High-energy Neutrino Astronomy & IceCube Marek Kowalski (DESY & Humboldt University Berlin)

SuGAR 2018, Brussels

The promised land

The Universe is opaque to EM radiation for 1/4 of the spectrum, i.e. above 10-100 TeV where IceCube sees cosmic neutrinos.

50 m

1450 m

2450 m

Module (DOM) 5,160 DOMs deployed in the ice

Digital Optical

IceCube Laboratory

Data is collected here and

sent by satellite to the data warehouse at UW-Madison

SOUTH POLE NEUTRINO DESERVATORY

Neutrino event types

Up-going track

Isolated energy deposition (cascade) with no track

Charged-current v_{τ}

(simulation)

Double cascade

Atmospheric neutrinos & neutrino physics

Atmospheric neutrinos

Exploiting atmospheric neutrinos for neutrino physics

Neutrino oscillations

- IceCube / DeepCore probes mixing for multiple baselines and energies
- Measurements of neutrino mixing parameters competitive with dedicated neutrino beam experiments
- Strong constraints on sterile neutrinos

Exploiting atmospheric neutrinos for neutrino physics

Exploiting atmospheric neutrinos for neutrino physics

Neutrino absorption and x-section

- IC79 muon neutrino sample was used to study x-sections
- Astro. neutrino flux & spectra nuisance parameters in analysis
- x-section between 6.3 TeV and 980 TeV σ/σ_{SM}=1.30±0.20 (stat) ±0.41 (sys)

IceCube, Nature, 2017

Astrophysical Neutrinos

Vetoing atmospheric muons & neutrinos

Astrophysical Neutrinos!

PRL2014, Science 2013

Astrophysical Neutrinos!

6 yr update of PRL2014, Science 2013 80 events observed with 25±7 expected from atmosphere

6 yr update of PRL2014, Science 2013

Search for tau-neutrinos within the HESE sample

Search for tau-neutrinos within HESE sample

Through going muon tracks

IceCube, ICRC 2017

IceCube, ICRC 2017

High-energy neutrinos on the sky observed by IceCube

Event numbers: brightest point source vs all N_{ps} ~ 10⁻² (n/10⁻⁷ Mpc⁻³)^{-1/3} X N_{diff}

Public alert stream running since April 2016 - 12 events so far

IceCube 1709922A: Alert coincident with flaring GeV-Blazar

gamma rays

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/ http://www.astronomerstelegram.org/?read=10791 20

TXS 0506+056

IC170922A

3FGLJ0509.4+0541

IceCube 1709922A: Alert coincident with flaring GeV-Blazar

 Neutrino coincident with strong flare observed by Fermi All-sky Variability Analysis (FAVA)

 Observations by MAGIC reveal emission at >100 GeV

•Many more observatories involved,

detailed analysis ongoing

[Previous | Next | ADS]

First-time detection of VHE gamma rays by MAGIC from a direction consistent with the recent EHE neutrino event IceCube-170922A

ATel #10817; Razmik Mirzoyan for the MAGIC Collaboration on 4 Oct 2017; 17:17 UT Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Subjects: Optical, Gamma Ray, >GeV, TeV, VHE, UHE, Neutrinos, AGN, Blazar

Referred to by ATel #: 10830, 10833, 10838, 10840, 10844, 10845, 10942

Tweet Recommend 448

After the IceCube neutrino event EHE 170922A detected on 22/09/2017 (GCN circular #21916), Fermi-LAT measured enhanced gamma-ray emission from the blazar TXS 0506+056 (05 09 25.96370, +05 41 35.3279 (J2000), [Lani et al., Astron. J., 139, 1695-1712 (2010)]), located 6 arcmin from the EHE 170922A estimated direction (ATel #10791). MAGIC observed this source . under good weather conditions and a 5 sigma detection above 100 GeV was achieved after 12 h of observations from September 28th till October 3rd. This is the first time that VHE gamma rays are measured from a direction consistent with a detected neutrino event. Several follow up observations from other observatories have been reported in ATels: #10773, #10787, #10791, #10792, #10794, #10799, #10801, GCN: #21941, #21930, #21924, #21923, #21917, #21916. The MAGIC contact persons for these observations are R. Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) E. Bernardini (elisa.bernardini@desy.de), K.Satalecka (konstancja.satalecka@desy.de). MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Observatory Roque de los Muchachos on the Canary island La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to greater than 50 TeV.

