Observation of the First Neutron Star Merger in Gravitational and Electromagnetic Waves

Kevin Meagher 20 October 2017 IIHE Seminar

Overview

- Neutron Stars
- Gamma-ray Bursts
- Gravitational Waves
- Observations GW170817

Neutron Stars

Stellar Mass -

Interior of Neutron Stars

Neutron Star Equation of State

Various models of the density and pressure of the interior of a neutron star exists

Gamma-Ray Bursts

First gamma ray bursts detected by VELA satellites in 1969

Discovery of GRBs

1970 August 22 burst from Klebesadel et al. (1973).

Burst durations ranged from 0.1 s to 30 s.

Burst fluences ranged from 10^{-5} erg cm⁻² to 2×10^{-3} erg cm⁻².

Peak of spectrum above 10 keV maybe up to 10 MeV.

In 1993 there were 135 models

Nemiroff, R. J., 1993, Comments on Astrophysics, in press.

Table 1

Model #	Author	Year Pub	Reference	Main Body	2nd Body	Place	Description	
1.	Colgate	1968	CJPhys. 46, 5476	ST		COS	SN shocks stellar surface in distant galaxy	
2.	Colgate	1974	ApJ, 187, 333	ST		COS	Type II SN shock brem, inv Comp scat at stellar surface	
3.	Stecker et al.	1973	Nature, 245, PS70	ST		DISK	Stellar superflare from nearby star	
÷.	Stocker et al.	1973	Nature, 245, PS/0	WD	0.014	DISK	Superiare from nearby WD	
5. 6	Lamb et al.	1973	Neture 246 DS62	WD	ST	DISK	Accretion only WD from flave in companies	
7	Lamb et al.	1073	Nature 246 DS62	NS	ST	DISK	Accretion onto WD from fare in companion	
8	Lamb et al.	1973	Nature 246 PS52	BH	ŠŤ	DISK	Accretion onto RH from fare in companion	
9.	Zwicky	1974	Ap&SS, 28, 111	NS		HALO	NS chunk contained by external pressure escapes, explodes	
10.	Grindlay et al.	1974	ApJ, 187, L93	DG		SOL	Relativistic iron dust grain up-scatters solar radiation	
11.	Brecher et al.	1974	ApJ, 187, L97	ST		DISK	Directed stellar flares on nearby stars	
12.	Schlovskii	1974	SovAstron, 18, 390	WD	COM	DISK	Comet from system's cloud strikes WD	
13.	Schlovskii	1974	SovAstron, 18, 390	NS	COM	DISK	Comet from system's cloud strikes NS	
14.	Bisnovatyi- et al.	1975	Ap&SS, 35, 23	ST		COS	Absorption of neutrino emission from SN in stellar envelope	
15.	Bisnovatyi- et al.	1975	Ap&SS, 35, 23	ST	SN	COS	Thermal emission when small star heated by SN shock wave	
10.	Bisnovatyi- et al.	1975	Apa 55, 35, 23	NS		COS	Ejected matter from NS explodes	
17.	Pacini et al.	1974	Nature, 251, 359	NS		COS	NS crustal starquake glitch; should time coincide with GHB	
10.	Texaninger et al.	1076	A&A 44 21	NG		HALO	White hole emits spectrum that soliens with time	
20	Chaomunam	1974	ApJ 193 175	WD		DISK	Convection inside WD with high 8 field produces flare	
21.	Prilutski et al.	1975	Ap&SS, 34, 395	AGN	ST	COS	Collapse of supermassive body in nucleus of active palaxy	
