High energy neutrino emission from obscured sources through the pp channel

Matthias Vereecken

Vrije Universiteit Brussel

HEP@VUB, November 9, 2017

Introduction & Motivation

Obscured flat spectrum radio AGN

Neutrino modelling

HEP@VUB

Table of Contents

Introduction & Motivation

Obscured flat spectrum radio AGN

Neutrino modelling

HEP@VUB

Cosmic rays

Observed cosmic rays

- Galactic
- ► Extragalactic

Composition unknown

Sources?

Energies and rates of the cosmic-ray particles

HEP@VUB

Multimessenger paradigm

Multimessenger astronomy

Combine information from different messengers to learn more about the sources

- Photons (IR, optical, x-ray, γ)
- Cosmic rays
- Neutrinos
- Gravitational waves

(J. A. Aguilar & J. Yang, IceCube/WIPAC)

Astrophysical neutrino flux

Observed astrophysical neutrino flux

$$E^2 \phi_
u(E) \propto 10^{-8} \left(rac{E}{100 {
m ~TeV}}
ight)^{2-lpha}$$

with

(PoS (ICRC2017) 981)

HESE $\alpha = -2.92^{+0.33}_{-0.29}$

Muons $lpha=-2.19\pm0.10$

(PoS (ICRC2017) 1005)

HEP@VUB

Neutrinos and UHECRs

Estimation neutrino flux

Coincidence with measured flux

 \Rightarrow Energy production rate

UHECR (> 10^{19} eV) \approx neutrinos ($\sim 0.1 - 1 \text{ PeV}$)

HEP@VUB

Searching for the sources of high energy neutrinos/UHECRs

CR accelerator Gamma-ray bursts, active galactic nuclei

- *p*γ channel
- Lower cut-off: pion production threshold

$$E_{
m min} \sim \Gamma^2 m_
ho m_\pi c^4 / E_\gamma
ightarrow E_
u \sim 0.05 E_{
m min}$$

(Aurore Simonnet) 1. Vereecken

Searching for the sources of high energy neutrinos/UHECRs

CR reservoir Starburst galaxies

- pp channel
- Down to GeV energies
- \blacktriangleright Calorimetric environment for 50 100 PeV cosmic rays

(NASA/ESA)

8/42

Searches for typical sources

Up to ${\sim}30\%$ of total diffuse flux

(APJ 843 (2017) no.2, 112)

Neutrino break energy Eb (GeV)

Also other searches:

- General point source searches
- Coincident with transient optical/x-ray/gamma

► ... HEP@VUB

9/42

Searching for the sources of high energy neutrinos

General constraints on steady neutrino sources

Characterise source population

- $L_{E_{\nu_{\mu}}}^{\text{eff}}$ from $L_{\nu_{\mu}} \propto L_{ph}^{\alpha}$
- n_0^{eff} dominating flux

Constrain using

- No multiplets detected
- Responsible for astrophysical neutrino flux

Resulting limits

$$n_0^{
m eff}\gtrsim 10^{-7}~{
m Mpc}^{-3}$$

 $E_
u L_{E_{
u\mu}}^{
m eff}\lesssim 10^{42}~{
m erg~s}^{-1}$

Searching for the sources of high energy neutrinos

⁽Murase and Waxman 2016)

11/42

Searching for the sources of high energy neutrinos

Even for corrected models of AGN neutrino emission

Starburst galaxies

Starburst galaxies are good candidates:

- \blacktriangleright Self-consistently explain CR, γ and neutrino fluxes
- Almost calorimetric source for $E_{
 m cr} \leq 50-100 {
 m PeV}$

HEP@VUB

Combining gamma ray and neutrino data

Gamma ray-neutrino connection

$$\varepsilon_{\nu} Q_{\varepsilon_{\nu}} \approx \frac{3K}{4(1+K)} \min[1, f_{pp/p\gamma}] \varepsilon_{p} Q_{\varepsilon_{p}},$$

$$\varepsilon_{\gamma} Q_{\varepsilon_{\gamma}} \approx \frac{4}{3K} (\varepsilon_{\nu} Q_{\varepsilon_{\nu}}) \Big|_{\varepsilon_{\nu} = \varepsilon_{\gamma}/2},$$

$$K = \frac{N_{\pi^{\pm}}}{N_{\pi^{0}}} \approx \begin{cases} 1 \quad (p\gamma) \\ 2 \quad (pp) \end{cases}$$

$$\sum_{\nu = \varepsilon_{\gamma}/2} (pp)$$

$$\sum_{\nu = \varepsilon_{\gamma}/2} (pp)$$

Conclusions:

- Assuming transparency gives tension
- Extension with s ≥ 2.1 − 2.2 of E_ν ≥ 100 TeV to lower energies incompatible with Fermi γ-ray background

Hidden sources?