Auger - ANTARES - IceCube joined publications, ApJ, 2017

The high-energy Universe: broader perspective

The high-energy Universe: broader perspective

The high-energy Universe: broader perspective

Preparing for the future

- Resolve the sources of IceCube's high energy astrophysical neutrinos
- Identify the sources of the highest energy cosmic rays
- Decipher the production mechanisms of high energy cosmic particles
- Obtain a unique multi-messenger view into the explosion of stars and the evolution of stellar remnants
- Explore active galaxies and the very high-energy Universe when it was most active
- Study of galactic and extra galactic propagation of CR with neutrinos as tracers
- Test nuclear, neutrino and BSM physics

Future project overview

complementarity, sensitivity to neutrino sources "precision frontier" Northern

Present neutrino detectors

sensitivity at PeV energies **"intensity frontier"**

sensitivity at EeV

"energy frontier"

and beyond

ARA, ARIANNA, EVA, GRAND

IceCube-Gen2

KM3NeT, GVD

credit: M. Ackermann₃

KM3NeT

https://arxiv.org/abs/1601.07459

Giant Volume neutrino Detector (GVD)

A wide band neutrino observatory (MeV – EeV) using several detection technologies – optical, radio, and surface veto – to maximize the science

Multi-component observatory:

- IceCube-Gen2 High-Energy Array
- Surface air shower detector
- Sub-surface radio detector
- PINGU

IceCube-Gen2 Surface Veto

Identifying the sources of IceCube's neutrinos

15 years IceCube + 15 years IceCube-Gen2

Identifying the sources of IceCube's neutrinos

IC-Gen2 will have sufficient sensitivity to detect all reasonable source scenarios

*Sensitivity for source catalog search

)

Propagation effects	0.0 0.1	 DM Eff. oper 	Scenario	Exclusion by IceCube	Exclusion by IceCube- Gen2
😑 Quantum	0.2	Shortcut	Complete flavor triangle	42%	96%
decoherence		😑 Decay	Standard mixing	2%	73%
0	.3	Pseudo	Non-standard neutrino	17%	93%
2.4	-0.1		production		
0.4		Sterlie	NSI at production	5%	84%
٤ ٥٢		0.6	Matter effetcs	0%	71%
$S_{\tau+\overline{\tau},\oplus}$ 0.5		$\zeta_{\mu+\bar{\mu},\oplus}$	Pseudo-Dirac neutrino	14%	85%
0.6		0.5	Decay	14%	85%
		-0 4	Quantum decoherence	2%	73%
0.7		0.1	Sterile neutrino	10%	86%
		-0.3	Effective operator	36%	94%
0.8			Interaction with DM	42%	96%
0.9		-0.2	Shortcut through extra	11%	80%
0.0			dimension		
1.0		0.1	NSI in Earth matter	30%	92%
		0	NSI at detection	11%	89%
0.0 0.1 0.2 0.3	0.4 0.5 0.6 0.7	0.8 0.9 1.0			
	ξ _{atā m}				
Gen2 (15 yrs)	JE+E,⊕		Rasmus	ssen et al. (1	707.07684)

Exploring the energy frontier with radio

Sensitivity of future radio detectors

10-9 GeV cm-2s-1sr-1@109 GeV benchmark point from Weizmann workshop 2017

Neutrino astronomy project timeline & Milestones

Conclusions

- High-energy extra-galactic neutrinos observed, opening a unique view on the high-energy Universe
- Sources not yet resolved, new multi-messenger methods have the potential to provide the answer
- As old questions are answered, new ones emerge, i.e. the spectrum appears to be complex
- Construction and Planning of new projects underway to cover full sky and large energy range, optimized for neutrino astronomy in the next decades

27-31 August 2018 | Berlin

