

Parton Distributions from High-Precision Collider Data

Juan Rojo

VU Amsterdam & Theory Group, Nikhef

High Energy Physics Seminar Vrije Universiteit Brussels Brussels, 10/11/2017

A crash course on parton distributions

2

Lepton vs Hadron Colliders

In high-energy **lepton colliders**, such as the **Large Electron-Positron Collider** (LEP) at CERN, the collisions involve **elementary particles** without substructure

Cross-sections in lepton colliders can be computed in perturbation theory using the Feynman rules of the Standard Model Lagrangian

Lepton vs Hadron Colliders

In high-energy **hadron colliders**, such as the LHC, the collisions involve **composite particles** (protons) with internal structure (quarks and gluons)

Lepton vs Hadron Colliders

In high-energy **hadron colliders**, such as the LHC, the collisions involve **composite particles** (protons) with internal structure (quarks and gluons)

Calculations of cross-sections in hadron collisions require the combination of perturbative, quark/gluon-initiated processes, and non-perturbative, parton distributions, information

Initial state: Parton Distributions

Distribution of energy that quarks and gluons carry inside proton quantified by Parton Distributions

Q: Energy of the quark/gluon collision Inverse of the resolution length

g(x,Q): Probability of finding a gluon inside a proton, carrying a fraction x of the proton momentum, when probed with energy Q

x: Fraction of the proton's momentum

PDFs determined by **non-perturbative QCD dynamics** Extract from experimental data within a **global analysis**

Extract PDFs from lepton-proton collisions

Use PDFs to predict proton-proton cross-sections

Initial state: Parton Distributions

Distribution of energy that quarks and gluons carry inside proton quantified by Parton Distributions

Q: Energy of the quark/gluon collision Inverse of the resolution length

g(x,Q): Probability of finding a gluon inside a proton, carrying a fraction x of the proton momentum, when probed with energy Q

x: Fraction of the proton's momentum

PDFs determined by **non-perturbative QCD dynamics** Extract from experimental data within a **global analysis**

Highly non-trivial validation of the **QCD factorisation framework**:

- Including O(5000) data points,
- from **O(40)** experiments,
- some of them with $\approx 1\%$ errors,

yet still $\chi^2/N_{dat} \approx 1!$

The global PDF analysis

- Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from different processes and colliders, and a statistically robust fitting methodology
- **Extract Parton Distributions** at hadronic scales of **a few GeV**, where non-perturbative QCD sets in
- Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

Why precision PDFs?

Ultimate accuracy of LHC calculations limited by knowledge of proton structure

heavy SUSY particle production

Higgs couplings

W mass determination

								$\langle \rangle$	
Value [MeV]	Unc.	Unc.							
80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5
								し ノ	

[HL-LHC forecast]

Machine Learning and **Artificial Neural Networks**

What is machine learning?

Machine Learning at the LHC

- By Machine Learning we usually denote those families of computer algorithms that learn how to excel on a task based on a large sample of examples, rather than on some a priori fixed rules
- ML algorithms are nowadays ubiquitous, from **driverless cars** to **Amazon's purchase suggestions**, to **automated medical imaging recognition** to beating the words best players at Go and chess
- ML tools rely on the **efficient exploitation of immense datasets**. And the **LHC** has a lot of data!

Artificial Neural Networks

Inspired by **biological brain models**, **Artificial Neural Networks** are **mathematical algorithms** widely used in a wide range of applications, from **HEP** to **targeted marketing** and **finance forecasting**

From Biological to Artificial Neural Networks

Artificial neural networks aim to excel where domains as their evolution-driven counterparts outperforms traditional algorithms in tasks such as pattern recognition, forecasting, classification, ...

ANNs - a marketing example

A bank wants to offer a new credit card to their clients. Two possible strategies:

- **Contact all customers**: slow and costly
- Contact 5% of the customers, train a ANN with their input (gender, income, loans) and their output (yes/no) and use the information to contact only clients likely to accept the product

Cost-effective method to improve marketing performance!

