

Telescope Array Experiment Highlights on Composition and Anisotropy

For the Telescope Array Collaboration

Charlie Jui, University of Utah, Jan 23, 2018

"SuGAR 2018: Searching for the sources of galactic and extra galactic cosmic rays"

Outline

- Latest Hybrid Xmax measurements from TA FD
 - Xmax Distributions vs MC simulation for 4 pure primaries
 - <Xmax> vs LogE
 - σ(Xmax) vs <Xmax>
 - Interpretation of Results: Shape Analysis
- Anisotropy
 - Global anisotropy
 - Hotspot
 - Coldspot
 - Large Scale Structure
 - Anisotropy in the spectrum
 - Small scale Anisotropy
- Ralph says I have to show the TALE spectrum

Temporarily

-Open----

-Closed

Open?

TA Jan 23, 2018

R.U. Abbasi,¹ M. Abe,² T. Abu-Zayyad,¹ M. Allen,¹ R. Azuma,³ E. Barcikowski,¹ J.W. Belz,¹ D.R. Bergman,¹ S.A. Blake.¹ R. Cady.¹ M.J. Chae,⁴ B.G. Cheon,⁵ J. Chiba,⁶ M. Chikawa,⁷ W.R. Cho,⁸ T. Fujii,⁹ M. Fukushima,^{9,10} T. Goto,¹¹ W. Hanlon,¹ Y. Hayashi,¹¹ N. Hayashida,¹² K. Hibino,¹² K. Honda,¹³ D. Ikeda,⁹ N. Inoue,² T. Ishii,¹³ R. Ishimori,³ H. Ito,¹⁴ D. Ivanov,¹ C.C.H. Jui,¹ K. Kadota,¹⁵ F. Kakimoto,³ O. Kalashev,¹⁶ K. Kasahara,¹⁷ H. Kawai,¹⁸ S. Kawakami,¹¹ S. Kawana,² K. Kawata,⁹ E. Kido,⁹ H.B. Kim,⁵ J.H. Kim,¹ J.H. Kim,¹⁹ S. Kitamura,³ Y. Kitamura,³ V. Kuzmin,¹⁶ Y.J. Kwon,⁸ J. Lan,¹ S.I. Lim,⁴ J.P. Lundquist,¹ K. Machida,¹³ K. Martens,¹⁰ T. Matsuda,²⁰ T. Matsuyama,¹¹ J.N. Matthews,¹ M. Minamino,¹¹ Y. Mukai¹³ I. Mvers¹ K. Nagasawa² S. Nagataki¹⁴ T. Nakamura²¹ T. Nonaka⁹ A. Nozato,⁷ S. Ogio,¹¹ J. Ogura,³ M. Ohnishi,⁹ H. Ohoka,⁹ K. Oki,⁹ T. Okuda,²² M. Ono,²³ A. Oshima,²⁴ S. Ozawa,¹⁷ I.H. Park,²⁵ M.S. Pshirkov,^{16, 26} D.C. Rodriguez,¹ G. Rubtsov,¹⁶ D. Ryu,¹⁹ H. Sagawa,⁹ N. Sakurai,¹¹ L.M. Scott,²⁷ P.D. Shah,¹ F. Shibata,¹³ T. Shibata,⁹ H. Shimodaira,⁹ B.K. Shin,⁵ H.S. Shin,⁹ J.D. Smith,¹ P. Sokolsky,¹ R.W. Springer,¹ B.T. Stokes,¹ S.R. Stratton,^{1,27} T.A. Stroman,¹ T. Suzawa,² M. Takamura,⁶ M. Takeda,⁹ R. Takeishi,⁹ A. Taketa,²⁸ M. Takita,⁹ Y. Tameda,¹² H. Tanaka,¹¹ K. Tanaka,²⁹ M. Tanaka,²⁰ S.B. Thomas,¹ G.B. Thomson,¹ P. Tinyakov,^{30,16} I. Tkachev,¹⁶ H. Tokuno,³ T. Tomida,³¹ S. Troitsky,¹⁶ Y. Tsunesada,³ K. Tsutsumi,³ Y. Uchihori,³² S. Udo,¹² F. Urban,³⁰ G. Vasiloff,¹ T. Wong,¹ R. Yamane,¹¹ H. Yamaoka,²⁰ K. Yamazaki,²⁸ J. Yang,⁴ K. Yashiro,⁶ Y. Yoneda,¹¹ S. Yoshida,¹⁸ H. Yoshii,³³ R. Zollinger,¹ and Z. Zundel¹ ¹High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA ²The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan ³ Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan ⁴Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea ⁵Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea ⁶Department of Physics, Tokyo University of Science, Noda, Chiba, Japan ⁷Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan

⁸Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea ⁹Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan ¹⁰Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan ¹¹Graduate School of Science, Osaka City University, Osaka, Osaka, Japan ¹²Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan ¹³Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan ¹⁴Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan ¹⁵Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan ¹⁶Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ¹⁷ Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan ¹⁸Department of Physics, Chiba University, Chiba, Chiba, Japan ¹⁹Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea ²⁰Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan ²¹ Faculty of Science, Kochi University, Kochi, Kochi, Japan ²²Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan ²³Department of Physics, Kyushu University, Fukuoka, Fukuoka, Japan ²⁴Engineering Science Laboratory, Chubu University, Kasugai, Aichi, Japan ²⁵Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea ²⁶ Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia ²⁷Department of Physics and Astronomy, Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA ²⁸Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan

²⁹Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan ³⁰Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium ³¹Department of Computer Science and Engineering, Shinshu University, Nagano, Nagano, Japan

³² National Institute of Radiological Science, Chiba, Chiba, Japan
 ³³ Department of Physics, Ehime University, Matsuyama, Ehime, Japan

5 nations, 33 institutions, 124 members

Telescope Array

507 scintillation counters surface detector (SD): Area: ~700 km². 3 fluorescence detector (FD) stations In operation since 2008

TA Fluorescence Detectors

Xmax Distributions vs MC

COPE

Xmax Distributions vs MC

Xmax Distributions vs MC

TA Jan 23, 2018

COPE

Interpretation of <Xmax>? Extrapolation Uncertainties for <Xmax>

Ulrich, Engel and Unger arXiv:1010.4310v1 [hep-ph] 20 Oct 2010) Thomson and Abbasi, arXiv:1605.05241v1 [hep-ex] 17 May 2016)

Model	<xmax> uncertainty 10¹⁷eV</xmax>	<xmax> uncertainty 10^{19.5}eV</xmax>	900
SIBYLL2.1	±3 g/cm2	±18 g/cm2	QGSJetII 03 CORSIKA Prediction 850 QGSJet01 Proton SIBYLL 2.1 QGSJetII 04
QGSJET114	±3.5 g/cm2	±16 g/cm2	EPOS-LHC 30 750 ↓ 700
QGSJET01	±3 g/cm2	±18 g/cm2	650
EPOS-LHC	±3 g/cm2	±18 g/cm2	550 7 17.5 18 18.5 19 19.5 20 log ₁₀ (E (eV))

Uncertainty at 250 TeV (= $10^{19.5}$ eV) encompasses all the models at the ± 1 σ level; smaller at 10^{17} eV.

But the uncertainty is less for RMS(Xmax).

Data/MC: σ(Xmax) vs <Xmax>

TA Jan 23, 2018

Dots: Resampled MC with same no. of events as data; with contours 68.3% (blue), 90% (orange), and 95% (red) confidence intervals

Data/MC: σ(Xmax) vs <Xmax>

TA Jan 23, 2018

13

Data/MC: σ(Xmax) vs <Xmax>

(e) $19.4 \le \log_{10}(E/eV) < 19.9$

TA Jan 23, 2018

Dots: Resampled MC with same no. of events as data; with contours 68.3% (blue), 90% (orange), and 95% (red) confidence intervals

AROJECT

Shape Analysis: 1st bin

- Likelihood function, L (logL is shown), is constructed for the data against the MC event set (fitted to a Gaussian + exponential tail), vs. shift Δ Xmax in data
- logL is interpreted as a measured of how much the data resembles the MC
- Max value of log*L* is a measure of how much the shifted data resembles MC

Comparing Shifted data to MC

- Likelihood function, L (logL is shown), is constructed for the data against the MC event set (fitted to a Gaussian + exponential tail), vs. shift Δ Xmax in data
- logL is interpreted as a measured of how much the data resembled the MC
- Max value of log*L* is a measured of how much the shifted data resembled MC