22.	Narlikar et al.	1975	Ap&SS, 35, 321	WH	-	COS	WH excites synchrotron emission, inverse Compton scattering	
23.	Piran et al.	1975	Nature, 256, 112	BH		DISK	Inv Comp scat deep in ergosphere of fast rotating, accreting BH	
24.	Fabian et al.	1976	Ap&SS, 42, 77	NS		DISK	NS crustquake shocks NS surface	
25.	Chanmugan	1976	Ap&SS, 42, 83	WD		DISK	Magnetic WD suffers MHD instabilities, flares	
26.	Mullan	1976	ApJ, 208, 199	WD		DISK	Thermal radiation from flare near magnetic WD	
27.	woosley et al.	1976	Nature, 263, 101	NS		DISK	Carbon detonation from accreted matter onto NS	
28.	Lamb et al.	19//	ApJ, 217, 197	NS		DISK	Mag gating of accret disk around NS causes sudden accretion	
29.	Piran et al.	1070	ApJ, 214, 200	DC		COL	Characterized relidust arais paters sol aus, brooks up	
31	Texaen	1980	ALA 87 224	wn		DISK	WD surface nuclear burst causes chromosoheric flares	
32	Taynan	1980	A&A 87 224	NS		DISK	NS surface nuclear burst causes chromospheric flares	
33.	Bamaty et al.	1981	Ap&SS, 75, 193	NS		DISK	NS vibrations heat atm to pair produce, annihilate, synch cool	
34.	Newman et al.	1980	ApJ, 242, 319	NS	AST	DISK	Asteroid from interstellar medium hits NS	
35.	Ramaty et al.	1980	Nature, 287, 122	NS		HALO	NS core quake caused by phase transition, vibrations	
36.	Howard et al.	1981	ApJ, 249, 302	NS	AST	DISK	Asteroid hits NS, B-field confines mass, creates high temp	
37.	Mitrofanov et al.	1981	Ap&SS, 77, 469	NS		DISK	Helium flash cooled by MHD waves in NS outer layers	
38.	Colgate et al.	1981	ApJ, 248, 771	NS	AST	DISK	Asteroid hits NS, tidally disrupts, heated, expelled along B lines	
39.	van Buren	1981	ApJ, 249, 297	NS	AST	DISK	Asteroid enters NS B field, dragged to surface collision	
40.	Kuznetsov	1982	GosHes, 20, 72	MG		SOL	Magnetic reconnection at heliopause	
41.	Mageley et al	1982	ApJ, 260, 371	NS		DISK	NS flares from pair plasma contined in NS magnetosphere	
42.	Forvell et al.	1082	ApJ 258 733	NS		DISK	He fusion nuneway on NS B nole belium lake	
44	Hameury et al	1982	A&A 111 242	NS		DISK	e, canture trippers H flash trippers He flash on NS surface	
45.	Mitofanov et al.	1982	MNRAS, 200, 1033	NS		DISK	B induced cyclo res in rad absorp giving rel e-s, inv C scat	
46.	Fenimore et al.	1982	Nature, 297, 665	NS		DISK	BB X-rays inv Comp scat by hotter overlying plasma	
47.	Lipunov et al.	1982	Ap&SS, 85, 459	NS	ISM	DISK	ISM matter accum at NS magnetopause then suddenly accretes	
48.	Baan	1982	ApJ, 261, L71	WD		HALO	Nonexplosive collapse of WD into rotating, cooling NS	
49.	Ventura et al.	1983	Nature, 301, 491	NS	ST	DISK	NS accretion from low mass binary companion	
50.	Bisnovatyi- et al.	1983	Ap&SS, 89, 447	NS		DISK	Neutron rich elements to NS surface with quake, undergo fission	
51.	Bisnovatyi- et al.	1984	SovAstron, 28, 62	NS		DISK	Thermonuclear explosion beneath NS surface	