Estimating non-transparancy

$p\gamma$ efficiency

 $f_{p\gamma}(\varepsilon_p) \approx \eta_{p\gamma}(\alpha) \hat{\sigma}_{p\gamma}(r/\Gamma)(\varepsilon'_t n_{\varepsilon'_t})$

(Murase, Guetta and Ahlers 2016)

 $\gamma\gamma$ optical depth

$$\tau_{\gamma\gamma}(\varepsilon_{\gamma}) \approx \eta_{\gamma\gamma}(\alpha) \sigma_{T}(r/\Gamma)(\varepsilon'_{t} n_{\varepsilon'_{t}})$$

$$au_{\gamma\gamma}(arepsilon_{\gamma}^{c}) \sim 10\left(rac{f_{p\gamma}(arepsilon_{p})}{0.01}
ight)$$

$$\varepsilon_{\gamma}^{c} \sim \text{GeV} \left(\frac{\varepsilon_{\nu}}{25 \text{ TeV}}\right)$$

Implies sources with X-ray or MeV γ -ray counterparts

$$arepsilon_t \sim 20 \; {
m keV} (\Gamma/10)^2 (arepsilon_
u/30 \; {
m TeV})^{-1}$$

HEP@VUB

15/42

Obscured sources

Investigate alternative:

Obscuration by matter

- pp interaction instead of $p\gamma$
 - Enough matter to produce neutrinos
 - Obscures γ-rays
- Distinct from starburst galaxies:
 p not trapped in gas environment
- \rightarrow Specialise to one set of such objects:

Obscured flat spectrum radio AGN

- If subset blazars: can not be main source of neutrino flux
- Very clean object
- Able to probe blazar content in new way
- Mechanism is general

HEP@VUB

16/42

Table of Contents

Introduction & Motivation

Obscured flat spectrum radio AGN

Neutrino modelling

HEP@VUB

Active Galactic nuclei

⁽Becker and Biermann 2008)

Processes for non-thermal photon emission

⁽Mastichiadis 2016)

19/42

Emission in leptonic models

Spectral energy distribution

Dominated by non-thermal

2 bumps

(Abdo et al. 2011)

(Beckman and Shrader 2012)

Emission in hadronic models

HEP@VUB

21/42

Petropoulou et al. 2015) M. Vereecken

Obscured sources

Obscuration by matter

Gas & dust in front of jet \rightarrow beam dump

Note: not same as CR reservoir!

$$p+p
ightarrow \left\{egin{array}{c} pp\pi^0 \ pn\pi^+ \end{array}
ight.$$

(Abdo et al. 2011)

$$\sigma_{pp} pprox 2 imes 10^{-26} \ {
m cm}^2 \Rightarrow$$
 require $N_{H} pprox 10^{26} \ {
m cm}^{-2}$

HEP@VUB

Probing obscuration

Obscuration

- ► In γ -rays
- ► In X-rays!

$$\frac{I_X^{obs}}{I_X^0} = e^{-X_{tot}/\lambda_X}$$

Protons

$$rac{I_p^{int}}{I_p^0} = 1 - e^{-X_{tot}/\lambda_{p-N}}$$

Full beamdump: $X_{tot} = 4\lambda_{p-N}$

M. Vereecken

HEP@VUB

Photoelectric or compton?

