

The direct detection of gravitational waves: Astrophysics, fundamental physics, and cosmology

Chris Van Den Broeck

Solvay Workshop: SuGAR 2018, Brussels, 23-26 January 2018

Gravitational waves

- 1915: Einstein's general relativity
 - Gravity as curvature of spacetime
 - "Matter tells spacetime how to curve, spacetime tells matter how to move

- Black holes
 - Completely collapsed stars
 - Region of spacetime from which nothing can escape

- 1916: Prediction of gravitational waves
 - Ripples in the curvature of spacetime
 - Can be viewed as traveling tidal field
- 2015: First direct detection
 - Nobel Prize in Physics 2017

Indirect observations

1974: Hulse and Taylor discover binary neutron star

- Observed over the course of decades
 - Slow orbital decay
 - Gravitational waves carrying away orbital energy
 - Nobel Prize in Physics 1993

Can gravitational waves be observed directly?

1960s: Joseph Weber constructs resonant bar detectors

- Detection claims
 - Not reproducible by similar experiments in US, Europe, Japan
 - Theoretical problems, e.g.
 Milky Way should be losing energy at a noticeable rate

Rainer Weiss and interferometers

- Laser interferometer
 - Laser beam split in two
 - Both halves travel down "arms"
 - Reflected back
 - If no gravitational waves: destructive interference at the output
- Design study 1971
 - Need to control sources of noise, e.g.
 - Seismic
 - Thermal
 - Photon shot noise

Kip Thorne: Detectable astrophysical sources?

Merging neutron stars, black holes

Post-Newtonian techniques Post-Newtonian techniques Post-Newtonian techniques Post-Newtonian techniques Post-Newtonian techniques

Fast-spinning neutron stars

Supernovae

Primordial gravitational waves

Barry Barish and LIGO

- 1994: Barish starts leading construction of Laser Interferometer Gravitational-Wave Observatory (LIGO)
 - Two interferometers in the US
 - Placed 3000 kilometers apart
 - 4 kilometer arms

LIGO Hanford (Washington)

LIGO Livingston (Louisiana)

The coalescence of binary neutron stars and black holes

The first detection: GW150914

LIGO + Virgo, PRL 116, 061102 (2016)

Five confirmed binary black hole detections so far: GW150914, GW151226, GW170104, GW170608, GW170814

First access to the strong-field dynamics of spacetime

Yunes, Yagi, Pretorius, PRD 94, 084002 (2016)

Before direct detection:

- Solar system tests
 - Weak-field
 - Dynamics of spacetime itself not being probed
- Radio observations of binary neutron stars
 - Relatively weak-field test of spacetime dynamics
- Cosmology
 - Dark matter and dark energy may signal GR breakdown

Direct detection from binary black hole mergers:

- Genuinely strong-field dynamics
- (Presumed) pure spacetime events

First access to the strong-field dynamics of spacetime

- Inspiral-merger-ringdown process
 - Post-Newtonian description of inspiral phase

 $\Phi(v) = \left(\frac{v}{c}\right)^{-5} \left[\varphi_{0\mathrm{PN}} + \varphi_{0.5\mathrm{PN}} \left(\frac{v}{c}\right) + \varphi_{1\mathrm{PN}} \left(\frac{v}{c}\right)^2 + \ldots + \varphi_{2.5\mathrm{PN}^{(l)}} \log\left(\frac{v}{c}\right) \left(\frac{v}{c}\right)^5 + \ldots + \varphi_{3.5\mathrm{PN}} \left(\frac{v}{c}\right)^7\right]$

- Merger-ringdown governed by additional parameters $\beta_{n_i} \alpha_n$
- Place bounds on deviations in these parameters:

LIGO + Virgo, PRL **118**, 221101 (2017)

• Rich physics:

Dynamical self-interaction of spacetime, spin-orbit and spin-spin interactions

How do gravitational waves propagate?

• Does the graviton have mass?

$$E^2 = p^2 c^2 + \frac{m_g^2 c^4}{m_g^2 c^4}$$

 $m_g < 10^{-22} \text{ eV/c}^2$

LIGO + Virgo, PRL 116, 221101 (2017)

How do gravitational waves propagate?

• Does local Lorentz invariance really hold?

 $E^2 = p^2 c^2 + A p^{\alpha} c^{\alpha}$

LIGO + Virgo, PRL 118, 221101 (2017)

What is the true nature of black holes?

Ringdown of newly formed black hole

- Not yet observed in detail
- Will enable indirect test of *no hair theorem*: *"Stationary, neutral black holes only characterized by mass and spin"*
- Requires further factor 3-4 improvement of detectors

Meidam et al., PRD 90, 064009 (2014)

Gravitational wave echoes

- Alternatives to standard black holes, e.g. "firewalls" prompted by Hawking's information paradox
- Even after ringdown, black hole will continue to emit gravitational wave bursts: *echoes*
- Macroscopic signature of quantum gravity

Cardoso *et al.*, PRL **116**, 171101 (2016) Cardoso *et al.*, PRD **94**, 084031 (2016)

2017: Advanced Virgo joins the network

LIGO+Virgo, PRL **119**, 161101 (2017)

- 14 August 2017: First joint binary black hole detection by Advanced LIGO, Advanced Virgo
- 17 August 2017: First detection of binary neutron star merger
 - Gamma ray counterpart
 Origin of gamma ray bursts
 - Thanks to LIGO-Virgo triangulation: discovery of afterglow
 Origin of heavy elements
 - New cosmic distance markers
 Novel way of doing cosmology
 - Measurement of neutron star tides
 Structure of neutron stars
 - Speed of gravity = speed of light to 1 part in 10¹⁵

Solving an astrophysical conundrum

- Structure of neutron stars?
 - Structure of the crust?
 - Proton superconductivity
 - Neutron superfluidity
 - "Pinning" of fluid vortices to crust
 - Origin of magnetic fields?
 - More exotic objects?