52.	Ellison et al.	1983	A&A, 128, 102	NS		HALO	NS corequake + uneven heating yield SGR pulsations	
53.	Hameury et al.	1983	A&A, 128, 369	NS		DISK	B held contains matter on NS cap allowing fusion	
54.	bohazzola et al.	1984	A&A, 136, 89	NS		DISK	NS surface nuc explosion causes small scale B reconnection	
55,	Lispa	1985	ApJ 280, 721	NG		DISK	Personant City objects during magnetic fate cities bet each	
57	Liang et al.	1984	Nature 310 121	NS		DISK	NS mannetic fields net twisted recombine greate fice	
58	Mitrofanov	1984	Ap&SS 105 245	NS		DISK	NS magnetic fields get twisted, recombine, create nare	
59.	Epstein	1985	ApJ, 291, 822	NS		DISK	Accretion instability between NS and disk	
60.	Schlovskii et al.	1985	MNRAS, 212, 545	NS		HALO	Old NS in Galactic halo undergoes starguake	
61.	Tsygan	1984	Ap&SS, 106, 199	NS		DISK	Weak B field NS spherically accretes, Comptonizes X-rays	
62.	Usov	1984	Ap&SS, 107, 191	NS		DISK	NS flares result of magnetic convective-oscillation instability	
63.	Hameury et al.	1985	ApJ, 293, 56	NS		DISK	High Landau e-s beamed along B lines in cold atm. of NS	
64.	Rappaport et al.	1985	Nature, 314, 242	NS		DISK	NS + low mass stellar companion gives GRB + optical flash	
65.	Tremaine et al.	1986	ApJ, 301, 155	NS	COM	DISK	NS tides disrupt comet, debris hits NS next pass	
66.	Musimov et al.	1986	Ap&SS, 120, 27	NS		HALO	Radially oscillating NS	
67.	Sturrock	1986	Nature, 321, 47	NS		DISK	Plare in the magnetosphere of NS accelerates e-s along B-field	
68.	Paczynski	1986	ApJ, 308, L43	NS		COS	Cosmo GHBS: rel e+/- opt this plasma outflow indicated	
20	Alcock at al.	1986	DDI 67 2008	NS	ee	DISK	Chain lission of superneavy nuclei below NS surface during SN	
70.	Rabul et al.	1965	Apl 316 149	22	33	COS	CPP result of energy released from curs of cosmic mines	
72	Livio et al.	1987	Nature 227 200	NG	COM	DISK	Ond result of energy released from cusp of cosmic string	
73	McBreen et al	1982	Nature 332 234	GAL	AGN	COS	C-wave blood makes BL I an windle across palary loss pountin	
74.	Curtis	1988	ApJ, 327, L81	WD	- Carr	COS	WD collapses, burns to form new class of stable particles	
75.	Melia	1988	ApJ, 335, 965	NS		DISK	Be/X-ray binary sys evolves to NS accretion with recurrence	
76.	Ruderman et al	1988	ApJ, 335, 306	NS		DISK	e+/- cascades by aligned pulsar outer-mag-sphere reignifion	
77.	Paczynski	1988	ApJ, 335, 525	CS		COS	Energy released from cusp of cosmic string (revised)	
78.	Murikami et al.	1988	Nature, 335, 234	NS		DISK	Absorption features suggest separate colder region near NS	
79.	Melia	1988	Nature, 336, 658	NS		DISK	NS + accretion disk reflection explains GRB spectra	
80.	Blaes et al.	1989	ApJ, 343, 839	NS		DISK	NS seismic waves couple to magnetospheric Alten waves	

