SUPERSYMMETRIC MODELS AND THEIR SIGNATURES AT THE LARGE HADRON COLLIDER: AN OVERVIEW OF THE PROJECT

Alberto Mariotti

20 January, 2010 Brussel

THE RESEARCH PROJECT IN A NUTSHELL

Chain from Theory to Experiment in High Energy Particle Physics

EXPERIMENT

- LHC is running
 - Proton Proton collider
 - 14 Tev in 2011
 - Study properties of Brout-Englert-Higgs boson
 - Also Beyond Standard Model physics

THEORY

- Supersymmetry is the leading candidate in BSM physics
- Many models for supersymmetry lead to different signatures

Study well motivated susy models and Identify specific signals for the LHC

Alberto Mariotti (VUB)

Pheno project at VUB

A WIDE PROJECT

EXPERTISE

- Some already present at VUB
- Collaboration with ULB, UCL, KUL ...
- Hire new researcher

PLAN OF THE TALK

- Scan the steps of the chain
- Steps are tightly connected one to the other
- Important to have such a research chain at work in Belgium

WHAT IS SUPERSYMMETRY ?

SUPERSYMMETRY

Symmetry which maps bosons in fermions and viceversa

 $Q \mid \mathsf{boson} \
angle = \mid \mathsf{fermion} \
angle \qquad Q \mid \mathsf{fermion} \
angle = \mid \mathsf{boson} \
angle$

$$\begin{split} \{Q_{\alpha}, Q_{\dot{\alpha}}^{\dagger}\} &= 2\sigma_{\alpha\dot{\alpha}}^{\mu}P_{\mu} \\ \{Q_{\alpha}, Q_{\beta}\} &= \{Q_{\dot{\alpha}}^{\dagger}, Q_{\dot{\beta}}^{\dagger}\} = 0 \\ [P^{\mu}, Q_{\alpha}] &= [P^{\mu}, Q_{\dot{\alpha}}^{\dagger}] = 0 \end{split}$$

- Irreducible representations of supersymmetry algebra are supermultiplets
- Supermultiplets contains bosons and fermions
- Superpartners have the same mass and quantum numbers
- Chiral superfields

$$\Phi = (\phi, \psi)$$

Vector superfields

$$V_{Sfield} = (\lambda, A_{\mu})$$

Alberto Mariotti (VUB)

MSSM AND ITS VIRTUES

• Matter and vector fields become supersymmetric

Matter \Rightarrow Chiral superfields (ϕ, ψ)

Vector \Rightarrow Vector superfields (λ, A^{μ})

• Doublet of Higgs chiral superfields

 $h \Rightarrow H_1, H_2$

- Special ultraviolet finiteness properties (no quadratic divergencies)
- Address the hierarchy problem $M_{\text{planck}} \gg M_{\text{weak}}$
- Better GUT unification
- Natural Dark Matter candidate
- Included in unification theories
 - Local supersymmetry includes gravity (Supergravity)
 - Superstring theory

BASIC OF SUSY PHENOMENOLOGY: SUSY BREAKING

• Supersymmetry not realized at low energies

SUSY MUST BE BROKEN!!

• Soft susy breaking \equiv No quadratic divergencies

SUPERSYMMETRY MUST BE BROKEN SOFTLY

 $\mathcal{L} = \mathcal{L}_{MSSM} + \mathcal{L}_{soft}$

• \mathcal{L}_{soft} = Soft terms

 $m_s \lambda_{\alpha} \lambda^{\alpha}$ Gaugino mass $m_s^2 \phi^{\dagger} \phi$ Scalar mass $A \phi^3$ A - term

- Superpartners get masses of order supersymmetry breaking scale m_s
- *m_s* should be larger than EW scale
- We expect low energy supersymmetry breaking

Alberto Mariotti (VUB)

Pheno project at VUB

ASPECTS OF MSSM AND SOFT TERMS

• Much of collider physics is determined by the Lightest Supersymmetric Particle (LSP)

Z_2 symmetry: **R**-parity

- Forbids lepton and baryon violating terms
- LSP stable \Rightarrow Dark matter candidate

PROBLEMATIC ISSUES

- O(100) free parameters
- Flavour problem
- CP problem

These issues should be addressed in a theoretical framework for supersymmetry breaking that gives prediction for the soft terms!!!

MEDIATION OF SUPERSYMMETRY BREAKING

STANDARD PARADIGM: MEDIATION OF SUSY BREAKING

- Gravity mediation
- Gauge mediation

GAUGE MEDIATION

- Low energy supersymmetry breaking
- Solves the susy flavour problem
- Predictive mass spectrum and soft terms (No gravity)

\Rightarrow ?? What is the phenomenological output of such models ?? \Leftarrow

PARTICLE SPECTRA AND CROSS SECTION

Theoretical models give (as functions of fewer parameters) at the supersymmetry breaking scale:

- Superpartner particle spectrum (in MSSM 32 distinct masses of undiscovered particles)
- Mixing angles

These parameters are RG evolved at the ElectroWeak scale to obtain effective Lagrangian and then

- Physical masses and mixing angles
- Cross sections
- Decay widths
- Dark matter abundance

These features are constrained by cosmology and by LEP bounds

MONTECARLO SIMULATIONS OF LHC COLLISION

- FeynRules to calculate Feynman rules
- MadGraph/MadEvent to simulate collision events
- Output of MadGraph/MadEvent is interfaced with the simulation of the detector
- Reconstruction tools to reconstruct particles observed in the final state

BENCHMARK POINTS

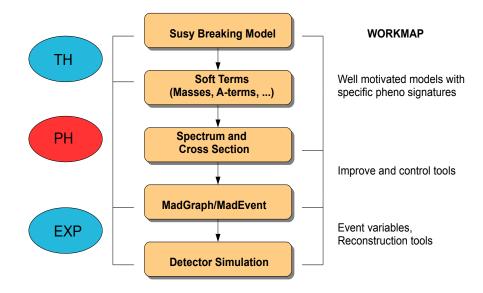
- Too large parameter space for a complete scan
- Proceed via benchmark points
- Ex: Constrained MSSM
 - All soft parameters as functions of 4 continuos + 1 discrete parameters

EXPERIMENTAL ISSUES

- Susy can be missing energy (LSP is typically neutralino)
- In model of gauge mediation gravitino is the LSP
- $\bullet \Rightarrow \mbox{Decay}$ of NLSP to Gravitino could be detected
- Important to extract susy from the SM background
- Kinematic topology can indicate supersymmetry
- Identify optimal event variables

WORKPLAN

FIRST STAGE: GENERAL GAUGE MEDIATION (GGM)


- GGM is a general framework for gauge mediation
- All soft terms determined by 6 parameters
- 6-dimensional parameter space still has to be fully explored
- Can have unusual NLSP (chargino, sneutrino)
- $\bullet \Rightarrow$ Can lead to unusual signatures at the LHC

Explore phenomenology of GGM, from theory to LHC detectors

PARALLEL WORKPLAN

- Well motivated models and model-independent analysis
- Develope computational tools (Implement Gravitino physics in MadGraph)
- Method to estimate SM backgrounds distribution from collision data

SUMMARY