ANNs and pattern recognition

- ANNs can enable an autonomous vision-control drone to recognize and follow forest trails
- Image classifier operates directly on pixel-level image intensities
- If a trail is visible, the **software steers the drone** in the corresponding direction

Giusti et al, IEEE Robotics and Automation Letters, 2016

Juan Rojo

The NNPDF way

The NNPDF approach

A **novel approach to PDF determination**, improving the limitations of the traditional PDF fitting methods with the use of **advanced statistical techniques** such as **machine learning** and **multivariate analysis**

Non-perturbative PDF parametrization

- Traditional approach: based on restrictive functional forms leading to strong theoretical bias
- NNPDF solution: use Artificial Neural Networks as universal unbiased interpolants

PDF uncertainties and propagation to LHC calculations

- Traditional approach: limited to Gaussian/linear approximation
- NNPDF solution: based on the Monte Carlo replica method to create a probability distribution in the space of PDFs. Specially critical in extrapolation regions (i.e. high-x) for New Physics searches

Fitting technique

- \Rightarrow **Traditional approach**: deterministic minimization of χ^2 , flat directions problem
- NNPDF solution: Genetic Algorithms to explore efficiently the vast parameter space, with cross-validation to avoid fitting stat fluctuations

ANNs as universal unbiased interpolants

ANNs provide **universal unbiased interpolants** to parametrize the non-perturbative dynamics that determines the **size and shape of the PDFs** from experimental data

not from QCD!

Traditional approach

$$g(x,Q_0) = A_g(1-x)^{a_g} x^{-b_g} \left(1 + c_g \sqrt{s} + d_g x + \ldots\right)$$

NNPDF approach

$$g(x, Q_0) = A_g ANN_g(x)$$

$$\text{ANN}_g(x) = \xi^{(L)} = \mathcal{F}\left[\xi^{(1)}, \{\omega_{ij}^{(l)}\}, \{\theta_i^{(l)}\}\right]$$

$$\xi_i^{(l)} = g \left(\sum_{j=1}^{n_{l-1}} \omega_{ij}^{(l-1)} \xi_j^{(l-1)} - \theta_i^{(l)} \right)$$

- ANNs eliminate **theory bias** introduced in PDF fits from choice of *ad-hoc* functional forms
- NNPDF fits used **O(400)** free parameters, to be compared with O(10-20) in traditional PDFs. Results stable if **O(4000)** parameters used!

PDF Replica Neural Network Learning

The minimisation of the data vs theory χ^2 is performed using Genetic Algorithms Each green curve corresponds to a gluon PDF Monte Carlo replica

Artificial Neural Networks vs Polynomials

- © Compare a **benchmark PDF analysis** where **the same dataset** is fitted with **Artificial Neural Networks** and with **standard polynomials**, other settings identical)
- ANNs avoid biasing the PDFs, faithful extrapolation at small-x (very few data, thus error blow up)

The NNPDF3.1 global analysis

An **update of the NNPDF global analysis** is motivated by:

The striking recent progress in NNLO QCD calculations, which allows to include the majority of PDF-sensitive collider measurements into a fully consistent NNLO global analysis

The recent realisation that **fitting the charm PDF** has several advantages in the global QCD fit (beyond comparison with non-perturbative models), in particular **stabilise the dependence with m**_{charm} and improve the **data/theory agreement** for some of the most precise collider observables.