	Trofimenko et al.	1989	Ap&SS, 152, 105	WH		COS	Kerr-Newman white holes
2.	Sturrock et al.	1989	ApJ, 346, 950	NS		DISK	NS E- field accelerates electrons which then pair cascade
8.	Fenimore et al.	1968	ApJ, 335, L71	NS		DISK	Narrow absorption features indicate small cold area on NS
٩.,	Rodrigues	1989	AJ, 98, 2280	WD	WD	DISK	Binary member loses part of crust, through L1, hits primary
i	Pineault et al.	1989	ApJ, 347, 1141	NS	COM	DISK	Fast NS though Oort clouds, fast WD bursts only optical
š. –	Molia et al.	1989	ApJ, 346, 378	NS		DISK	Episodic electrostatic accel and Comp scat from rot high-R NSs
	Trofimenko	1989	Ap&SS, 159, 301	WH		COS	Different types of white, "grey" holes can emit GRB
8,	Eichler et al.	1989	Nature, 340, 126	NS	NS	COS	NS - NS binary members collide, coalesce
۹.	Wang et al.	1989	PRL, 63, 1550	NS		DISK	Cyclo res & Raman scat fits 20, 40 keV dips, magnetized NS
),	Alexander et al.	1989	ApJ, 344, L1	NS		DISK	QED map resonant opacity in NS atmosphere
	Melia	1990	ApJ, 351, 601	NS		DISK	NS magnetospheric plasma oscillations
2	Ho et al.	1990	ApJ, 348, L25	NS		DISK	Beaming of radiation necessary from magnetized neutron stars
۱.	Mitrofanov et al.	1990	Ap&SS, 165, 137	NS	COM	DISK	Interstellar comets pass through dead pulsar's magnetosphere
۱.	Dermer	1990	ApJ, 360, 197	NS		DISK	Compton scattering in strong NS magnetic field
i.,	Blaes et al.	1990	ApJ, 363, 612	NS	ISM	DISK	Old NS accretes from ISM, surface opes nuclear
š.,	Paczynski	1990	ApJ, 363, 218	NS	NS	COS	NS-NS collision causes y collisions to drive super. Ed wind
ť.,	Zdziarski et al.	1991	ApJ, 366, 343	RE	MBB	COS	Scattering of microwave background photoge by rol e e
Ú.	Pineault	1990	Nature, 345, 233	NS	COM	DISK	Young NS drifts through its own Oost cloud
	Trofimenko et al.	1991	Ap855 178 217	WH	0.0.11	HALO	White hole supernova ague simul hurst of a wayse from 10074
	Molia et al	1001	ApJ 373 198	NS		DISK	NC B. fold updersoon positive toolst of g-waves from 1987A
	Holcomb et al.	1991	ApJ 378 682	NS		DISK	Allos waves is nos uniform NC stands accelerates plasma
	Haansal at al	1001	Ap 1 375 200	00	ce	COR	Allen waves in non-uniform NS atmosphere accelerate particles
	Blass at al	1001	ApJ 381 210	NC	1614	DIEK	Strange stars emit binding energy in grav, rad, and colide
-	Erank et al.	1002	Apl 386 146	NO	IOM	DIGK	Slow interstellar accretion onto NS, e- capture starquakes result
	Moosley et al	1992	ApJ, 365, L45	NO		DISK	Low mass X-ray binary evolves into GHB sites
	Holmon et al.	1002	ApJ, 391, 220	NO		HALO	Accreting WU collapses to NS
	Pointan et al.	1993	ApJ, 411, 541	NS		HALO	NS popul at MW halo boundary expected by hydro density jump
	Thompson et al.	1992	ApJ, 388, 164	WD		COS	WD accretes to form naked NS, GRBs, cosmic rays
