Extragalactic Origin of High-Energy Neutrinos

Markus Ahlers, Niels Bohr Institute

SuGAR, Brussels, January 23-26, 2018

UNIVERSITY OF COPENHAGEN

Neutrino Arrival Directions

No significant correlation of neutrino events with Galactic structure.

Neutrino Arrival Directions

Extragalactic neutrino sources are hiding in plain sight.

Markus Ahlers (NBI)

Extragalactic Origin of High-Energy Neutrinos

January 24, 2018

Cosmic TeV-PeV Neutrinos

• High-Energy Starting Events (HESE) (6.5 σ in 4yrs):

- bright events ($E_{
 m th} \gtrsim 30$ TeV) starting inside IceCube
- efficient removal of atmospheric backgrounds by veto layer
- Up-going muon-neutrino tracks (5.6σ in 6yrs):
 - large effective volume due to ranging in tracks
 - efficient removal of atmospheric muon backgrounds by Earth-absorption

[Science 342 (2013)]

[Astrophys.J. 833 (2016)]

Fit of Power-Law Spectrum

Mild tension with cascade-dominated samples: Indication of spectral features? [PRL 115 (2015) 081102]

Markus Ahlers (NBI)

Extragalactic Origin of High-Energy Neutrinos

Fit of Power-Law Spectrum

Mild tension with cascade-dominated samples: Indication of spectral features? [PRL 115 (2015) 081102]

Markus Ahlers (NBI)

Extragalactic Origin of High-Energy Neutrinos

Multi-Messenger Paradigm

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- pion production in CR interactions with gas ("pp") or radiation ("pγ"); neutrinos with about 5% of CR nucleon energy
 - 1 PeV neutrinos correspond to 20 PeV CR nucleons and 2 PeV γ-rays
- very interesting energy range:
 - Galactic or extragalactic CRs?
 - Galactic PeV γ-rays?
 - isotropic or point-sources?
 - probe of v
 _e via Glashow resonance?
 - or exotic origin, e.g. DM decay?

The Cosmic "Beam"

Knee **10⁴** 2nd Knee Grigorov Δ JACEE ∇ galactic $E^{2.6}F(E) [\text{GeV}^{1.6} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ s$ MGU ∇ Tien-Shan ٥ Ankle Tibet07 0 Akeno CASA-MIA HEGRA Fly's Eye extra-galactic * Kascade **Kascade Grande** 0 IceTop-73 0 protor 10 HiRes 1 õ HiRes 2 **Telescope Array** * Auger 0 1 10¹⁵ 10¹⁷ 10¹⁹ 10²⁰ 10¹³ 10¹⁶ 10¹⁸ 10¹⁴ *E* [eV] [Particle Data Group'13]

Extragalactic Source Candidates

- association with sources of UHE CRs [Kistler, Stanev & Yuksel'13] [Katz, Waxman, Thompson & Loeb'13; Fang, Fujii, Linden & Olinto'14;Moharana & Razzaque'15]
- association with diffuse γ-ray background
 [Murase, MA & Lacki'13]
 [Chang & Wang'14: Ando, Tamborra & Zandanel'15]
- active galactic nuclei (AGN) [Stecker'13;Kalashev, Kusenko & Essey'13] [Murase, Inoue & Dermer'14; Kimura, Murase & Toma'14; Kalashev, Semikoz & Tkachev'14] [Padovani & Resconi'14; Petropoulou *et al.*'15; Padovani *et al.*'16; Kadler *et al.*'16; Wang & Loeb'16]
- gamma-ray bursts (GRB) [Murase & loka'13; Dado & Dar'14; Tamborra & Ando'15]
 [Senno, Murase & Meszaros'16]
- galaxies with intense star-formation (*e.g.* starbursts)

[He, Wang, Fan, Liu & Wei'13; Yoast-Hull, Gallagher, Zweibel & Everett'13; Murase, MA & Lacki'13]
 [Anchordoqui, Paul, da Silva, Torres& Vlcek'14; Tamborra, Ando & Murase'14; Chang & Wang'14]
 [Liu, Wang, Inoue, Crocker & Aharonian'14; Senno, Meszaros, Murase, Baerwald & Rees'15]
 [Chakraborty & Izaguirre'15; Emig, Lunardini & Windhorst'15; Bechtol *et al.*'15]

- galaxy clusters/groups [Murase, MA & Lacki'13; Zandanel, Tamborra, Gabici & Ando'14]
- tidal disruption events (TDE) [Wang, Liu, Dai & Cheng'11; Senno, Murase & Més'aros'17] [Guépin, Kotera, Barausse, Fang & Murase'17; Biehl, Boncioli, Lunardini & Winter'17]