New datasets in NNPDF3.1

Fit quality: χ^2

	NNLO FittedCharm	NNLO PertCharm	NLO FittedCharm	NLO PertCharm
HERA	1.16	1.21	1.14	1.15
ATLAS	1.09	1.17	1.37	1.45
CMS	1.06	1.09	1.20	1.21
LHCb	1.47	1.48	1.61	1.77
TOTAL	1.148	1.187	1.168	1.197

For collider data, **NNLO theory** leads to a markedly better fit quality that than **NLO** (since the new data included has small experimental uncertainties, and NNLO corrections mandatory)

From The global PDF analysis where the charm PDF is fitted leads to a **slightly superior fit quality** than assuming a perturbatively generated charm PDF

[₽] In general **good description of all the new collider measurements** included in NNPDF3.1

Impact of new data

Impact of new data

The large-x gluon from top-quark production

- Fop-quark pair production driven by the **gluon-gluon luminosity**
- NNLO calculations for stable top quarks available (with decays in the pipeline)
- Recent precision data from ATLAS and CMS at 8 TeV with full breakdown of statistical and systematic uncertainties
- For the first time, included ATLAS+CMS 8 TeV differential top measurements into the **global PDF fit**

Czakon, Hartland, Mitov, Nocera, Rojo 16

The large-x gluon from top-quark production

- otin PDF uncertainties reduced by more than a factor two for $m_{tt}

 otin 500 GeV$
- Our choice of fitted distributions, y_t and y_{tt} , reduces the **risk of** *BSM contamination* (kinematical suppression of resonances), which might show up instead in m_{tt} and p_{t} , where PDF uncertainties are now much smaller
- Self-consistent program to use top data to provide better theory predictions

Improved sensitivity to BSM dynamics with top-quark final states

Impact on the gluon

- In NNPDF3.1 we have three groups of processes that provide **direct information on the gluon**: inclusive jets, top pair differential, and the Z transverse momentum
- Are the constraints from each of these groups consistent among them? Yes!

Illuminating the photon content of the proton within a global PDF fit

Bertone, Carrazza, Harland, Rojo, in preparation

Motivation

The NNPDF2.3/3.0QED fits were data-driven determinations of the photon PDF $\chi(x,Q)$, freely parametrised in terms of an ANN, and the constrained by LHC Drell-Yan measurements

NNPDF 13, Bertone and Carrazza 15

Data-driven QED fits are not competitive anymore with the semi-analytical calculation of the photon PDF using the LUXqed formalism in terms of the inclusive structure functions

Where the structure functions are decomposed in 3 parts:

$$F_2(x, Q) = F_2^{\text{elastic}}(x, Q) + F_2^{\text{inelastic}}(x, Q) + F_2^{\overline{\text{MS}}}(x, Q)$$

Manohar, Nason, Salam, Zanderighi 16, 17

It is clearly more advantageous to perform a QED fit imposing the LUXqed theory constraints on the photon PDF $\gamma(x,Q)$, rather than extracting it from experimental measurements

Motivation

Few-percent PDF uncertainties on $\gamma(x,Q)$

Agreement within errors with NNPDF3.0QED

Even using one of the most sensitive processes to photon-initiated contributions, **high-mass DY at 8 TeV**, uncertainties in $\gamma(x,Q)$ still at the 30% level

NNPDF3.1QED: strategy

The NNPDF3.1QED fits will impose the LUXqed formalism as an external theoretical constrain:

We base our approach in 4 steps:

- 1. build a public library for the evaluation of the LUX photon
- 2. convert (1) to a T0 set of PDFs

i.e. generate N_{rep} photon PDFs $\mathbf{y}^{(k)}(x,Q)$ from the N_{rep} NNPDF3.1 quarks and gluons

- 3. perform fit with QED corrections (DGLAP, data) and T0 from (2)
- 4. iterate until convergence \rightarrow stable quarks/gluons

Another important update in the NNPDF3.1QED fits is the use of **NLO QED theory** both in **splitting functions** and in the **DIS coefficient functions**, implemented in the **APFEL code**

Results

- Agreement with LUXqed17, both in terms of central values and of uncertainties
- Good perturbative stability of the photon PDF
- \checkmark PDF uncertainties on $\gamma(x,Q) < 3\%$ in the range relevant for LHC applications