- Widely differing theoretical predictions for equation of state
 - Pressure as a function of density
 - Mass as a function of radius
 - Tidal deformability as a function of mass

Demorest et al., Nature 467, 1081 (2010)

Probing the structure of neutron stars

- Gravitational waves from inspiralling binary neutron stars:
 - When close, the stars induce tidal deformations in each other
 - These affect orbital motion
 - Tidal effects imprinted upon gravitational wave signal
 - Tidal deformability maps directly to neutron star equation of state
- Measurement of tidal deformations on GW170817
 - More compact neutron stars favored
 - "Soft" equation of state

LIGO+Virgo, PRL 119, 161101 (2017)

Probing the structure of neutron stars

- More accurate determination of equation of state using tidal deformability after O(30) detection
- Post-merger signal?
 - Depends strongly on equation of state
 - "Soft": prompt collapse to black hole
 - "Hard": hypermassive neutron star
 - Characteristic frequencies in gravitational wave spectrum

Bernuzzi et al., PRL 115, 091101 (2015)

A new cosmic distance marker

- Mapping out the large-scale structure and evolution of spacetime by comparing:
 - Distance
 - Redshift
- Current measurements depend on cosmic distance ladder
 - Intrinsic brightness of e.g. supernovae determined by comparison with different, closer-by objects
 - Possibility of systematic errors at every "rung" of the ladder
- Gravitational waves from binary mergers: Distance can be measured directly from the gravitational wave signal!

A new cosmic distance marker

- Measurement of the local expansion of the Universe: The Hubble constant
 - Distance from GW signal
 - Redshift from EM counterpart (galaxy NGC 4993)

- One detection: limited accuracy
- Few tens of detections: O(1%) accuracy after few tens of detections

Masses in the Stellar Graveyard

Multi-messenger astronomy

Merging neutron stars, black holes

GW + EM (+ neutrinos?)

Supernovae

GW + EM + neutrinos

Fast-spinning neutron stars

GW + EM

Primordial gravitational waves

GW + CMB

Into the future

Pulsar timing arrays: Milky way sized detectors

- Radio astronomers monitor *pulsars*:
 - Neutron stars as lighthouses
 - High-accuracy measurement of periods
- A passing gravitational wave affects pulse rate
- Large number of pulsars together form a gravitational wave detector
 - Sensitive to ultra-low frequenties: $10^{-9} 10^{-6}$ Hz
- Observation of supermassive binary black holes long before merger
 - First detection in the next decade?

The Laser Interferometer Space Antenna (LISA)

- Three probes in orbit around the Sun, exchanging laser beams
 - Triangle, O(10⁶) km sides
 - Sensitive to low frequencies: $10^{-5} 10^{-1}$ Hz
 - Approved by ESA for launch in 2034
 - Different sources:
 - Binary white dwarfs in Milky Way
 - Mergers of supermassive binary black holes
 - Smaller objects in complex orbits around supermassive black hole

The Laser Interferometer Space Antenna (LISA)

- Most galaxies are believed to harbor a supermassive black hole $(10^6 10^9 \text{ Solar masses})$
- LISA will see binary mergers throughout the Universe
- How did supermassive black holes come about?
 - Formed almost immediately in early Universe?
 - Instead started with light black holes, growth through successive mergers?

The Laser Interferometer Space Antenna (LISA)

- Joint observations of LISA and ground-based detectors:
 - Binary black holes first visible in LISA
 - Weeks later also in detectors on the ground

Sesana, J. Phys. Conf. Ser. 840, 012018 (2017)

Einstein Telescope

Sathyaprakash et al., CQG 29, 124013 (2012)

- EU-funded design study 2011
 - Triangular, sides of 10 km
 - Underground
 - Superior noise suppression
 - More sensitive optics
 - Six interferometers:
 - High frequencies(high laser power)
 - Low frequencies (cryogenic)
- Factor 10 improvement in sensitivity over Advanced LIGO/Virgo
- Merging black holes, neutron stars in the entire visible Universe
 - 100,000 sources per year!
 - How did stellar mass binary black holes arise?
 - Detailed probe of neutron star interiors
 - Cosmology
- Site studies e.g. in Southern Limburg

Primordial gravitational waves?

• Cosmic inflation:

Exponential expansion of spacetime

- Amplification of vacuum fluctuations
 - Study CMB polarization
- What kind of field was the "inflaton"?
 - Gravitational wave background?
- Phase transitions in the early Universe
 - Forces of nature splitting off
- Cosmic strings?
 - Fundamental (string theory)
 - Topological defects, quantum field theory
- Black holes from the Big Bang itself?
 - Einstein Telescope will be able to see mergers of binary black holes *before* the formation of the first stars

Into the future

Pulsar Timing, LISA, Einstein Telescope:

- Spectrum ranging $10^{-9} 10^4$ Hz
- Most extreme events in the Universe
- Primordial gravitational waves from immediately after Big Bang?

New field at the intersection of fundamental physics, astrophysics, cosmology

Nobel Prize in Physics 2017

"For decisive contributions to the LIGO detector and the observation of gravitational waves"

Rainer Weiss

Kip Thorne

Barry Barish