A) Active Galactic Nuclei

- neutrino production from pγ interactions in AGN cores
- AGN diffuse emission normalized to X-ray background
- revised model predicts 5% of original estimate

[Steckeret al.'91]

[Stecker'05;'13]

[Stecker et al.'91]

A) Active Galactic Nuclei

• neutrinos from $p\gamma$ interactions in AGN jets

[Mannheim'96; Halzen & Zas'97]

- complex spectra due to various photon backgrounds
- typically, deficit of sub-PeV and excess of EeV neutrinos

[Murase, Inoue & Dermer'14]

A) Active Galactic Nuclei

Extragalactic Origin of High-Energy Neutrinos

January 24, 2018

A) Blazar Flares?

nature physics

ARTICLES PUBLISHED ONLINE: 18 APRIL 2016 | DOI: 10.1038/NPHYS3715

Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

M. Kadler^{1*}, F. Krauß^{1,2}, K. Mannheim¹, R. Ojha^{3,4,5}, C. Müller^{1,6}, R. Schulz^{1,2}, G. Anton⁷,
W. Baumgartner³, T. Beuchert^{1,2}, S. Buson^{8,9}, B. Carpenter⁵, T. Eberl⁷, P. G. Edwards¹⁰,
D. Eisenacher Glawion¹, D. Elsässer¹, N. Gehrels³, C. Gräfe^{1,2}, S. Gulyaev¹¹, H. Hase¹², S. Horiuchi¹³,
C. W. James⁷, A. Kappes¹, A. Kappes⁷, U. Katz⁷, A. Kreikenbohm^{1,2}, M. Kreter^{1,7}, I. Kreykenbohn²,
M. Langejahn^{1,2}, K. Leiter^{1,2}, E. Litzinger^{1,2}, F. Longo^{14,15}, J. E. J. Lovell¹⁶, J. McEnery³, T. Natusch¹¹,
C. Phillips¹⁰, C. Plötz¹², J. Quick¹⁷, E. Ros^{18,19,20}, F. W. Stecker^{3,21}, T. Steinbring^{1,2}, J. Stevens¹⁰,
D. J. Thompson³, J. Trüstedt^{1,2}, A. K. Tzioumis¹⁰, S. Weston¹¹, J. Wilms² and J. A. Zensus¹⁸

individual objects are too low to make an unambiguous source association. Here, we report that a major outburst of the blazar PKS B1424-418 accurred in temporal and positional coincidence with a third petaelectronvolt-energy neutrino event (HESE-35) detected by IceCube. On the basis of an analysis of the full sample of y-ray blazars in the HESE-35 field, we

There is a remarkable coincidence with the IceCube-detected petaelectronvolt-neutrino event HESE-35 with a probability of only ~5% for a chance coincidence. Our model reproduces the

A) Blazar Flares?

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT Credential Certification: David J. Thompson (David J. Thompson@nasa.gov)

Subjects: Gamma Ray, Neutrinos, AGN

Referred to by ATel #: 10792, 10794, 10799, 10801, 10817, 10830, 10831, 10833, 10838, 10840, 10844, 10845, 10861, 10890, 10942

First-time detection of VHE gamma rays by MAGIC from a direction consistent with the recent EHE neutrino event IceCube-170922A

ATel #10817; Razmik Mirzoyan for the MAGIC Collaboration on 4 Oct 2017; 17:17 UT Credential Certification: Razmik Mirzoyan (Razmik Mirzoyan@mpp.mpg.de)

Subjects: Optical, Gamma Ray, >GeV, TeV, VHE, UHE, Neutrinos, AGN, Blazar

Referred to by ATel #: 10830, 10833, 10838, 10840, 10844, 10845, 10942

B) Gamma-Ray Bursts

- Neutrino production at various stages of a gamma-ray burst (GRB).
 - precursor pp and pγ interactions in stellar envelope; also possible for "failed" GRBs [Razzaque,Meszaros&Waxman'03]
 - → **burst** $p\gamma$ interactions in internal shocks
 - \rightarrow afterglow $p\gamma$ interactions in reverse external shocks

[Waxman&Bahcall'00;Murase&Nagataki'06;Murase'07]

[Meszaros'01]

farkus Ahlers (NBI)	Extragalactic Origin of High-Energy Neutrinos	January 24, 2018
---------------------	---	------------------

[Waxman&Bahcall'97]

B) Gamma-Ray Bursts

- strong limits on neutrino emission associated with "fireball" model [Al
- → PeV neutrino flux exceeds GRB limit by one order of magnitude.