Momentum fraction carried by photons

	$\langle x\gamma\rangle (Q=1.65{\rm GeV})$	$\langle x\gamma\rangle (Q=M_Z)$
NNPDF3.0QED	$(0.3 \pm 0.3)\%$	$(0.5 \pm 0.3)\%$
NNPDF3.1luxQED	$(0.229 \pm 0.003)\%$	$(0.420 \pm 0.003)\%$
LUXqed17	_	$(0.421 \pm 0.003) \%$

- Up to 0.5% of the proton momentum is carried by the photon
- Important to account since this will feed into other PDFs (i.e. the gluon).
- Also QED DGLAP evolution affects indirectly gluon and quarks as compared to QCD-only fit

Fits with photon-initiated contributions

- From The previous results are based on fits where the PI contributions are added only to the DIS SFs
- In principle one needs to add them to all hadronic processes, but this is very cumbersome
- We have checked that NNPDF3.1QED results are stable once **PI contributions added to the LHCb Z production data**, which are directly sensitive to the photon PDF at large x

The fits are mostly **insensitive to the inclusion of PI effects in the LHCb cross-sections** Even smaller effects on $\gamma(x,Q)$ would then arise for the rest of the datasets in NNPDF3.1

Photon-initiated contributions are relevant for many LHC processes

Similar size, but with opposite sign, as virtual electroweak corrections

PI contributions to high-mass Drell-Yan production

PI contributions to high-mass Drell-Yan production

Imposing LUXqed theoretical constraints

- For high-mass Drell-Yan, **PI contributions much smaller than in NNPDF3.0QED**, but still significant for precision phenomenology (up to 10% at large M_{II})
- Comparable or larger than PDF uncertainties in most of the relevant kinematic region

PI contributions to high-mass W pair production

- For high-mass W+W- production, **PI contributions** can be as large as to 30% at large M_{WW}
- Fig. The production kinematics enhance PI over QCD contributions at large mass Mww

Low-mass Drell-Yan

HW associated production

Top-quark pair production

- ☐ In electroweak processes, **PI contributions are**now determined to high-precision to be between few % and up to 30%
- Essential to account for them, and include consistently **EW corrections**
- For QCD-initiated processes (top, jets) PI contributions turn out to be **negligible**

Parton Distributions with BFKL resummation

Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli 17

Theory motivation: beyond DGLAP

- Perturbative fixed-order QCD calculations have been extremely successful in describing a wealth of data from proton-proton and electron-proton collisions
- Fig. There are theoretical reasons that eventually we need to go beyond DGLAP: at very small-x, **logarithmically enhanced terms in 1/x become dominant** and need to be resummed to all orders
- FFKL/high-energy/small-x resummation can be matched to the DGLAP collinear framework, and thus can be included into a standard PDF analysis

DGLAP Evolution in Q²
$$\mu^2 \frac{\partial}{\partial \mu^2} f_i(x, \mu^2) = \int_x^1 \frac{dz}{z} P_{ij} \left(\frac{x}{z}, \alpha_s(\mu^2)\right) f_j(z, \mu^2),$$

BFKL Evolution in x
$$-x\,\frac{d}{dx}\,f_+(x,\mu^2) = \int_0^\infty \frac{d\nu^2}{\nu^2}\,K\!\left(\frac{\mu^2}{\nu^2},\alpha_s\right)f_+(x,\nu^2)$$

Within small-*x* resummation, the N^kLO fixed-order DGLAP splitting functions are complemented with the NhLLx contributions from BKFL

$$ABF$$
, $CCSS$, $TW + others$, $94-08$

$$P_{ij}^{N^kLO+N^hLLx}(x) = P_{ij}^{N^kLO}(x) + \Delta_k P_{ij}^{N^hLLx}(x),$$

Experimental motivation: tensions in HERA data

- Several groups have reported that the **fit quality to the legacy HERA inclusive data** gets worse in the **small-***x* **and small-***Q* **region**
- Typically this trend is more marked at NNLO
- Several explanations have been advocated, from **higher twists** (*i.e.* saturation), issues with the **heavy quark schemes**, experimental systematics, ...
- What happens if the **PDF** fit includes **NLL***x* resummation?

