Declination and spectral feature studies Auger - Telescope Array Workshop

Daniela Mockler<sup>1</sup>

October 12, 2017



<sup>1</sup>Karlsruhe Institute of Technology, Institute for experimental particle physics

Spectra



#### Spectra - rescaled



#### Spectra in different declination intervals



# Fits to the flux

- Perform fits to the unfolded spetra using two different models
  - three connected power laws  $E^{\gamma_1}$ ,  $E^{\gamma_2}$  and  $E^{\gamma_3}$  with hard breaks at  $E_{\text{ankle}}$  and  $E_{\text{break}}$
  - ► hard ankle and smooth suppression  $J(E < E_{\text{ankle}}) = J_0 \left(\frac{E}{E_{\text{ankle}}}\right)^{\gamma_1}$   $J(E > E_{\text{ankle}}) = J_0 \left(\frac{E}{E_{\text{ankle}}}\right)^{\gamma_2} \left[1 + \left(\frac{E_{\text{ankle}}}{E_{1/2}}\right)^{\Delta\gamma}\right] \left[1 + \left(\frac{E}{E_{1/2}}\right)\right]^{-1}$
- All spectra fits are  $\chi^2$ -fits

#### Fit results for Auger spectra



#### Fit results for Auger spectra



# Fit quality - Auger



Fit results for Auger spectra -  $[-15.7^{\circ}, 24.8^{\circ}]$ 



 $\operatorname{smooth}$ 



Residuals for Auger -  $[-15.7^{\circ}, 24.8^{\circ}]$ 

hard



smooth

Fit results for Auger spectra -  $[-5.7^{\circ}, 24.8^{\circ}]$ 



 $\operatorname{smooth}$ 



Residuals for Auger -  $[-5.7^{\circ}, 24.8^{\circ}]$ 



# Residuals - Auger



# Residuals - Auger



#### Fits results for the TA spectra



# Fit results for Telescope Array



# Fit quality - Telescope Array



#### Fit results for Telescope Array - $\delta > 26^{\circ}$

hard



smooth

#### Residuals for Telescope Array - $\delta > 26^{\circ}$







#### Fit results for Telescope Array - $\delta < 26^{\circ}$



#### Residuals for Telescope Array - $\delta < 26^{\circ}$



#### Residuals - Telescope Array



smooth



#### Residuals - Telescope Array



TA total spectrum up to 45°
 → how does it look like for TA < 55°</li>

Fit parameters

# Fit parameters - overall normalization



Fit parameters - position of the ankle



#### Fit parameters - spectral index prior to the ankle



#### Fit parameters - spectral index after the ankle



#### Fit parameters



# • Position of $E_{\text{break}}$ and $E_{1/2}$ respectively

Auger  $[-15.7^{\circ}, 24.8^{\circ}]$  vs TA ( $\delta < 26^{\circ}$ )

- Common declination band
- $\bullet\,$  Energies rescaled by 5.2%



Auger  $[-15.7^{\circ}, 24.8^{\circ}]$  vs TA  $(\delta > 26^{\circ})$ 

• Energies rescaled by 5.2%



# Summary

- Auger spectra better described by model with hard ankle and smooth suppression
- TA well described by three power laws
  → however, also smooth model fits well in case of the total spectrum
- TA spectrum has higher cut-off energy
- Cut-off energies compatible in common declination band
   → higher cut-off energy in northern declination band of TA → how does
   this develop with increasing statistics?
- residuals reveal more details
- show differences in the shape

#### Back-up

# Fit parameters - increment of the spectral index after the suppression



# Fit parameters - spectral index after the suppression for hard model



Telescope Array - declination spectra

 $\delta < 26^{\circ}$ 

 $\delta > 26^{\circ}$ 



Auger  $[-15.7^\circ, 24.8^\circ]$  vs TA  $(\delta < 26^\circ)$ 

- Common declination band
- No scaling



Auger  $[-15.7^{\circ}, 24.8^{\circ}]$  vs TA  $(\delta > 26^{\circ})$ 

• No scaling



Fit parameters - overall normalization