[Abbasi et al.'12]

B) Low-Luminosity Gamma-ray Bursts

loophole: undetected low-luminosity γ-ray bursts (GRB)

[Murase & loka'13; Senno, Murase & Mészáros'16]

• *claim:* distinct population of LL-GRB more abundant in the local ($z \ll 1$) Universe

[Liang, Zhang, Virgili & Dai'06]

C) Starburst Galaxies

- intense CR interactions (and acceleration) in dense starburst galaxies
- cutoff/break feature $\left(0.1-1\right)$ PeV at the CR knee (of these galaxies), but very uncertain
- plot shows muon neutrinos on production (3/2 of total)

[Loeb & Waxman'06]

slide 18

C) TeV Starburst Galaxies Messier 82 ($\delta \simeq 69^{\circ}$)

NGC 253 (
$$\delta \simeq -25^{\circ}$$
)

$$E^2 \phi_{\gamma}(E) \simeq 3.3 \times 10^{-13} \left(\frac{E}{\text{TeV}}\right)^{-0.5} \frac{\text{TeV}}{\text{cm}^2 \text{s}}$$
$$E^2 \phi_{\nu}(E) \lesssim 1.09 \times 10^{-12} \frac{\text{TeV}}{\text{cm}^2 \text{s}}$$

no neutrino limit

 $E^2 \phi_{\gamma}(E) \simeq 9.6 \times 10^{-13} \left(\frac{E}{\text{TeV}}\right)^{-0.14} \frac{\text{TeV}}{\text{cm}^2 \text{s}}$

[IceCube 7yr $\nu_{\mu} + \bar{\nu}_{\mu}$]

expected from *pp* interactions: $E_{\nu}^2 \phi_{\nu\mu}(E_{\nu}) \simeq \frac{1}{2} E_{\gamma}^2 \phi_{\gamma}(E_{\gamma})$

D) Tidal Disruption Events

- Stars torn apart by tidal forces in the vicinity of a supermassive black holes can launch jet-like outflows.
- good candidate sources of UHE CRs

- [Farrar & Gruzinov'09; Farrar & Piran'14]
- associate neutrino production via $p\gamma$ interactions:

[Wang, Liu, Dai & Cheng'11; Senno, Murase & Més'aros'17] [Guépin, Kotera, Barausse, Fang & Murase'17; Biehl, Boncioli, Lunardini & Winter'17]

[e.g. Biehl, Boncioli, Lunardini & Winter'17]

January 24, 2018

E) Cosmogenic ("GZK") Neutrinos

• Observation of UHE CRs and extragalactic radiation backgrounds "guarantee" a flux of high-energy neutrinos, in particular via resonant production in CMB.

[Berezinsky & Zatsepin'69]

- "Guaranteed", but with many model uncertainties and constraints:
 - (low cross-over) proton models + CMB (+ EBL)

[Berezinsky & Zatsepin'69; Yoshida & Teshima'93; Protheroe & Johnson'96; Engel, Seckel & Stanev'01; Fodor, Katz, Ringwald &Tu'03; Barger, Huber & Marfatia'06; Yuksel & Kistler'07; Takami, Murase, Nagataki & Sato'09, MA, Anchordoqui & Sarkar'09, Heinz, Boncioli, Bustamante & Winter'15]

+ mixed compositions

[Hooper, Taylor & Sarkar'05; Ave, Busca, Olinto, Watson & Yamamoto'05; Allard, Ave, Busca, Malkan, Olinto, Parizot, Stecker & Yamamoto'06; Anchordoqui, Goldberg, Hooper, Sarkar & Taylor'07; Kotera, Allard & Olinto'10; Decerprit & Allard'11; MA & Halzen'12]

+ extragalactic γ-ray background limits

[Berezinsky & Smirnov'75; Mannheim, Protheroe & Rachen'01; Keshet, Waxman, & Loeb'03; Berezinsky, Gazizov, Kachelriess & Ostapchenko'10; MA, Anchordoqui, Gonzalez–Garcia, Halzen & Sarkar'10; MA & Salvado'11; Gelmini, Kalashev & Semikoz'12]

E) Cosmogenic ("GZK") Neutrinos

- neutrino flux depend on source evolution model (strongest for "FR-II") and EBL model (highest for "Stecker" model)
- Stecker model disfavored by Fermi observations of GRBs
- strong evolution disfavored by Fermi diffuse background

Diffuse vs. Point-Source

90% CL limits for selected sources and sensitivities a function of the declination reported by ANTARES 5 years (blue) and IceCube 3 years (red) [IceCube & ANTARES'15]

Extragalactic Origin of High-Energy Neutrinos

January 24, 2018

Diffuse vs. Point-Source

• (quasi-)diffuse flux fixes luminosity L:

$$F_{\text{diff}} = \frac{1}{4\pi} \int dz \, \frac{d\mathcal{V}_C}{dz} \, \rho(z) \, \frac{L}{4\pi d_L^2(z)} \simeq \mathcal{O}(1) \frac{1}{4\pi} \frac{\rho(0)}{H_0} L$$