44

- Ultimately, the need for (or lack of) BKFL resummation in **ep and pp collider data** can only be assessed by performing a **global PDF analysis based on (N)NLO+NLLx theory**
- Fig. Theoretical tools are now available: **HELL for NLLx resummation**, interfaced to **APFEL**

APFEL: Bertone, Carrazza, Rojo 13 https://apfel.hepforge.org/

Juan Rojo

HELL: Bonvini, Marzani, Peraro, Muselli 16-17 https://www.ge.infn.it/~bonvini/hell/

- NNPDF3.1sx: Variant of NNPDF3.1 global fits using NLO+NLLx and NNLO+NLLx theory
- Hadronic data treated at NNLO: impose cut to remove region sensitive to small-x effects

- NNPDF3.1sx: Variant of NNPDF3.1 global fits using NLO+NLLx and NNLO+NLLx theory

	$\chi^2/N_{ m dat}$		$\Delta\chi^2$	$\chi^2/N_{ m dat}$		$\Delta\chi^2$
	NLO	NLO+NLLx		NNLO	NNLO+NLLx	
NMC	1.35	1.35	+1	1.30	1.33	+9
SLAC	1.16	1.14	-1	0.92	0.95	+2
BCDMS	1.13	1.15	+12	1.18	1.18	+3
CHORUS	1.07	1.10	+20	1.07	1.07	-2
NuTeV dimuon	0.90	0.84	-5	0.97	0.88	-7
HERA I+II incl. NC	1.12	1.12	-2	1.17	1.11	-62
HERA I+II incl. CC	1.24	1.24	-	1.25	1.24	-1
HERA $\sigma_c^{ m NC}$	1.21	1.19	-1	2.33	1.14	-56
HERA F_2^b	1.07	1.16	+3	1.11	1.17	+2
DY E866 $\sigma_{\mathrm{DY}}^d/\sigma_{\mathrm{DY}}^p$	0.37	0.37	-	0.32	0.30	-
DY E886 σ^p	1.06	1.10	+3	1.31	1.32	-
DY E605 σ^p	0.89	0.92	+3	1.10	1.10	-
CDF Z rap	1.28	1.30	-	1.24	1.23	-
CDF Run II k_t jets	0.89	0.87	-2	0.85	0.80	-4
D0 Z rap	0.54	0.53	-	0.54	0.53	-
$D0 W \to e\nu$ asy	1.45	1.47	-	3.00	3.10	+1
$D0 W \to \mu\nu$ asy	1.46	1.42	-	1.59	1.56	-
ATLAS total	1.18	1.16	-7	0.99	0.98	-2
ATLAS W, Z 7 TeV 2010	1.52	1.47	-	1.36	1.21	-1
ATLAS HM DY 7 TeV	2.02	1.99	-	1.70	1.70	-
ATLAS W, Z 7 TeV 2011	3.80	3.73	-1	1.43	1.29	-1
ATLAS jets $2010~7~\text{TeV}$	0.92	0.87	-4	0.86	0.83	-2
ATLAS jets 2.76 TeV	1.07	0.96	-6	0.96	0.96	-
ATLAS jets 2011 7 TeV	1.17	1.18	-	1.10	1.09	-1
ATLAS Z p_T 8 TeV (p_T^{ll}, M_{ll})	1.21	1.24	+2	0.94	0.98	+2
ATLAS Z p_T 8 TeV $(p_T^{\hat{l}l}, y_{ll})$	3.89	4.26	+2	0.79	1.07	+2
ATLAS σ_{tt}^{tot}	2.11	2.79	+2	0.85	1.15	+1
ATLAS $t\bar{t}$ rap	1.48	1.49	-	1.61	1.64	-
CMS total	0.97	0.92	-13	0.86	0.85	-3
CMS Drell-Yan 2D 2011	0.77	0.77	-	0.58	0.57	-
CMS jets 7 TeV 2011	0.88	0.82	-9	0.84	0.81	-3
CMS jets 2.76 TeV	1.07	0.98	-7	1.00	1.00	-
CMS Z p_T 8 TeV (p_T^{ll}, y_{ll})	1.49	1.57	+1	0.73	0.77	-
CMS σ_{tt}^{tot}	0.74	1.28	+2	0.23	0.24	-
CMS $t\bar{t}$ rap	1.16	1.19	-	1.08	1.10	-
Total	1.117	1.120	+11	1.130	1.100	-121