Compare Shifted data to resampled MC

- Resample MC (same no. of events as data in each resample)
- Find ∆Xmax from max. log*L*. The max value of log*L* is then histogrammed and the resulting distribution is fitted to a Gaussian interpreted as a PDF
- Find *p* value that one of the resample gives max. log*L* further away from data

Repeat for each energy bin: Result

	prot	proton helium		nitrogen		iron		
energy	$\Delta X_{\rm max}$	p-val	$\Delta X_{\rm max}$	p-val	$\Delta X_{\rm max}$	p-val	$\Delta X_{\rm max}$	p-val
18.2-18.3	29 ± 2	0.32	7 ± 2		-19 ± 1		-41 ± 1	
18.3 - 18.4	30 ± 2	0.59	6 ± 2	2×10^{-18}	-19 ± 1		-43 ± 1	
18.4 - 18.5	19 ± 2	0.50	-2 ± 2	9×10^{-11}	-28 ± 2		-53 ± 1	
18.5 - 18.6	19 ± 2	0.65	-2 ± 2	2×10^{-11}	-33 ± 2		-54 ± 2	
18.6-18.7	22 ± 3	0.38	-1 ± 3	3×10^{-7}	-25 ± 2	DV-'	-52 ± 2	1
18.7-18.8	20 ± 4	0.55	-2 ± 3	6×10^{-6}	-24 ± 3		-53 ± 2	
18.8 - 18.9	20 ± 4	0.97	2 ± 3	0.027	-27 ± 3	3×10^{-6}	-51 ± 2	
18.9 - 19.0	21 ± 5	0.30	1 ± 5	0.0010	-25 ± 4	1×10^{-14}	-42 ± 3	
19.0-19.2	10 ± 5	0.98	-7 ± 4	0.059	-34 ± 4	1×10^{-5}	-57 ± 3	
19.2 - 19.4	26 ± 8	0.98	9 ± 8	0.93	-18 ± 7	0.71	-50 ± 5	0.027
19.4 - 19.9	19 ± 8	0.98	-3 ± 8	0.93	-23 ± 7	0.81	-50 ± 6	0.26

"—" : p-value < 7.6 10⁻²⁴ (significance > 10 σ). X_{max} shifts are measured in g/cm².

E<10^{19.0}eV

- max. logL derived p rejects (at 95% C.L.) all species except H
 E>10^{19.2}eV
- max. log*L* derived *p* FAILS to reject (at 95% C.L.) any species

Graphing the Results

E<10^{19.0}eV

- max. logL derived p rejects (at 95% C.L.) all species except H E>10^{19.2}eV
- max. log*L* derived *p* FAILS to reject (at 95% C.L.) any species

Anisotropy Result:Based on SD Data

Supergalactic Coordinates

Kolmogorov-Smirnov p-value = 0.01 for SG latitude, E>57 EeV other thresholds/coordinates = isotropic

Hot Spot (2014)

Total events: 72 Observed: 19 Expected : 4.5

TA Jan 23, 2018

Best circle center: RA=146.7°, Dec=+43.2° Best circle radius: 20° Local significance : 5 σ Global significance : 3 σ

Hot Spot (2017) E>57 EeV - Years 1-9 excess map

TA preliminary

Total events: 143 Observed: 34 Expected : 13.5

TA Jan 23, 2018

Best circle center: RA=144.3°, Dec=+40.3° Best circle radius: 25° Local significance : 5 σ Global significance : 3 σ

Hot Spot

In Supergalactic coordinates

Cold Spot

25

Large-Scale Structure

C: Centaurus SCI (60 Mpc); Co: Coma CI (90 Mpc); E: Eridanus CI (30 Mpc); F: Fornax CI (20 Mpc); Hy: Hydra SCI (50 Mpc); N: Norma SCI (65 Mpc); PI: Pavo-Indus SCI (70 Mpc); PP: Perseus-Pisces SCI (70 Mpc); UM: Ursa Major CI (20 Mpc); and V: Virgo CI (20 Mpc).

Sky map of expected flux at E > 57 EeV (Galactic coordinates);

• smearing angle is 6°.

