KIV3NeT and ANTARES

KM3NeT

Neutrino telescopes in the Mediterranean Sea

Juan José Hernández-Rey.

CSIC and University of Valencia)

¢ .

CSIC

SuGAR 2018, Solvay Workshop, 23-26 January 2018,

Mediterranean Neutrino Telescopes

Physics motivation and Detection principle

- High energy v astronomy and neutrino properties
- Detection: large volume of transparent medium surveyed by photodetectors

Location:

- Northern terrestrial hemisphere:
- Complementary to IceCube
- Golden channel for southern sky sources. "Milky-Way optimized"

D Medium:

- Deep Sea water
- Very small light scattering (good angular resolution)
- Natural backgrounds (⁴⁰K and biolum) can be handled.

ARCA (Astronomy)

- Building Block:
- 115 strings
- 18 DOMs / string
- 31 PMTs / DOM
- Total: 64k*3" PMTs

ORCA (NMH+ v properties)

• Same technology, denser layout

KM3NeT

	ORCA	ARCA	
String spacing	20 m	90 m	
OM spacing	9 m	36 m	
Depth	2470 m	3500 m	
Instrumented mass	5.7 Mton	0.6*2 Gton	

Stages:

- Phase 1: 24 ARCA + 7 ORCA strings (already funded, being deployed)
- KM3NeT 2.0: 2 ARCA +1 ORCA blocks (~50% funded)
- Phase 3: 6 ARCA + 1 ORCA blocks

ARCA Astroparticle Research with Cosmics In the Abyss

Capo Passero, Sicily, Italy

ORCA Oscillation Research with Cosmics in the Abyss

Toulon, Var, France

200 m

- DOM: 31 3" PMTs
- Digital photon counting
- Directional information
- Wide acceptance angle
- Cost reduction

- All data to shore
- Gbit/s on optical fibre
- Hybrid White Rabbit
- LED flasher & hydrophone
- Tiltmeter/compass

- High modulus polyethylene ropes • Oil filled PVC tube
 - Low drag
 - Low cost

Deployment Vehicle

- Unfurling by autonomous ROV
- Reuseable

Phys.

one sea campaign

First detection units

DOM in ANTARES site

- **♦** 2,500 m
- April 2013
- Muons from a single DOM

□ Mini-string in ARCA site

- **♦** 3,500 m
- 3 DOMs
- ✤ May 2014
- Muon reconstruction, angular distribution

□ Two full strings in ARCA site

- Dec 2015 and May 2016
- Muon reconstruction
- Muons vs depth

Eur. Phys. J. C (2016) 76:54

Eur. Phys. J. C (2014) 74:3056

Performance – Track events KM3NeT event Direction (KM3NeT)

- Golden channel
- High angular accuracy
- Enhanced volume (100's m to a few Km muon range)

Direction (ANTARES)

Performance – Shower events **KM3NeT** event $\begin{array}{c} \text{NC} \ \nu_{\text{all}} \\ \text{CC} \ \nu_{\text{e}} \end{array}$ Direction (KM3NeT) **10**_⊢ KM3NeT 9 1080 8 960 <2° 840n 7204 6È $\nu + N \xrightarrow{cn} had$ 600n 5 4800 90% $\nu_e + N \xrightarrow{ec} had + em$ 16001 240mm 1σ 120ns • Good energy 10^{5} 10^{6} 10^{7} **Direction (ANTARES)** reconstruction Energy (KM3NeT) 20 **1.5**□ Fair angular resolution 18 1.4E (low light scattering in 16 1.3 water) 14 1.2 down to ~2° 90% 12 .1.1 90% 10 1σ 0.9 1σ 0.8 5% 0.7 0.6 0.5

10⁵

E, [GeV]

 10^{5}

 10^{6}

10³

10⁴

9

 10^{7}

ANTARES – Diffuse Flux Search

Sample:

- Data collected 2007-2015
- ✤ 2450 days
- Tracks and showers
 - Tracks: CC: v_µ
 - Showers: NC: v_{all} + CC: v_e , v_{τ}
- □ Selection:
 - Event selection
 - θ> 90° + reconstruction quality parameters (tracks)
 - Energy-based selection by MRF
 - Tracks: Artificial neural networks

Methods:

- Blinded optimization
 - Energy-related cut
 - Two spectral indexes Γ=2.0 and 2.5
- Assumptions
 - Isotropic flux
 - Equipartition among 3 flavours
 - Single power law spectrum

11

arXiv:1711.07212

Galactic Plane ν's from CR-medium interactions KRA_γ model of diffuse gammas CR local features and gamma observations

 $E^2 d\Phi/dEd\Omega$ [GeV cm⁻²s⁻¹sr⁻¹]

□ Search strategy:

reproduced

- Signal map according to KRA_v modelling
- Two ref models: 5 PeV and 50 PeV cutoffs

□Sample:

- Data collected 2007-2015
- ✤ 7300 Tracks and 208 showers
- Results:
 - No excess of events
 - ✤ 90% flux limits for ref models:
 - < 1.1 Φ(5 PeV) < 1.2 Φ(50 PeV)
 - Not the source of "spectral anomaly" (IC spectrum in hemispheres)

Diffuse KM3NeT

Tracks:

- Analysis for up-going events based on max. likelihood
- Pre-cuts on $\theta_{zen} > 80^{\circ}$
- reconstruction quality parameter and Nhit (proxy for muon energy)
- 5σ in 1.7 year (IC flux)
- □ Showers:
- Containment cut on reconstructed vertex
- Full sky analysis based on BDT and maximum likelihood.
- 5σ in 1 year (IC flux)

KM3NeT 2.0 can observe (3σ) IceCube signal in 3 months and confirm it (5σ) in six months

Antares Point Sources

Sample:

- 2007-2015
- 2424 days of live time
- 7629 Tracks, 180 Showers (all flavour analysis)

□ Analysis:

- Full-sky Search
 - 1°x1° squares over ANTARES visible sky
- Candidate list Search
 - 106 objects (pulsars, SNRs, etc.)
 - 13 IceCube HESE tracks
- Galactic Centre Region
 - Ellipse 15°x 20°
 - Test:
 - Spectral indices γ = 2.1, 2.3, 2.5
 - Extension σ = 0.5°, 1.0°, 2.0°
- Sagittarius A* location
 - Extended source. Gaussian profile of various widths: σ = 0°, 0.5°, 1.0°, 2.0°)

13 HESE tracks

Most significant cluster: $(\alpha, \delta) = (130.1^{\circ}, -29.8^{\circ})$ at a distance of 1.5° from the HESE track with ID 3 Post-trial significance: 20% or 1.3 σ Upper limit on the neutrino flux: E²d ϕ /dE = 2.1 x 10⁻⁸ GeV cm⁻² s⁻¹

Galactic Centre

 $(\gamma = 2.1, 2.3, 2.5)$ $(\sigma = 0.5^{\circ}, 1.0^{\circ}, 2.0^{\circ})$ $(\alpha, \delta) = (273.0^{\circ}, -42.2^{\circ})$ E^{-2.5} spectrum point-like source Post-trial significance: 30% or 1.0 σ

 $log_{10}\rho$ (track-like events)

Candidate List:

Most significant cluster: HESSJ0632+057 (α , δ) = (98.24°, 5.81°) Post-trial significance: 13% or 1.5 σ Upper limit on the neutrino flux: E²d ϕ /dE = 2.4 x 10⁻⁸ GeV cm⁻² s⁻¹

Galactic Centre

Spec indices $\gamma = 2.1, 2.3, 2.5$ Extension $\sigma = 0.5^{\circ}, 1.0^{\circ}, 2.0^{\circ}$ Most significant cluster: $(\alpha, \delta) = (257.4^{\circ}, -41.0^{\circ})$ for a E⁻² spectrum + point-like source Post-trial significance: 60% or 0.5 σ