Which process dominates attenuation of X-rays?

$$rac{I_X^{obs}}{I_X^0} = e^{-X_{tot}/\lambda_X}.$$

Estimate ionisation parameter

$$U_X = \int_{E_1}^{E_2} \frac{L_E/E}{4\pi r^2 c \ n_N} dE$$

Quasar broad line clouds

$$\frac{N_{H^+}}{N_H} \simeq 10^{5.3} U$$

(Maggi et al. 2016)

\Rightarrow Compton

HEP@VUB

24/42

Composition

Relation pp and X-ray attenuation

$$rac{I_p^{int}}{I_p^0} = 1 - \left(rac{I_X^{obs}}{I_X^0}
ight)^{\lambda_X/\lambda_{p-N}}$$

Depends on composition!

Dust composition $\lambda_{p-N} (\mathrm{g \ cm^{-2}})$ $\lambda_X (\mathrm{g \ cm^{-2}})$ λ_{P-N}/λ_X H(A=1)1.6 23 14 C(A=12)53 55 1.0 N(A=14)56 62 0.9 O(A=16) 59 80 0.7 Si(A=28) 71 55 1.3 Fe(A=56) 89 84 1.1

(Maggi et al. 2016)

Object selection

Starting point: two catalogs

Van Velzen

- Radio catalog
- Close universe
- Possible sources UHECRs

Fermi 2LAC

- γ-ray sources
- Detected by Fermi
- High energy sources

Select for

- Point source
- Flat radio spectrum
- Reduced X-ray emission

Source attenuation

Avoid diminished X-ray due to

- Intergalactic medium
- Redshift effect
- Selection effect
- \rightarrow construct unbiased sample

$$N(F_m > F_0) \propto (F_0)^{-3/2}$$

27/42

Flat radio spectrum

Criterion:

$$\alpha_R + \sigma_{\alpha_R} > -0.5$$

(Maggi et al. 2016)

Distribution of fitted indices Resulting objects:

- BL Lac
- FSRQ
- ULIRG

Radio - X-ray correlation

Diminished X-rays: divide out power of internal engine! FSRQ/ULIRG BL Lac

$$L_R = L_X^{0.73}$$

No relation

Obscured X-ray

Determining a baseline and obscured sources

FSRQ/ULIRG

BL Lac

Intensity ratio $L_X^{0.73}/L_R$

HEP@VUB

Resulting objects

Object name (NED ID)	Н	С	Ν	0	Si	Fe
Class: FSRQ						
2MASXJ05581173+5328180	0.79	0.93	0.94	0.97	0.87	0.91
CGCG186-048	0.71	0.88	0.90	0.94	0.79	0.85
MRK0668	0.92	0.99	0.99	1.00	0.96	0.98
Class: ULIRG						
ARP220	0.79	0.93	0.94	0.97	0.86	0.91
Class: BLLac						
3C371	0.84	0.95	0.96	0.98	0.90	0.94
B21811+31	0.81	0.94	0.95	0.98	0.88	0.92
SBS0812+578	0.87	0.97	0.98	0.99	0.93	0.96
GB6J1542+6129	0.82	0.95	0.96	0.98	0.89	0.93
RGBJ1534+372	0.86	0.97	0.97	0.99	0.92	0.95
SBS1200+608	0.89	0.98	0.98	0.99	0.94	0.97
PKS1349-439	0.85	0.96	0.97	0.98	0.91	0.95
4C+04.77	0.97	1.00	1.00	1.00	0.99	1.00
1H1720+117	0.89	0.98	0.98	0.99	0.94	0.97
APLibrae	0.90	0.98	0.99	0.99	0.95	0.97
PKS1717+177	0.83	0.95	0.96	0.98	0.89	0.93

(Maggi et al. 2016)