	Hacami	1893	ApJ, 406, 194	NS	-	COS	Sudden NS convection with high B drives e- pairs, gammas.
•	Hanami Mana	1992	ApJ, 389, L/1	NS	PLAN	COS	NS - planet magnetospheric interaction unstable
•	Meszaros et al.	1992	ApJ. 397, 570	NS	NS	COS	NS - NS collision produces anisotropic fireball
٠.	Elchier et al.	1992	Science, 257, 937	NS		HALO	High vel halo pulsars accrete after being kicked from disk
	Elcriter et al.	1992	Science, 257, 937	WD	WD	HALO	WD merger yields GRB
	Cartor	1992	ApJ, 391, L67	BH	51	COS	Normal stars tidally disrupted by galactic nucleus BH
	Disov	1992	Nature, 357, 472	NS		cos	WD collapses to form NS, B-field brakes NS rotation instantly
	Blaes et al.	1992	ApJ, 399, 634	NS		GAL	Old NS accretes from mol cloud, R-T instab at crust
	Narayan et al.	1992	ApJ, 395, L83	NS	NS	COS	NS - NS merger gives optically thick fireball
	Narayan et al.	1992,	ApJ, 395, L83	вн	NS	COS	BH-NS merger gives optically thick fireball
	Brainerd	1992	ApJ, 394, L33	AGN	JET	COS	Synchrotron emission from AGN jets
	Smith et al.	1993	ApJ, 410, 315	NS		DISK	e- beams accel by E-fields near NS with high B
	Meszaros et al.	1992	MNRAS, 257, 29P	BH	NS	COS	BH-NS have vs collide to ys in clean fireball
	Meszaros et al.	1992	MNRAS, 257, 29P	NS	NS	COS	NS-NS have vs collide to ys in clean fireball
-	Fatuzzo et al.	1993	ApJ, 407, 680	NS		COS	Allen waves accel particles which upscatter soft photons
	Bisnovatyi-Kogan	1993	A&A Sup, 97, 65	NS		GAL	Absorption by cloud of heavy elements around NS
L	McBreen et al.	1993	A&A Sup, 97, 81	AGN		COS	Relativistic jets from cocooned AGN
	Cline et al.	1992	ApJ, 401, L57	BH		DISK	Primordial RHs evaporation could account for short bard GDRs
-	Woosley	1993	ApJ, 405, 273	BH		COS	Spinning Woll-Bay star collapses, failed SN, emitts beamed fireba
	Melia et al.	1992	ApJ, 398, L85	NS		COS	Crustal adjustments by extranal radio pulsare
	Rees et al.	1992	MNRAS, 258, 41P	NS	ISM	COS	Relativistic frehall reconverted to radiation when hire ISM
	Kundt et al.	1993	Ap&SS, 200, 151	NS	10111	GAL	Spasmodic NS secretion causes beamed cooling 'sparke'
	Meszaros et al.	1993	ApJ, 405, 278	NS	BH	COS	Compart hinary coalesces, fireball hits external medium
	Cheng et al.	1993	MNRAS, 262, 1037	NS		GAL	NS plitch reignites magnetosphere of dead pulsar
	Melia et al.	1993	ApJ, 408, L9	NS		COS	NS structural readjustments explain both SCDs and CDDs
	Piran et al.	1993	ApJ 403 167	NS		CAL	Calactic frahall requires rel electe less T esseible but unlikels
	Fabian et al.	1993	MNRAS 263 49	NS		LMC	NS accrates alter elected from Max Cloud by companies Ch
	Fatuzzo et al.	1993	An. 414 189	NS		cos	Sheared Allen waves in NS manaphore displayed by companion SN
-		1000	the state of the state	11.0		000	Sheared Point Mayes III IVS Inausphere dissipate locused power

