$$

- invariant under $h_{j}^{\mu \nu} \rightarrow h_{j}^{\mu \nu}+\frac{1}{q^{j}}\left(\partial^{\mu} A^{\nu}+\partial^{\nu} A^{\mu}\right)$
- $\Longrightarrow$ massless graviton $\mathfrak{h}_{0}^{\mu \nu}$ localized at $j=0$ :

$$
\frac{1}{M_{N}} h_{N}^{\mu \nu} T_{\mu \nu} \longrightarrow \frac{1}{M_{P}} \mathfrak{h}_{0}^{\mu \nu} T_{\mu \nu} \quad \text { with } \quad M_{P}=\frac{q^{N} M_{N}}{\mathcal{N}}
$$

- but... multi-gravity theories are dodgy $\rightarrow$ continuum limit


## The metric from the linear dilaton

- we want massless 5D gravity with a clockwork metric $d s^{2}=e^{\frac{4}{3} k|Z|}\left(d x^{2}+d Z^{2}\right)$
- clockwork gravity $\rightarrow$ metric should not be treated as a background
- can we obtain the metric?
- linear dilaton model (Jordan frame):
$S=\int d^{4} x d Z \sqrt{-g} \frac{M_{5}^{3}}{2} e^{S}\left(\mathcal{R}+g^{M N N} \partial_{M} S \partial_{N} S+4 k^{2}\right)+$ brane $\Lambda s$
- $k$ breaks global Weyl $g_{M N} \rightarrow e^{-2 \alpha} g_{M N}, S \rightarrow S+3 \alpha$
- go to Einstein frame, solve EoMs:
- in Jordan frame $g_{M N}=\eta_{M N}$, but Planck mass exponentially varying


## The metric from the linear dilaton

- we want massless 5D gravity with a clockwork metric $d s^{2}=e^{\frac{4}{3} k|Z|}\left(d x^{2}+d Z^{2}\right)$
- clockwork gravity $\rightarrow$ metric should not be treated as a background
- can we obtain the metric?
- linear dilaton model (Jordan frame):

$$
\mathcal{S}=\int d^{4} x d Z \sqrt{-g} \frac{M_{5}^{3}}{2} e^{S}\left(\mathcal{R}+g^{M N} \partial_{M} S \partial_{N} S+4 k^{2}\right)+\text { brane } \Lambda s
$$

- $k$ breaks global Weyl $g_{M N} \rightarrow e^{-2 \alpha} g_{M N}, S \rightarrow S+3 \alpha$
- go to Einstein frame, solve EoMs:
- in Jordan frame $g_{M N}=\eta_{M N}$, but Planck mass exponentially varying


## The metric from the linear dilaton

- we want massless 5D gravity with a clockwork metric $d s^{2}=e^{\frac{4}{3} k|Z|}\left(d x^{2}+d Z^{2}\right)$
- clockwork gravity $\rightarrow$ metric should not be treated as a background
- can we obtain the metric?
- linear dilaton model (Jordan frame):

$$
\mathcal{S}=\int d^{4} x d Z \sqrt{-g} \frac{M_{5}^{3}}{2} e^{s}\left(\mathcal{R}+g^{M N} \partial_{M} S \partial_{N} S+4 k^{2}\right)+\text { brane } \Lambda s
$$

- $k$ breaks global Weyl $g_{M N} \rightarrow e^{-2 \alpha} g_{M N}, \quad S \rightarrow S+3 \alpha$
- go to Einstein frame, solve EoMs: $\quad S=2 k|Z|, \quad d s^{2}=e^{\frac{4}{3} k|Z|}\left(d x^{2}+d Z^{2}\right)$
- in Jordan frame $g_{M N}=\eta_{M N}$, but Planck mass exponentially varying


## A solution to the hierarchy problem

- effective 4D Planck mass: $M_{P}^{2}=2 M_{5}^{2} \int_{0}^{\pi R} d Z e^{2 K Z}=\frac{M_{5}^{3}}{k}\left(e^{2 \pi k R}-1\right)$
- 4D graviton fluctuations: $d s^{2}=e^{\frac{4}{3} k|l|}\left[\left(\eta_{\mu \nu}+\frac{2}{M_{5}^{3 / 2}} h_{\mu \nu}\right) d x^{\mu} d x^{\nu}+d Z^{2}\right]$
- action: $\mathcal{S}=-\frac{1}{2} \int d^{4} x d Z e^{2 k| |]}\left[\left(\partial_{\lambda} h_{\mu \nu}\right)\left(\partial^{\lambda} h^{\mu \nu}\right)+\left(\partial_{z} h_{\mu \nu}\right)\left(\partial_{z} h^{\mu \nu}\right)\right]$
- $\mathcal{L}_{S M}$ at $Z=0$ :

