VRIJE VUB UNIVERSITEIT **BRUSSEL**

 T obias Winchen - Cosmic Rays \mathcal{R}

Cosmic Ray Physics with the LOFAR Radiotelescope

Tobias Winchen for the LOFAR Cosmic Ray Key Science Project

SUGAR 2018

tobias.winchen@vub.be

The LOw Frequency ARray

The LOw Frequency ARray

A Fully Digital Radio Telescope

Conventional radio telescope:

Mechanically point (few) directional antennas into observing direction + combine signals

Observe only one direction at a time

Digital radio telescope:

Many omni-directional antennas digitally combine signals according to direction

Observe multiple directions simultaneously

Radio Emission From Air Showers

Cosmic Ray Air Shower with LOFAR

Trigger from Particle Array LORA

Footprint Size Depends on Xmax

Deeper shower \rightarrow Smaller footprint

Xmax Reconstruction

Simulate + reconstruct showers with varying Xmax to fit observation

Systematic uncertainty: -10 / +14 g/cm² Mean statistical uncertainty: ±16 g/cm²

Results Composition Measurement

- **2 component models are not sufficient**
- **Strong light component between 0.1 and 0.5 EeV**
- **H + He fraction is larger than 40%** (@ 99% confidence)

S. Buitink et al. 2016, Nature 531, 70

Second Light Component

AUGER Combined fit (*JCAP, 2017, 1704, 038)* Accelerators with rigidity dependent cut off **Surprising result above 5 EeV:**

Hard injection spectra $(y < 2)$ at sources Only weak contribution from light elements

Tobias Winchen - Cosmic Rays @ LOFAR

Fermi Acceleration in CRPropa

Scattering on irregularities in magnetic field

^B ^B B B ^B ^B B B ^B ^B B B Second Order Random isotropic movement of scatter centers

First Order

Directed movement in two different velocity fields

Step length from quasi linear theory of diffusion in magnetic fields:

- Gyroradius not much larger than coherence length of field
- dB / B not too large

Spectral index of turbulence (q = 5/3 for Kolmogorov turbulence)

Strength of irregularites

\n
$$
\lambda \propto \left(\frac{B}{\delta B}\right)^2 \left(R_G \, k_{\text{min}}\right)^{1-q} R_G \equiv \lambda_0 \left(\frac{E}{1 \,\text{EeV}} \frac{1}{Z}\right)^{2-q}
$$

depends on MHD details Step – length scaling

Max. length scale of turbulence

2 nd Order Fermi Acceleration Small Steps between Scatter Events

Energy [eV]

Under review by Astropart. Phys. *T. Winchen and S. Buitink 2018,*

Improved Atmospheric Corrections

 $\mathsf{X}_{\mathsf{max}}$ measurement depends on index of refraction

Simplified Picture: All radiation from Xmax

A. Corstanje et al. 2017, Astropart. Phys 23-29

Atmosphere Models in Coreas/CORSIKA

Tool to download GDAS data and create profiles now part of CORSIKA (src/utils/gdastool)

A. Corstanje et al. 2018, In preparation

Radio Only Energy Estimation

- Particles:
	- 20 Scintillator stations
	- Energy calibration strongly dependent on hadronic interaction models

Radio:

- 100 M€ Radio telescope with \sim 50000 Antennas
- Well understood emission mechanism of radio
- **Direct measurement of** energy in electromagnetic cascade

→ Radio only energy estimation might have lower uncertainties

P. Mitra et al., in preparation

Upgrade LORA Particle Array

20 more Detectors

- Increase detection rate of high energy events
- Better showers: contained core, refined trigger, ...

K. Mulrey et al., In preparation

Increase Energy Range

- Trigger rate preferably limited to ~1 per hour to not saturate available bandwidth – Require high number of stations
	- Composition bias at low energies
- Low radio signal in low energy showers due to core position / shower direction

K. Mulrey et al., In preparation

Particle + Radio Hybrid Trigger

 $Time$

Lunar Detection Mode

p, ν, X

 Using Moon proposed by Askaryan 1962 Several previous searches, e.g. NuMoon, GLUE, RESUN, LUNASKA, ... LOFAR potentially most sensitive instrument **Frequency Range** ■ Collective Area **Moon Coverage**

Tobias Winchen - Cosmic Rays @ LOFAR

Observation Strategy

- HBA Antennas have optimal frequency range
- Form multiple beams on the Moon
- Search for ns pulses in time-series
- Anti coincidence to suppress RFI
- Analyze Faraday rotation and dispersion to check lunar origin

Realtime data processing of beamformed data with ns precision:

- DRAGNET: 96 High-End GPUs (J. Hessels et al, pulsar search)
- Use buffered traces for analysis

Prototype of online system ready, simulations in progress!

First Data Expected in 2018!

T. Winchen et al. 2018, In preparation

Expected Limits

Very preliminary

Limits based on semi-analytical calculation optimized for GHz frequencies:

- Underestimates sensitivity at MHz
- Over simplified trigger
- **→ Full simulations in progress**

Cosmic Rays detectable by LUNAR Observations with SKA

Tobias Winchen - Cosmic Rays @ LOFAR

Beyond Cosmic Rays: Lightning Physics

Conclusions

LOFAR measures composition and energy around 1017 eV

- \rightarrow Ankle and second light component
- Future:
	- **Higher Precision**
	- \blacksquare More data + increased energy range
	- **L** Lunar observation mode
- Technology developed for Cosmic Rays enables research on lightning