Typical durations are 20 seconds but there is wide variation both in timestructure and duration.

Some last only hundredths of a second. Others last thousands of seconds.

Exhibit a wide verity of structure in time, and a wide varity of timescales

GRBs are observed to be completely isotropic in their direction, indicating they originate at cosmological distances

GRB Redshift distributions

GRBs are observed from the local universe to the farthest cosmological distances, to when the universe was only 100 Million years old

BURSTS

NUMBER OF

GRB Spectra

GRBs are characterized by non thermal power-law spectrum. No known emission mechanism can account for all observed characteristics of the Gamma-ray Emission

Figure 9 The spectrum of GB 910601 observed over a wide energy range, as measured by three experiments on CGRO (Share et al 1994). A typical broad spectrum with a peak power at about 600 keV is seen. (The fitted spectral up-turn above 4 MeV is not significant.)

Gravitational Waves

Gravitational waves

progenitor: neutron star mergers

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

Gravitational Wave Observatories

GEO600

VIRGO

KAGRA

LIGO India

Image credit: LIGO

sensitivity timeline

Aasi+ Living Reviews in Relativity, vol. 19,

	Estimated			Number
	Run	BNS Ran	of BNS	
Epoch	Duration	LIGO	Virgo	Detections
2015	3 months	40 - 80	_	0.0004 - 3
2016 - 17	6 months	80 - 120	20 - 60	0.006 - 20
2017 - 18	9 months	120 - 170	60 - 85	0.04 - 100
2019 +	(per year)	200	65 - 130	0.2 - 200
2022 + (India)	(per year)	200	130	0.4 - 400

- Annually improving detectors
- Especially at low frequencies
- Increasing observation time
- More detectors → better localization

localization

Abbott et al. 2016 (1602.08492)

- 100-1000 deg²
- Improves with more detectors
- Difficult to cover for many optical observatories
- Significant transient foreground (SNe)
- 1/month FAR LIGO triggers

MORE DETECTORS NEEDED

Actual estimates

Simulated estimates with Virgo

3-D projection of the Milky Way onto a transparent globe shows the probable locations of confirmed detections GW150914 (green), and GW151226 (blue), and the candidate LVT151012 (red). The outer contour for each represents the 90 percent confidence region while the innermost contour is the 10 percent region. Image credit: LIGO/Axel Mellinger.

GW170817

Gravitational Wave Detection of GW170817

- Observed by LIGO at both Hanford and Livingston sites as well as Virgo in Italy
- Lucky in that only 3 weeks of LIGO-Virgo simultaneous observations
- 3000 cycles of the merger were discovered
- Frequency of the detection tells the initial mass and final mass of the objects, initial masses between 0.86 and 2.26 solar mass
- Final state unclear either heaviest Neutron star or lightest black hole ever observed
- Swift was on the wrong side of the Earth
- Localized to 28 sq degrees

Comparison with other GW Events

Low mass events are detectable for longer

GW170817

Masses in the Stellar Graveyard

Gamma-ray Observatios

- Observed by Both Fermi and Integral,
- Swift was occulted by the Earth
- Short gamma ray burst 1.7 seconds in duration
- Intrinsically weak for a short gamma ray burst, indicating off axis emission
- Fermi Localization plus Fermi-Integral IPN annulus allowed for better localization
- No x-ray afterglow observed immediately following the GRB consistent with off-axis

Fermi Gamma Ray Burst Monitor

GRB0170817A was observed right before Fermi shut down due to entering the South Atlantic Anomaly

Latest Data: Integral and SPI

Main GRB peak followed by soft tail indicating cocoon emission

Duration and spectrum consistent with short-hard burst No indication of spectral lag

Optical

- 1-meter Swope Supernova Survey did a prioritized survey of galaxies in the uncertainty of the band
- Found a bright kilonova in the galaxy NGC 4993
- Kilanova transitioned from blue to red as heavy elements were formed
- Close to the sun so only visible for one hour

LVC Localization Confidence Percentile

NGC 4993 p = 0.022

Ψ Hydrae •

ESO 508-G014 p = 0.009

Optical counterpart shows red to blue evolution indicating the creation of heavy elements

Galaxy identification gives redshift GRB170817A is the closest GRB with a measured redshift

Optical observations are consistent with Kilonova producing heavy elements

Model of GW170817

Neutrino Follow-up

- Follow-ups performed by IceCube, ANTARIES, and Auger
- IceCube was not in a good position to observe, but still has sensitivity at higher energies.
- ANTARES was in a good position to observe.
- AUGER, was in the narrow band where it can observe Neutrinos
- No neutrinos were observed

Extragalactic Distance Ladder

Neutron Star Mergers are a standard "siren" for measuring distances in cosmology

Hubble Constant

What did we learn?

- First confirmed observation of a merger of two neutron stars
- New information about the properties of neutron stars
- First visual observation of an event that produces both immense gravitational waves and bright electromagnetic waves
- Confirmation of the origin of "short" gamma ray bursts
- New independent cosmological distance measurement
- Best test so far of Einstein's prediction that the speed of light and the speed of gravitational waves are identical
- Efficient production of heavy elements