Sagittarius A*:

 $(\alpha, \overline{\delta}) = (266.42^{\circ}, -29.01^{\circ})$ Point-like source ($\sigma = 0^{\circ}$) and Extended source ($\sigma = 0.5^{\circ}, 1.0^{\circ}, 2.0^{\circ}$) Largest excess as point-like Pre-trial significance: 22% or 1.2 σ

Phys. Rev. D 96 062001 (2017)

Full-sky and Candidate list searches

Sensitivities and upper limits at a 90% C.L. on the signal flux from the Full-sky and the Candidate list searches

Galactic Centre Region

90% C.L. upper limits of the search restricted to the region around the origin of the galactic coordinates at $(\alpha, \overline{\delta}) = (266.40^{\circ}, -28.94^{\circ})$ assuming different spectral indices for the neutrino flux (left) and different source extensions for $\gamma = 2$ (right).

KM3NeT/ARCA Expectations (E⁻² Spectrum)

Sensitivity

Discovery potential

KM3NeT/ARCA point sources

Only up-going track events

(estimated contribution from cascades from previous analyses ~ 20%)

Discovery fluxes for:

- ❖ Generic point-like source with spectrum ∝E⁻²
- Benchmark fluxes from candidate Galactic neutrino sources
 - Expected neutrino fluxes estimated from the observed γ-ray spectra following [1] (RXJ1713.7-3946(1) from [2])
 - Assumptions:
 - Hadronic scenario for the y-ray production
 - Transparent sources
- [1] F. Vissani, Astr. Phys. 26 (2006) 310
- [2] S. R. Kelner, Phys. Rev. D 74 (2006), 063007

Source	δ	extension	Φ_0	Γ	E_{cut}	β
RX J1713.7-3946 (1)	-39.77°	0.6°	1.68	1.72	2.1	0.5
RX J1713.7-3946 (2)	-39.77°	0.6°	0.89	2.06	8.04	1
Vela X	-45.6°	0.8°	0.72	1.36	7	1
Vela Jr	-46.36°	1°	1.30	1.87	4.5	1
HESSJ1614-518 (1)	-51.82°	0.42°	0.26	2.42	-	-
HESSJ1614-518 (2)	-51.82°	0.42°	0.51	2	3.71	0.5
Galactic Centre	-28.87°	0.45°	0.25	2.3	85.53	0.5

$$\Phi_{\nu}(E) = \Phi_0 E^{-\Gamma} exp(-(E/E_{cut})^{\beta}) \text{ TeV}^{-1} \text{ s}^{-1} \text{ cm}^{-2}$$

 Φ_0 [10⁻¹¹ TeV⁻¹ s⁻¹ cm⁻²]

KM3NeT/ARCA Expectations (Galactic sources)

Sensitivity - KM3NeT preliminary

3o discovery potential - KM3NeT preliminary ф RXJ1713.7-3946 (1) ο Φ RXJ1713.7-3946 (2) Galactic Centre 1.6 Vela Jr HESS J1614-518 (1) 1.4 -- HESS J1614-518 (2) 1.2 0.8 0.6 0.4 10 12 14 16 18 20 Observation time [year] (ARCA) 8 20 2 4 6

Multimessenger Programme

Advantages:

- A-priori interesting sources or events
- Reduced background:
 - Uncorrelated between techniques
 - Transient/short time events
 - Spatial location
- Fully exploit the v telescopes features:
 - Continuous monitoring
 - Wide angle survey
 - High efficiency, low latency (all-data-to-shore, fast reconstruction)

Send and receive alerts:

- Alerts from:
 - Flaring AGNs, X-ray binaries
 - GRBs, FRBs
 - Gravitational waves
 - SN lb,c

Alerts sent out if:

- High energy neutrino
- Multiplets
- Preferred direction

UHE Cosmic rays

Auger, TA

Gravitational waves

LIGO-VIRGO-EGO

Fermi, HESS, HAWC

Radio-Visible-X

MWA, SUPERB TAROT, ZADKO, MASTER Swift

Gamma-ray Bursts

Individual Search

- 4 bright GRBs (2008-2013)
- Two scenarios:
 - Photospheric
 - Internal shock
- Optimization and limits for each scenario
- Reasonable parameters to derive spectra (Γ= 316 and f_p = 10)

Source stacking

- Long GRBs: T90 \geq 2 s;
- Gamma-ray spectrum is well constrained
- ANTARES 2008-2016 (upgoing events)
- ✤ 462 sources
- No events in coincidence.
 - Limits on the GRB quasi-diffuse emission and constraints on the baryonic content of the jet

Eur. Phys. J. C (2017) 77: 20

MNRAS(2017) 469 (1): 906-915

Flaring X-ray Binaries

□ X-Ray Binaries:

NS/BH + companion Star

- Accretion produces outflows
- Wide-angle shocks but also relativistic jets (µ-quasars)
- Outbursts often observed
- GeV-TeV γ emission observed
- Possible hadronic acceleration

Flaring periods

- ANTARES 2008-2012 data
- 33 XRB sources (8 during hardness transitions periods)
- Flares from light curves (Swift/BAT, RXTE/ASM, MAXI)
- No neutrino signal
- 1(3) events in 1°(3°) cone for GX 1+4 during flare, but post-trial prob 72%
- Translated into neutrino fluency (flux x time) upper limits

Some micro-quasar models are constrained

Blazars and extragalactic flares:

- AGN with relativistic jets
- High variability in gamma-rays
- Neutrinos if hadronic acceleration
- Look for neutrinos in coincidence wth flaring periods
- □ Flaring periods:
- ANTARES 2008-2012 (1044 days)
- FermiLAT: 41 Blazars (33 FSRQs+7 BL Lacs + 1 unknown)
- IACTs: 7 TeV flares (HESS, MAGIC, VERITAS)
- All coincident neutrinos compatible with background. Fluency limits
- Most significant: 3C279. One neutrino event coincident with large flare.
 p-value 3.3%, post-trial: 67%
- ♦Soon to come:

ANTARES 2008-2016 data (2413 days) with tracks and showers

Flaring Blazars

Gravitational Waves

Search v in coincidence with:

- BBH's: GW150914, LVT151012, GW151226, GW170104
- ✤ BNS: GW170817
- Search features:
- Most recent reconstruction (offline search advantage).
- ✤ ± 500 s around GW time
- Individual optimization (3σ detection if event within 90% GW contour)
- Combined IceCube-Antares analyses

No coincident events found

- ✤ GW151226 (1 event)
- GW170817 (5 events/downgoing)
- Upper limit on fluences:

 $E_{iso} < 10^{51} - 10^{54} \text{ erg}$

Phys. Rev. D 93, 122010 (2016)

Phys. Rev. D 96 022005 (2017)

ApJ Letters 850:L35 (2017

25

Dark matter annihilation (as a source of CRs)

Sun – spin-dependent cross section

Galactic Centre

Phys.Lett. B759(2016) 69-74

Summary

□ ANTARES:

- 10 year experience. Thousands of v's reconstructed (tracks and showers). Excellent resolution (down to 2° for showers!)
- Diffuse flux: a small excess at high energy compatible with a cosmic signal
- Point sources: best limits for southern sky Galactic sources (E< 100 TeV)</p>
- A lively and vibrant multi-messenger programme search. We need a larger detector!

□ KM3NeT:

On the move!

- 2 ARCA and 1 ORCA strings in water (teething problems, soon to be fixed)
- ✤ KM3NeT 2.0:
 - ESFRI Roadmap 2016, APPEC European Strategy 2017
 - ARCA : high-resolution follow up of IceCube flux (5σ within 1 yr)
 - ORCA : Measure neutrino mass hierarchy (3σ in 4 years)
- Strings in production...

and a

(M3N