- the cutoff is $M_{5} \Longrightarrow m_{h}=O\left(M_{5}\right) \ll M_{P} \quad \rightarrow$ solution to hierarchy problem
- for $k=1 \mathrm{TeV}, M_{5}=10 \mathrm{TeV} \rightarrow k R \simeq 10$


## A solution to the hierarchy problem

- effective 4D Planck mass: $M_{P}^{2}=2 M_{5}^{2} \int_{0}^{\pi R} d Z e^{2 k Z}=\frac{M_{5}^{3}}{k}\left(e^{2 \pi k R}-1\right)$
- 4D graviton fluctuations: $d s^{2}=e^{\frac{4}{3} k|Z|}\left[\left(\eta_{\mu \nu}+\frac{2}{M_{5}^{3 / 2}} h_{\mu \nu}\right) d x^{\mu} d x^{\nu}+d Z^{2}\right]$
- action: $\mathcal{S}=-\frac{1}{2} \int d^{4} x d Z e^{2 k|Z|}\left[\left(\partial_{\lambda} h_{\mu \nu}\right)\left(\partial^{\lambda} h^{\mu \nu}\right)+\left(\partial_{Z} h_{\mu \nu}\right)\left(\partial_{Z} h^{\mu \nu}\right)\right]$
- $\mathcal{L}_{S M}$ at $Z=0: \quad \frac{h^{\mu \nu}(x, Z=0) T_{\mu \nu}^{S M}(x)}{M_{5}^{3 / 2}} \longrightarrow \sum_{n} \frac{\mathfrak{h}_{n}^{\mu \nu}(x) T_{\mu \nu}^{S M}(x)}{\Lambda_{n}}$ with

$$
\Lambda_{0}=M_{P}, \quad \Lambda_{n}^{2}=M_{5}^{3} \pi R\left(1+k^{2} R^{2} / n^{2}\right)
$$

- the cutoff is $M_{5} \Longrightarrow m_{h}=O\left(M_{5}\right) \ll M_{P} \rightarrow$ solution to hierarchy problem
- for $k=1 \mathrm{TeV}, M_{5}=10 \mathrm{TeV} \rightarrow k R \simeq 10$


## Phenomenology


[ slide by M. McCullough ]

## Phenomenology

## At colliders would look something like:




Most interestingly, due to splittings, signal appears to "oscillate". Thus get extra sensitivity by doing spectral analysis... The "power spectrum" of LHC data!

Can search for continuum spectrum at high energies.
[ slide by M. McCullough ]

## Phenomenology

## The fourier transform would then exhibit a peak near the inverse radius:



## Epilogue:

## Scrambling the clockwork

## Disassembling the clockwork? [Craig, Garcia Garcia, Sutherland, '17]

- Disclaimer: I'm simplifying the argument
- Definition of clockwork: a theory with no exponential hierarchies in fundamental parameters that gives rise to exponentially suppressed site-dependent couplings to symmetry-protected zero mode
- Claim 1: no clockwork from geometry
- for a scalar in curved clockwork metric: $\psi_{0}=$ const. $\equiv \mathcal{C}_{0}$
- coupling on a brane at $Z=Z_{0}$ :

with $F=f_{5 D}^{3 / 2} / C_{0}=M_{P L}\left(\frac{f_{5 D}}{M_{5}}\right)$
independent on $Z_{0} \Longrightarrow$ no clockwork
- Claim 1b: clockwork only for flat-spacetime construction with bulk mass and boundary terms (they do it for scalar, but essentially a re-discovery of construction in [Hambye, Teresi, Tytgat, '16] )


## Disassembling the clockwork? [Craig, Garcia Garcia, Sutherland, '17]

- Disclaimer: I'm simplifying the argument
- Definition of clockwork: a theory with no exponential hierarchies in fundamental parameters that gives rise to exponentially suppressed site-dependent couplings to symmetry-protected zero mode
- Claim 1: no clockwork from geometry
- for a scalar in curved clockwork metric: $\psi_{0}=$ const. $\equiv \mathcal{C}_{0}$
- coupling on a brane at $Z=Z_{0}: \frac{\phi}{16 \pi^{2} f_{5 D}} G \widetilde{G} \Longrightarrow \frac{\varphi_{0}}{16 \pi^{2} F} G \widetilde{G}$
with $F=f_{5 D}^{3 / 2} / \mathcal{C}_{0}=M_{P L}\left(\frac{f_{5 D}}{M_{5}}\right)^{3 / 2}$ independent on $Z_{0} \Longrightarrow$ no clockwork
- Claim 1b: clockwork only for flat-spacetime construction with bulk mass and boundary terms (they do it for scalar, but essentially a re-discovery of construction in [Hambye, Teresi, Tytgat, '16] )


