Highlights from the Pierre Auger Observatory: Composition and Anisotropy

M. Unger (KIT)

Solvay Workshop, SuGAR 2018, Brussels

UHE Exposure

Hybrid Detection of Air Showers

Energy Calibration

Energy Spectrum

Combined Energy Spectrum

Combined Energy Spectrum

Mass Composition

X_{max}

X_{max}

Average X_{max} Fluorescence Detector

Average X_{max} Fluorescence Detector

Average X_{max} Fluorescence and Surface Detector

Standard Deviation of X_{max} Distribution

•
$$\sigma(X_{\max})_A^2 = \lambda_A^2 + \sigma(X_{\max} - X_{\text{first}})_A^2$$

- $\sigma(X_{\max})_p > \sigma(X_{\max})_A > \sigma(X_{\max})_p / \sqrt{A}$
- mixed composition:

$$\sigma(X_{\max})^2 = \langle \sigma_i^2 \rangle + \left(\left\langle \left\langle X_{\max} \right\rangle_i^2 \right\rangle - \left\langle X_{\max} \right\rangle^2 \right)$$

Standard Deviation of X_{max} Distribution (FD)

X_{max} Moments vs. Air Shower Simulations

lines: air shower simulations using post-LHC hadronic interaction models

(p-He-N-Fe)-fit of X_{max} Distributions

FD data:

Composition Fractions

Combined Fit of Spectrum and X_{max} Distributions

rigidity-dependent cutoff at source: $E_{max} = R_{cut} Z$, power law injection $E^{-\gamma}$, propagation with CRPropa3, Gilmore12 EBL, Dolag12 LSS

Combined Fit of Spectrum and X_{max} Distributions

rigidity-dependent cutoff at source: $E_{max} = R_{cut} Z$, power law injection $E^{-\gamma}$, propagation with CRPropa3, Gilmore12 EBL, Dolag12 LSS

Arrival Directions

- Indication for Intermediate-scale Anisotropy
 - accepted by ApJ. Lett., arXiv:1801.06160
- Observation of Large-scale Anisotropy
 - Science 357 (2017) 1266

Arrival Directions

- Indication for Intermediate-scale Anisotropy
 - accepted by ApJ. Lett., arXiv:1801.06160
- Observation of Large-scale Anisotropy
 - Science 357 (2017) 1266

Search for Intermediate-scale Anisotropies

Analysis Strategy:

- arrival directions of data, D
- sky model from source candidates, M_i
- $M_i = ({\sf flux model}) \times ({\sf attenuation model}) \times ({\sf angular smearing}) \times ({\sf exposure})$
- null hypothesis: isotropy M₀
- single population signal model: $M = (1 - \alpha) M_0 + \alpha M_i$
- test statistics:
 - ► ratio of likelihoods of model-data comparison TS = 2 log(P(D|M)/P(D|M₀))

think $\Delta\chi^2$ of (isotropy + signal) vs. isotropy

- p-value from Wilk's theorem: p(TS) = p_{χ²}(TS, Δndf)
- of large TS
 - ▶ *M* describes *D* much better than *M*₀
 - M₀ excluded at p (not: M "proven" at p)

UHECR Source Suspects

- Swift-BAT X-ray-selected galaxies, D < 250 Mpc, $\Phi > 1.3 \cdot 10^{-11} \frac{\text{erg}}{\text{cm}^2 \text{ s}}$, w : 14-195 keV
- 2MRS IR-selected galaxies, D > 1 Mpc, w : K-band
- ▶ SBG: 23 nearby starburst galaxies, $\Phi > 0.3$ Jy, w : radio at 1.4 GHz
- ▶ γ AGN: 17 2FHL blazars and radio galaxies, D < 250 Mpc, $w : \gamma$ -ray 50 GeV-2 TeV.

w : UHECR flux proxy, Swift-BAT and 2MRS previously tested (ApJ 804 (2015) 172), extragal. γ -ray sources γ AGN and SBG.

Flux Attenuation (top: SBG, bottom: γ AGN)

starburst

 γAGN

composition scenarios from Pierre Auger Coll., JCAP 1704 (2017) 038 + CRPropa3

name	$lg(R_{max}/V)$	f_{P}	f_{He}	f_N	f_{Si}	γ
EPO1st	18.68	0.000	0.673	0.281	0.046	0.96
EPO2nd	19.88	0.000	0.000	0.798	0.202	2.04
Sib1st	18.28	0.702	0.295	0.003	0.000	-1.50

Optimization: Signal Fraction and Angular Smearing

$\label{eq:skymodel} \textbf{Sky Model} ~~ (\texttt{flux}) \times (\texttt{attenuation model})_{A} \times (\texttt{angular smearing}), ~~ \texttt{gal. coord.}$

Model Flux Map - Swift-BAT - E > 39 EeV - Sc. A

Model Flux Map - Starburst galaxies - E > 39 EeV - Sc. A

Model Flux Map - Active galactic nuclei - E > 60 EeV - Sc. A

$\label{eq:skymodel} \textbf{Sky Model} ~ (flux) \times (attenuation ~ model)_A \times (angular ~ smearing), ~ ~ super-gal. ~ coord.$

Model Flux Map - Swift-BAT - E > 39 EeV - Sc. A

Model Flux Map - 2MRS > 1 Mpc - E > 38 EeV - Sc. A

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Model Flux Map - Starburst galaxies - E > 39 EeV - Sc. A

Model Flux Map - Active galactic nuclei - E > 60 EeV - Sc. A

$\label{eq:sky model} \textbf{Sky Model} ~ (flux) \times (attenuation model)_B \times (angular smearing), ~ super-gal.~ coord.$

Model Flux Map - Swift-BAT - E > 39 EeV - Sc. B

Model Flux Map - 2MRS > 1 Mpc - E > 38 EeV - Sc. B

Model Flux Map - Starburst galaxies - E > 39 EeV - Sc. B

Model Flux Map - Active galactic nuclei - E > 60 EeV - Sc. B

Test Statistics vs. Energy

starburst model fits data better than isotropy, significance of 4 σ^* .