In order to assess the impact of small-x resummation for the description of the small-x and Q^2 HERA data, compute the χ^2 removing data points in the region where resummation effects are expected

Using NNLO+NLLx theory, the NNLO instability of the χ^2 disappears

Excellent fit quality to inclusive and charm HERA data achieved in the entire (x,Q^2) region

Comparison with HERA data

Using NNLO+NLLx theory, improved description of the small-x NC cross-sections, in particular of the change of slope (related to differences in F_L)

Also **improved description of F**_L, which moreover remains markedly **positive** down to the smallest values of x and Q probed

Implications for fixed-order fits

Do these results imply at existing NNLO fits are **biased?** What are implications for LHC pheno?

Study **stability of NNLO fits** as the HERA data at small *x* and *Q* is cut away

Implications for fixed-order fits

Effects confined to the small-x region: global NNLO fits unaffected for (most) LHC applications

What next?

Aim to a **consistent NNLO+NLLx global analysis**: need to implement as well resummation of hadronic cross-sections, to being with **Drell-Yan**

A first estimate of expected impact provided by comparing xsecs with **resummation only in PDFs**, not in the partonic matrix elements

NB none of these exps included in NNPDF3.1sx

Small-x resummed PDFs might be needed to push the boundaries of precision LHC phenomenology

Summary and outlook

- **Parton distributions** are a crucial aspect of the **LHC precision phenomenology program**, with direct implications from Higgs characterisation to BSM searches
- ▶ NNPDF3.1 is an state-of-the-art global PDF analysis including a wealth of precision LHC measurements, some of them for the first time such as the 8 Z p_T data and top quark production differential distributions
- Fig. Thanks to recent theoretical developments, we now have the photon PDF under good control with few-percent uncertainties
- ₱ Photon-initiated contributions are an important component for EW phenomenology at high masses, in particular in combination with higher-order electroweak corrections
- From The perturbative convergence of small-x QCD can be improved by matching DGLAP to BFKL evolution using small-x resummation
- Clear evidence of the onset of BFKL dynamics in HERA data: New Physics within QCD!

Summary and outlook

- **Parton distributions** are a crucial aspect of the **LHC precision phenomenology program**, with direct implications from Higgs characterisation to BSM searches
- NNPDF3.1 is an state-of-the-art global PDF analysis including a wealth of precision LHC **measurements**, some of them for the first time such as the 8 Z p_T data and top quark production differential distributions
- Thanks to recent theoretical developments, we with few-percent uncertainties

 Photon-initiate

 Thanks to recent theoretical developments, we attend and good control with few-percent uncertainties

 Thanks to recent theoretical developments, we attend and good control with few-percent uncertainties

 Thanks to recent theoretical developments, we attend and good control with few-percent uncertainties

 Thanks to recent theoretical developments, we attend and good control with few-percent uncertainties

 Thanks to recent theoretical developments, we attend and good control with few-percent uncertainties
- Fig. The perturbative convergence of small-x QCD can be improved by matching DGLAP to BFKL evolution using small-x resummation
- Clear evidence of the onset of BFKL dynamics in HERA data: New Physics within QCD!