## Disassembling the clockwork? [Craig, Garcia Garcia, Sutherland, '17]

- Disclaimer: I'm simplifying the argument
- Definition of clockwork: a theory with no exponential hierarchies in fundamental parameters that gives rise to exponentially suppressed site-dependent couplings to symmetry-protected zero mode
- Claim 1: no clockwork from geometry
- for a scalar in curved clockwork metric: $\psi_{0}=$ const. $\equiv \mathcal{C}_{0}$
- coupling on a brane at $Z=Z_{0}: \frac{\phi}{16 \pi^{2} f_{5 D}} G \widetilde{G} \Longrightarrow \frac{\varphi_{0}}{16 \pi^{2} F} G \widetilde{G}$
with $F=f_{5 D}^{3 / 2} / \mathcal{C}_{0}=M_{P L}\left(\frac{f_{5 D}}{M_{5}}\right)^{3 / 2}$ independent on $Z_{0} \Longrightarrow$ no clockwork
- Claim 1b: clockwork only for flat-spacetime construction with bulk mass and boundary terms (they do it for scalar, but essentially a re-discovery of construction in [Hambye, Teresi, Tytgat, '16] )


## Disassembling the clockwork? (continued)

- Claim 2: no non-Abelian clockwork (including gravity)
- non-Abelian Yang-Mills clockwork chain
- kinetic terms:
$-\mathcal{L}_{\text {kin }}=\sum_{j=0}^{N} \frac{1}{4 g_{j}^{2}} F_{j} F_{j}=\sum_{j=0}^{N} \frac{1}{4 g_{j}^{2}}\left(F_{j}^{\text {abelian }} F_{j}^{\text {abelian }}+4 f A_{j} A_{j} \partial A_{j}+f f A_{j} A_{j} A_{j} A_{j}\right)$
- if, in terms of zero mode $\mathcal{A}_{0}, A_{j}=c_{j} \mathcal{A}_{0}+$
gauge invariance for $\mathcal{A}_{0}$ :

$\square$
$\square$


## Disassembling the clockwork? (continued)

- Claim 2: no non-Abelian clockwork (including gravity)
- non-Abelian Yang-Mills clockwork chain
- kinetic terms:
$-\mathcal{L}_{\text {kin }}=\sum_{j=0}^{N} \frac{1}{4 g_{j}^{2}} F_{j} F_{j}=\sum_{j=0}^{N} \frac{1}{4 g_{j}^{2}}\left(F_{j}^{\text {abelian }} F_{j}^{\text {abelian }}+4 f A_{j} A_{j} \partial A_{j}+f f A_{j} A_{j} A_{j} A_{j}\right)$
- if, in terms of zero mode $\mathcal{A}_{0}, A_{j}=c_{j} \mathcal{A}_{0}+\ldots$
$-\mathcal{L}_{\text {kin }} \supset \sum_{j=0}^{N} \frac{c_{j}^{2}}{4 g_{j}^{2}} \mathcal{F}_{0}^{\text {abelian }} \mathcal{F}_{0}^{\text {abelian }}+\sum_{j=0}^{N} \frac{c_{j}^{3}}{4 g_{j}^{2}} 4 f \mathcal{A}_{0} \mathcal{A}_{0} \partial \mathcal{A}_{0}+\sum_{j=0}^{N} \frac{c_{j}^{4}}{4 g_{j}^{2}} f f \mathcal{A}_{0} \mathcal{A}_{0} \mathcal{A}_{0} \mathcal{A}_{0}$
- gauge invariance for $\mathcal{A}_{0}$ : $\quad \sum_{j=0}^{N} \frac{c_{j}^{2}}{g_{j}^{2}}=\sum_{j=0}^{N} \frac{c_{j}^{3}}{g_{j}^{2}}=\sum_{j=0}^{N} \frac{c_{j}^{4}}{g_{j}^{2}} \equiv \frac{1}{g_{e f f}^{2}}$


