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IceCube energy range for CR detection

From �1 PeV to �1 EeV
knee to ankle

Auger 
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Tibet-III
Argo

Increasing detector size
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The IceCube Neutrino Observatory

50 m

1450 m

2450 m

2820 m

IceCube Array

DeepCore

Eiffel Tower

324 m

IceCube Lab

IceTop

Bedrock

81 stations, 
324 optical 
sensors.

86 strings, 
5160 optical 
sensors.

8 strings with 
a denser spacing.

Amundsen-Scott South Pole station

IceCube lab

IceCube: 1 km³ neutrino 
telescope 1.5 km below the 
surface.
IceTop: 1 km² air shower 
array at the top of IceCube. 
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The IceCube Neutrino Observatory: DOM

I Digital optical module (DOM)

I 5160 in IceCube and 324 in IceTop

I Photomultiplier tube + digitization
system

I Sensitive to photons from Cherenkov
emission
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The IceCube Neutrino Observatory: IceTop

2 DOMs per tank

2 tanks per station
(~10 m separation)
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81 stations spread 
over 1 km2

I 2 DOMs per IceTop tank: large charge
dynamic range

I Detect Cherenkov light

I 2 tanks operate in coincidence in 1 station

I 78 stations next to IceCube strings
(1 km2) + 3 In�ll stations

I Atmospheric depth �690 g/cm2

I Calibrated with muons (VEM)
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Cosmic ray physics with the IceCube � Observatory

I IceTop stations detect:
I electromagnetic component
I low energy muons

IceTop: energy and age/mass (�/EM).

early lateTime scale

I High-energy muon bundles
travel down to IceCube:

I E� > 300 GeV
I Multiplicity: 1 - 1000s
I Ionization + radiative,

stochastic energy loss

IceCube: mass from �

from �rst interactions
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Coincident analysis: air shower reconstruction

IceTop part:

I Require 5 hit stations

I Calibrate and clean IceTop pulses (ex: remove
random coincidences)

I Reconstruct core, direction, time, and other
useful variables using minimization

I Correct measured charge for snow on top of tanks

InIce part:

I Look for in-ice hits correlated to the IceTop track

I Perform extra cleaning/hit-selection

I Reconstruct the energy loss pro�le of the muon
bundle

I Extract more composition-sensitive variables

I Add seasonal corrections
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Air shower reconstruction with IceTop

Lateral distribution function
(LDF):

S(r) = S125 �

� r

125 m

�
���� log( r
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)

Time residuals:

�t(r) = ar
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�
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�
�

r 2

2�2

��

! x, y, z, �, �, �, S125 (slope and signal at 125 m from core)
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Air shower reconstruction with IceCube

Unfolding the energy loss pattern + maximum
loglikelihood

I Muon bundle energy loss depends on
number of TeV muons.

I Stochastic behaviour: count number of
peaks above some threshold (2 selection
procedures).
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Coincident analysis: Neural network + template

Neural network

I Inputs:

I S125
I zenith angle
I

dE

dX
(X )

I # HE stochastics 1
I # HE stochastics 2

I Outputs: log10(Energy), mass A.

I Relation between inputs and
outputs is unknown, non-linear
mapping.

I Energy spectrum directly from
NN output.

I Mass shows broad distributions in
NN output.

Template �tting
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Fit

I For each energy bin: (Data)i =
fH � Hi + fHe � Hei + fO � Oi +
fFe � Fei .

I Binned likelihood �t which takes
into account Poisson uctuations
on both data and MC.
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Systematics (coincident analysis)

I Snow correction uncertainty: ��0.2 m.

I Absolute IceTop energy scale: �3% on the data/MC
calibration.