 $^{*}P_{\chi^{2}}(\mathsf{TS},\,\mathsf{2})$ penalized for energy scan

Test Statistics vs. Energy

starburst model fits data better than isotropy, significance of 4 σ^* .

 $^{*}P_{\chi^{2}}(\mathsf{TS},\,\mathsf{2})$ penalized for energy scan

Detailed View of Sky Models

Test hypothesis	Null hypothesis	Threshold energy ^a	TS	Local p-value $\mathcal{P}_{\chi^2}(\mathrm{TS},2)$	Post-trial p-value	1-sided significance	AGN/other fraction	SBG fraction	Search radius
SBG + ISO	ISO	39 EeV	24.9	3.8×10^{-6}	$3.6 imes 10^{-5}$	4.0σ	N/A	9.7%	12.9°
$\gamma \rm{AGN} + \rm{SBG} + \rm{ISO}$	$\gamma \text{AGN} + \text{ISO}$	39 EeV	14.7	N/A	$1.3 imes 10^{-4}$	3.7σ	0.7%	8.7%	12.5°
γ AGN + ISO	ISO	60 EeV	15.2	$5.1 imes 10^{-4}$	$3.1 imes 10^{-3}$	2.7σ	6.7%	N/A	6.9°
$\gamma \rm{AGN} + \rm{SBG} + \rm{ISO}$	SBG + ISO	60 EeV	3.0	N/A	0.08	1.4σ	6.8%	$0.0\%^{b}$	7.0°
Swift-BAT + ISO	ISO	39 EeV	18.2	$1.1 imes 10^{-4}$	$8.0 imes 10^{-4}$	3.2σ	6.9%	N/A	12.3°
Swift-BAT + SBG + ISO	Swift-BAT + ISO	39 EeV	7.8	N/A	5.1×10^{3}	2.6σ	2.8%	7.1%	12.6°
2MRS + ISO	ISO	38EeV	15.1	$5.2 imes 10^{-4}$	3.3×10^{3}	2.7 σ	15.8%	N/A	13.2°
2MRS + SBG + ISO	2MRS + ISO	39EeV	10.4	N/A	$1.3 imes 10^{-3}$	3.0σ	1.1%	8.9%	12.6°

^aFor composite model studies, no scan over the threshold energy is performed.

^bMaximum TS reached at the boundary of the parameter space.

ISO: isotropic model.

Data vs. Model, SBG and $\gamma \rm{AGN}$ (gal. coord.)

bottom: γAGN

Arrival Directions

- Indication for Intermediate-scale Anisotropy
- accepted by ApJ. Lett., arXiv:180.1.06160
- Observation of Large-scale Anisotropy
 - Science 357 (2017) 1266

Observation of Dipolar anisotropy above 8 EeV

Harmonic analysis in right ascension α

E [EeV]	events	amplitude r	phase [deg.]	$P(\geq r)$
4-8	81701	$0.005^{+0.006}_{-0.002}$	80 ± 60	0.60
> 8	32187	$0.047\substack{+0.008\\-0.007}$	100 ± 10	$2.6 imes10^{-8}$

significant modulation at 5.2 σ (5.6 σ before penalization for energy bins explored)

 $(\mathbf{6.5^{+1.3}_{-0.9}})$ % at $(\alpha, \delta) = (\mathbf{100^{\circ}}, -\mathbf{24^{\circ}})$

Dipole in Galactic Coordinates

[29 of 36]

Summary and Outlook

Results

spectrum, composition, secondaries:

- ► high-exposure study of UHE flux → strong flux suppression
- FD/SD composition studies

 → light composition at ankle
 → mixed composition at UHE
 → Galactic Fe around 10^{17.2} eV?
- constraints on p-dominated sources via u/γ
- compatible with rigidity-dependent E_{max}

hadronic interactions:

- standard UHE cross section
- muon deficit in models

arrival directions:

- indication for intermediate-scale anisotropy
- observation of dipolar anisotropy

Open Questions

- Origin of the flux suppression?
- Proton fraction at UHE?
- Rigidity-dependence of anisotropies?
- Hadronic physics above $\sqrt{s} = 140$ TeV?

need large-exposure detector with composition sensitivity!

arXiv:1604.03637v1 [astro-ph.IM] 13 Apr 2016

"AugerPrime"

Preliminary Design Report

The Pierre Auger Collaboration April, 2015

Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

Detector Upgrades for AugerPrime

- 3.8 m² scintillators (SSD) on each 1500-m array station
- upgrade of station electronics
- additional small PMT to increase dynamic range
- buried muon counters in 750-m array (AMIGA)
- increased FD uptime

Expected Performance of AugerPrime

[33 of 36]

sensitivity [σ

AugerPrime Engineering Array

CLAIR

AugerPrime Engineering Array

CLAIP

quadruplet in 750 m array

1500 m hexagon

AugerPrime Engineering Array