## Disassembling the clockwork? (continued)

- Claim 2: no non-Abelian clockwork (including gravity)
- non-Abelian Yang-Mills clockwork chain
- kinetic terms:

$$
-\mathcal{L}_{k i n}=\sum_{j=0}^{N} \frac{1}{4 g_{j}^{2}} F_{j} F_{j}=\sum_{j=0}^{N} \frac{1}{4 g_{j}^{2}}\left(F_{j}^{\text {abelian }} F_{j}^{\text {abelian }}+4 f A_{j} A_{j} \partial A_{j}+f f A_{j} A_{j} A_{j} A_{j}\right)
$$

- if, in terms of zero mode $\mathcal{A}_{0}, A_{j}=c_{j} \mathcal{A}_{0}+\ldots$
$-\mathcal{L}_{k i n} \supset \sum_{j=0}^{N} \frac{c_{j}^{2}}{4 g_{j}^{2}} \mathcal{F}_{0}^{\text {abelian }} \mathcal{F}_{0}^{\text {abelian }}+\sum_{j=0}^{N} \frac{c_{j}^{3}}{4 g_{j}^{2}} 4 f \mathcal{A}_{0} \mathcal{A}_{0} \partial \mathcal{A}_{0}+\sum_{j=0}^{N} \frac{c_{j}^{4}}{4 g_{j}^{2}} f f \mathcal{A}_{0} \mathcal{A}_{0} \mathcal{A}_{0} \mathcal{A}_{0}$
- gauge invariance for $\mathcal{A}_{0}$ : $\quad \sum_{j=0}^{N} \frac{c_{j}^{2}}{g_{j}^{2}}=\sum_{j=0}^{N} \frac{c_{j}^{3}}{g_{j}^{2}}=\sum_{j=0}^{N} \frac{c_{j}^{4}}{g_{j}^{2}} \equiv \frac{1}{g_{e f f}^{2}}$
- $\Longrightarrow c_{j} \in\{0,1\} \rightarrow$ no clockwork
- $g_{j}=$ const. $\Longrightarrow g_{\text {eff }} \sim g_{j}$ no exponential suppression


## Reassembling the clockwork? [Giudice, McCullough, '17]

- Disclaimer: I'm simplifying the argument
- answer to Claim 2 (here for scalar, given also for gravity):
- $-\mathcal{L} \supset \frac{1}{2} \sum_{k=0}^{N} \partial_{\mu} \phi_{k} \partial^{\mu} \phi^{k}+\frac{m^{2}}{2} \sum_{k=0}^{N-1}\left(\phi_{k}-q \phi_{k+1}\right)^{2}$ same theory as
$-\mathcal{L} \supset \frac{1}{2} \sum_{k=0}^{N} q^{-2 k} \partial_{\mu} \pi_{k} \partial^{\mu} \pi^{k}+\frac{m^{2}}{2} \sum_{k=0}^{N-1} q^{-2 k}\left(\pi_{k}-\pi_{k+1}\right)^{2} \quad\left(\phi_{k}=\pi_{k} / q^{k}\right)$
- in this basis the unbroken symmetry is $\pi_{k} \rightarrow \pi_{k}+\alpha$, rather than $\phi$ $\Longrightarrow c_{k}=1 \rightarrow$ argument for non-abelian disappears
- in this basis $g_{k}=g_{0} q^{-k} \neq$ const. $\Longrightarrow g_{\text {eff }} \approx g_{N}=g_{0} q^{-N}$
- in this basis the theory does not look like clockwork, but it's the same theory (physics is the same)


## Reassembling the clockwork? [Giudice, McCullough, '17]

- Disclaimer: I'm simplifying the argument
- answer to Claim 2 (here for scalar, given also for gravity):
$-\mathcal{L} \supset \frac{1}{2} \sum_{k=0}^{N} \partial_{\mu} \phi_{k} \partial^{\mu} \phi^{k}+\frac{m^{2}}{2} \sum_{k=0}^{N-1}\left(\phi_{k}-q \phi_{k+1}\right)^{2} \quad$ same theory as
$-\mathcal{L} \supset \frac{1}{2} \sum_{k=0}^{N} q^{-2 k} \partial_{\mu} \pi_{k} \partial^{\mu} \pi^{k}+\frac{m^{2}}{2} \sum_{k=0}^{N-1} q^{-2 k}\left(\pi_{k}-\pi_{k+1}\right)^{2} \quad\left(\phi_{k}=\pi_{k} / q^{k}\right)$
- in this basis the unbroken symmetry is $\pi_{k} \rightarrow \pi_{k}+\alpha$, rather than $\phi_{k} \rightarrow \phi_{k}+q^{-k} \alpha$ $\Longrightarrow c_{k}=1 \rightarrow$ argument for non-abelian disappears
- in this basis $g_{k}=g_{0} q^{-k} \neq$ const. $\Longrightarrow g_{\text {eff }} \approx g_{N}=g_{0} q^{-N}$
- in this basis the theory does not look like clockwork, but it's the same theory (physics is the same)