ULIRG

Potentially interesting class: Ultraluminous infrared galaxies

- Huge infrared bump
- Flat radio spectrum

32/42

IceCube search: results

IceCube analysis performed by Giuliano Data from 2012-2015

Name	$RA(^{\circ})$	dec ($^{\circ}$)	ТS	p-value	n _s	γ	ϕ^{90}
1H1720+117	261.27	11.87	0.0	1.0	0.0	3.11	6.95E-13
2MASX	89.55	53.47	3.63	0.037	16.12	2.73	1.08E-12
3C371	271.71	69.82	0.82	0.242	5.35	4.0	1.18E-12
4C+04.77	331.07	4.67	0.12	0.412	0.73	2.05	6.50E-13
ARP220	233.74	23.50	0.0	1.0	0.0	4.0	7.46E-13
B21811+31	273.40	31.74	2.51	0.076	11.93	2.85	8.50E-13
CGCG186-048	176.84	35.02	0.0	1.0	0.0	2.88	8.56E-13
GB6J1542+6129	235.74	61.50	0.0	1.0	0.0	2.68	1.07E-12
MRK0668	211.75	28.45	0.24	0.300	2.48	3.76	8.79E-13
NGC3628	170.07	13.59	3.93	0.034	6.88	2.21	7.19E-13
PKS1717+177	259.80	17.75	1.44	0.142	7.81	2.97	7.54E-13
RGBJ1534+372	233.70	37.27	0.30	0.318	3.95	3.05	8.99E-13
SBS0812-578	124.09	57.65	0.11	0.386	1.70	3.84	1.09E-12
SBS1200+608	180.76	60.52	0.0	1.0	0.0	2.46	1.09E-12

(PoS(ICRC2017)1000)

Table of Contents

Introduction & Motivation

Obscured flat spectrum radio AGN

Neutrino modelling

HEP@VUB

Neutrino spectrum

Model neutrino emission from above sources

- Obscuration (pp-interaction) is universal
- Normalisation depends on source class

Neutrinos from $pp\mbox{-interactions:}$ need Monte Carlo generation Analytical fits exist for ν and γ

$$\phi_{\nu}(E_{\nu}) = \int_{E_{\min}}^{E_{\max}} \left[1 - \exp\left(n_{H}\sigma_{\mathrm{inel}}(E_{\rho})\right)\right] J_{\rho}(E_{\rho}) F_{\nu}\left(\frac{E_{\nu}}{E_{\rho}}, E_{\rho}\right) \frac{\mathrm{d}E_{\rho}}{E_{\rho}}$$

However

- Ignores possible multiple interactions
- Newer version of generators exist
- \Rightarrow Simulate in SIBYLL

Electron luminosity

Need normalisation proton spectrum! Use radio emission

$$L_e = \chi L_R, \quad \chi \ge 1$$

36/42

PKS1717+177

Electron-proton ratio

Relating electron and proton luminosity

$$\left(L_e = f_e L_p\right)$$

Theory

Assumptions

- Acceleration p, e similar
- \blacktriangleright $N_p = N_e$

Estimate

- UHECR flux
- Synchrotron emission

Observation

Highly uncertain, but surely $f_e \ll 1$

Benchmark: $f_e \approx 0.1$ (extragalactic)

HEP@VUB

Results: GB6J1542+6129

Results: GB6J1542+6129

Results: 3C371

Results: ARP220

Results

Summarising:

- No fluxes above limit
- Most can be probed with improved sensitivity!
- Multiple interactions negligible

Blazar	Limit	Prediction
1H1720+117	6.95e-10	4.76e-11
2MASXJ05581173+5328180	1.08e-09	2.54e-10
3C371	1.18e-09	1.80e-09
4C+04.77	6.50e-10	6.42e-10
ARP220	7.46e-10	2.21e-10
B21811+31	8.50e-10	1.11e-10
CGCG186-048	8.56e-10	3.54e-10
GB6J1542+6129	1.07e-09	7.44e-11
MRK0668	8.79e-10	1.22e-09
NGC3628	7.19e-10	3.55e-10
PKS1717+177	7.54e-10	4.60e-10
RGBJ1534+372	8.99e-10	1.42e-11
SBS0812+578	1.09e-09	6.61e-11
SBS1200+608	1.09e-09	9.06e-11

Outlook

- Handling neutrons
- γ-ray attenuation (almost done)
- Constraints on population
 - Obscured flat spectrum AGN
 - General dense pp channel sources
- Write paper
- Investigate closer ULIRG (Pablo)

Summary and conclusions

- Typical sources high energy neutrinos (GRBs, AGN) strongly constrained by IceCube limits
- General constraints on source population
 - Lower limit on source density
 - Upper limit on neutrino luminosity
- Gamma-ray background constrains sources: suggests hidden source
- Gas and dust can provide obscuration and beam dump environment
- Selected obscured flat spectrum radio AGN & put limits
- Modelling neutrino emission: under limits and within reach
- ULIRG deserve further study