I Hadronic Interaction Model: SYBILL 2.1 vs QGSJet-II-03.
(update ongoing)

I In-ice light yield systematics:

uncertainty

DOM e�ciency � 3%
Hole ice 30 cm + 4.5%
Hole ice 100 cm - 2.9%
+ 10 % scattering + 3.6 %
- 10 % scattering -11.8 %

-7 % scattering and absorption + 7%

Total +9.6%,-12.5%
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Energy spectrum

I Agreement between IceTop-only and IceTop-IceCube analyses

I Most detailed energy spectrum measurement in this energy range

I Clear features visible: 2nd knee around 100 PeV
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IT-IC composition: individual elements

I Only in-ice light yield systematic shown (grey)
I Clear heavy 2nd knee, no proton at highest energies.
I New versions hopefully available soon: non-statistical uctuations around

0.5 107 GeV ! �t problem due to low MC statistics;
energy dependence of results not much a�ected. 14 / 23



IT-IC composition: lnA

Ref: "Latest Results on Cosmic Ray Spectrum and Composition from Three
Years of IceTop and IceCube", 1510.05225, p.37

I Rising average mass up to 100 PeV, stabilization at higher energies but
heavy

I In-Ice light yield dominating systematic
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Muon multiplicity measurement with deep IceCube
Measurement of TeV muon multiplicity converted to energy spectrum using
certain composition assumption. Ex: pure proton and pure iron.
Overlay with energy spectrum measurements:
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Ref: IceCube, Astropart. Phys. 78, 1 (2016)

I Qualitative same conclusion about composition as above!
High-energy (TeV) muons result in a di�erent composition compared
to surface/uorescence detectors. 16 / 23



IceTop composition with GeV � density: method

Charge as 
function 
of distance

Bin in distance bins
and fit EM and μ 
component
per primary energy 
bin
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IceTop composition with GeV � density: results

proton

iron

iron

iron

iron

proton

protonproton

Ref: "Surface muons in IceTop", 1510.05225, p. 21

I Muon density (relative to proton) measured up to 100 PeV
I Sibyll 2.1, Sibyll 2.3, QGSJet II.04, EPOS-LHC 18 / 23



Hadronic models with IceTop and IceCube: method
Reason for composition disagreement?

I Energy estimate with S125 (IceTop)

I IceTop composition sensitivity through slope of LDF (�): age of shower
and low-energy (GeV) muon number

I IceCube composition sensitivity with TeV muon bundle energy loss

I Sibyll 2.1, Sibyll 2.3, QGSJet II.04, EPOS-LHC

I Up to 100 PeV
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Hadronic models with IceTop and IceCube: results
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EPOS-LHC

I Consistent composition interpretation with IceTop and IceCube for
QGSJet II.04 and Sibyll 2.3

I Low number of low-energy muons for Sibyll 2.1; opposite inconsistency
for EPOS-LHC 20 / 23



Conclusions

I The cosmic ray energy spectrum is measured in detail between
4 PeV and 1 EeV. A clear 2nd knee is observed.

I Using HE muon bundles, the average mass rises up to 100
PeV and seems constant above this energy.

I IceTop-only composition: rise in average mass up to 100 PeV,
investigation of hadronic models.

I The hadronic interaction models are under study:
disagreement for EPOS-LHC and Sibyll 2.1 between IceTop
and IceCube composition measurement; consistency for Sibyll
2.3 and QGSJet II.04.
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Outlook and possible upgrades

I More data to be added at highest energies

I Extend studies of composition with IceTop > 100 PeV

I Cherenkov telescope and scintillator panels prototypes
installed.
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Thanks!
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E�ect of snow on data

Snow height map [m] (11/2010)
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I Electromagnetic particles are attenuated
) rates reduce.
) relation between primary energy and
detector response changes.

Scorr;tank = Smeas;tank � exp(
d sec �
�

).

I Most signi�cant systematic on energy
spectrum.
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Seasonal variations
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I Denser atmosphere means pions
and kaons interact instead of
decaying) less HE muons.

I A�ects composition
measurement.

I No more shift visible in each
month after correction.
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Quality

Core resolution

log10(Energy/GeV)
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For contained, coincident events:

I Core resolution: 6 - 11 m.

I Angular resolution: 0.2� - 1.0�.

I Very good energy resolution
(10-15%), small bias.
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Results: Individual energy spectra

QGSJET
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