## Reassembling the clockwork? (continued)

- answer to Claim 1b:
- the curved and flat-spacetime scalar constructions are the same! (related by field redefinition $\phi=e^{-k z} \pi$ )
- summary of the answer so far: 2 theories with same Lagrangian are the same
- answer to Claim 1
- definition of [Craig, Garcia Garcia, Sutherland, '17] is (UV) model dependent, e.g.

$Z_{0}$-profile of coupling depends on $n$, spurion charge of $f$ under global Weyl
- for model building and hierarchy problem, relevant definition:
a theory with no exponential hierarchies in fundamental parameters that gives rise to exponentially suppressed ratios between the zero-mode and the clockwork-gears couplings
- $F=f_{5 D}^{3 / 2} / \mathcal{C}_{0}=M_{P L}$



## Reassembling the clockwork? (continued)

- answer to Claim 1b:
- the curved and flat-spacetime scalar constructions are the same! (related by field redefinition $\phi=e^{-k Z} \pi$ )
- summary of the answer so far: 2 theories with same Lagrangian are the same
- answer to Claim 1:
- definition of [Craig, Garcia Garcia, Sutherland, '17] is (UV) model dependent, e.g.:

$$
\mathcal{S} \supset \int d^{5} x \delta\left(Z-Z_{0}\right) e^{n S / 2} \frac{\phi}{16 \pi^{2} f} G \widetilde{G}
$$

$Z_{0}$-profile of coupling depends on $n$, spurion charge of $f$ under global Weyl

- for model building and hierarchy problem, relevant definition:
a theory with no exponential hierarchies in fundamental parameters that gives rise to exponentially suppressed ratios between the zero-mode and the clockwork-gears couplings


## Reassembling the clockwork? (continued)

- answer to Claim 1b:
- the curved and flat-spacetime scalar constructions are the same! (related by field redefinition $\phi=e^{-k Z} \pi$ )
- summary of the answer so far: 2 theories with same Lagrangian are the same
- answer to Claim 1:
- definition of [Craig, Garcia Garcia, Sutherland, '17] is (UV) model dependent, e.g.:

$$
\mathcal{S} \supset \int d^{5} x \delta\left(Z-Z_{0}\right) e^{n S / 2} \frac{\phi}{16 \pi^{2} f} G \widetilde{G}
$$

$Z_{0}$-profile of coupling depends on $n$, spurion charge of $f$ under global Weyl

- for model building and hierarchy problem, relevant definition: a theory with no exponential hierarchies in fundamental parameters that gives rise to exponentially suppressed ratios between the zero-mode and the clockwork-gears couplings
- $F=f_{5 D}^{3 / 2} / \mathcal{C}_{0}=M_{P L}\left(\frac{f_{5 D}}{M_{5}}\right)^{3 / 2}$


## Reassembling the clockwork? (continued)

- answer to Claim 1b:
- the curved and flat-spacetime scalar constructions are the same! (related by field redefinition $\phi=e^{-k Z} \pi$ )
- summary of the answer so far: 2 theories with same Lagrangian are the same
- answer to Claim 1:
- definition of [Craig, Garcia Garcia, Sutherland, '17] is (UV) model dependent, e.g.:

$$
\mathcal{S} \supset \int d^{5} x \delta\left(Z-Z_{0}\right) e^{n S / 2} \frac{\phi}{16 \pi^{2} f} G \widetilde{G}
$$

$Z_{0}$-profile of coupling depends on $n$, spurion charge of $f$ under global Weyl

- for model building and hierarchy problem, relevant definition: a theory with no exponential hierarchies in fundamental parameters that gives rise to exponentially suppressed ratios between the zero-mode and the clockwork-gears couplings
- $F=f_{5 D}^{3 / 2} / \mathcal{C}_{0}=M_{P L}\left(\frac{f_{5 D}}{M_{5}}\right)^{3 / 2} \simeq \frac{f}{\sqrt{2 \pi R}} e^{k \pi R}$
The End