Large-Scale Structure $E > 4.0 \times 10^{19} eV$ $E > 1.0 \times 10^{19} eV$ 1 000000 0.10.010.001 0.1p-value p-value 0.00011e-05 e-06 0.01 1e-07 1e - 08STRUCT ISO STRU 0.001 5 1015 202530 0.51015 202530

E>5.7×10¹⁹ eV Consistent with LSS Inconsistent with isotropy

Hint of enhancement along SGP

- Source: Within 30° of the Supergalatic Plane (SGP)
- Simulation: using
 the large-scale
 structure model
 shown previously,
 assuming proton
 primaries

Region	C_o	α_1	$\log_{10}(E_b/EeV)$	α_2
All	$2.14^{+0.34}_{-0.30} \times 10^{+4}$	$-1.775_{-0.053}^{+0.053}$	$1.778_{-0.068}^{+0.040}$	$-3.91\substack{+0.64\\-0.66}$
On source	$(1.1128 \times 10^{+4})$	(-1.775)	$1.832_{-0.041}^{+0.069}$	$-3.91\substack{+0.70\\-1.30}$
Off source	$(1.0286 \times 10^{+4})$	(-1.775)	$1.668^{+0.052}_{-0.053}$	$-3.86^{+0.58}_{-0.82}$

Global Chance Probability/Significance : p = 6.2 × 10⁻⁴ (3.2σ)

TABLE I. Parameters of the best fit broken power law in the SGP case. TA Jan 23, 2018

Systematic Checks of Energy Scale

TA Jan 23, 20

30

COPE

TA spectrum is harder than AUGER at the highest energies

Declination Dependence of TA Spectrum

Energy spectra of TA and Auger in the common declination band. They agree at about 1σ level

Energy spectra of TA above and below $\delta=24.8^{\circ}$ They disagree at ~4 σ level

Global Significance ~ 3.2 σ

Turning the detector 90 deg.

Local Angular Coordinates

Small-Scale Anisotropy

Autocorrelations: E> (1.0, 4.0, 5.7)×10¹⁹ eV scan over [small] angles -> NO significant clustering

Coincidence with PAO

- At high E -> small deflections, spread determined by angular resolution
- doublet in TA/Auger joint dataset of 6 events [ST 2012]
- became a triplet(2TA + 1PAO) with more TA data [TA 2014]

E > 100 EeV, resolution = 1°, pre-determined angle $=\sqrt{2} \times \text{resolution}$

5×10²⁴ ^{5×10²⁴} ^{5×10²⁴} ⁵⁻ ⁵⁻ ⁵⁻ ⁵⁻ ⁵ ^{10²⁴} ⁵ ⁵ ^{10²⁴} ⁵ ^{10²⁴} ⁵ ^{10²⁴} 'A PRELIM **TALE Monocular (2017)** . Yakutsk Cherenkov (2013) Tunka-55 (2013) Tunka-133 (2013) **KASCADE-Grande** (2012) 10^{24} 9×10²³ **ICETOP** (2016) 8×10²³ 15.5 17.5 18 18.5 16.5 15 16 17 $\log_{10}(E/eV)$

TALE Spectrum compared to some recent Measurements

Conclusions: Composition

- <Xmax> Result compatible with either helium or hydrogen statement is model-dependent (and extrapolation uncertainties)
- Get around the problem by comparing the shape of the Xmax distribution (in energy bins) to MC predictions for four primaries (H, He, N, Fe)
- Shift <Xmax> using maximum likelihood method on the Xmax distribution
- Use Max. logL as a measure of compatibility between data shape and MC
- Compatible with ONLY protons < 10¹⁹eV
- Insufficient statistics to rule out any primary >10¹⁹eV NEED MORE DATA! (TAx4)
- We will be studying composition with TALE

Conclusions: Anistropy

Hints of large-scale anisotropy at E>57 EeV

- ✓ Supergalactic latitude distribution
- ✓ Supergalactic plane spectrum
- ✓ Large-scale structure correlations
- ✓ declination dependence of the spectrum
- Medium-scale anisotropy at E>57 EeV
 - ✓ hot spot larger and closer to supergalactic plane (9 years)
 - ✓ cold spot at lower energies in the same place

Small-scale

Doublets at E>10²⁰ eV, not significant

ALL POSTITIVE HINTS IN THE NORTHERN SKY OCCUR AT THE HIGHEST ENERGIES: NEED MORE DATA! (TAx4)

TAx4 now under construction:

Will double TA data sample by mid-2021