• point-source flux:

$$F_{\rm PS} = \frac{L}{4\pi d_{\rm L}^2(z)}$$

- *effective* local density $\rho(0)$ of extra-galactic sources is:
 - $\sim 10^{-3}\,{\rm Mpc}^{-3}$ for low–luminosity AGN
 - $\sim 10^{-5}\,{\rm Mpc}^{-3}$ for starburst galaxies
 - $\sim 10^{-5}\,{\rm Mpc^{-3}}$ for galaxy clusters
 - $\gtrsim 10^{-5}\,{\rm Mpc^{-3}}$ for UHE CR sources
 - $\sim 10^{-8} 10^{-7}\,\mathrm{Mpc}^{-3}$ for radio galaxies
 - $\sim 10^{-8}\,{\rm Mpc^{-3}}$ for BL Lacs
 - $\sim 10^{-11} 10^{-10}\,\text{Mpc}^{-3}$ for flat-spectrum radio quasars

[Murase & Waxman'16; Mertsch, Rameez & Tamborra'16]

[Lipari'08]

Revisiting Olbers' Paradox

expect one source per unit volume:

$$\frac{4\pi f_{\rm sky}}{3}d^3\rho_0 = 1$$

A total number of "unit shells" contributing as much as the closest source

$$n_{\rm shell} \simeq (n_{\rm source})^{\frac{1}{3}}$$

 e.g., required number of events to see a **doublet** from radio galaxies

$$\bar{N} = 2 \times (n_{\text{source}})^{\frac{1}{3}} \simeq 100 - 300$$

B brightest source at distance

$$d\simeq \left(rac{3}{4\pi f_{
m sky}
ho_0}
ight)^{rac{1}{3}}$$

compare to point-source sensitivity

Neutrino Point-Source Limits

- Diffuse neutrino flux normalizes the contribution of individual sources
- dependence on local source density ρ (rate μ) and redshift evolution ξ_z
- PS observation requires rare sources
- non-observation of individual neutrino sources exclude source classes, e.g.
 - **X** BL Lacs $(\rho_{\rm eff} \simeq 10^{-8} {\rm Mpc}^{-3})$
 - $\text{``normal'' GRBs} \\ (\dot{\rho}_{\rm eff} \simeq 10^{-9} {\rm Mpc}^{-3} {\rm yr}^{-1})$
- stronger limits via source "stacking"

[Kowalski'06; Lipari'08; Murase, Beacom & Takami'12] [MA & Halzen'14; Murase & Waxman'16] [Mertsch, Rameez & Tamborra'16]

Multi-Messenger Interfaces

Further progress in source identification via **multi-messenger relations**.

Hadronic Gamma-Ray Emission

 Inelastic collisions of cosmic rays (CR) with radiation or gas produce γ-rays and neutrinos.

$$\pi^0 \to \gamma + \gamma$$

$$\pi^+
ightarrow \mu^+ +
u_\mu
ightarrow e^+ +
u_e + \overline{
u}_\mu +
u_\mu$$

- cross-correlation of γ-ray and neutrino sources
- k electromagnetic cascades of super-TeV γ-rays in CMB
- Isotropic Diffuse Gamma-Ray Background (IGRB) constraints the energy density of hadronic γ-rays & neutrinos

Isotropic Diffuse Gamma-Ray Background (IGRB)

- neutrino and γ -ray fluxes in pp scenarios follow initial CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- constrained by Fermi IGRB [Murase, MA & Lacki'13; Chang & Wang'14]
- extra-galactic emission (cascaded in EBL): $\Gamma \lesssim 2.15 2.2$
- ★ combined IceCube analysis: $\Gamma \simeq 2.4 - 2.6$ [IceCube'15]

[Murase, MA & Lacki'14; Tamborra, Ando & Murase'14] [Ando, Tamborra & Zandanel'15] [Bechtol, MA, Ajello, Di Mauro & Vandenbroucke'15]

Isotropic Diffuse Gamma-Ray Background (IGRB)

- neutrino and γ -ray fluxes in pp scenarios follow initial CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- constrained by Fermi IGRB [Murase, MA & Lacki'13; Chang & Wang'14]
- extra-galactic emission (cascaded in EBL): $\Gamma \lesssim 2.15 2.2$
- ★ combined IceCube analysis: $\Gamma \simeq 2.4 - 2.6$ [IceCube'15]

[Murase, MA & Lacki'14; Tamborra, Ando & Murase'14] [Ando, Tamborra & Zandanel'15] [Bechtol, MA, Ajello, Di Mauro & Vandenbroucke'15]

Isotropic Diffuse Gamma-Ray Background (IGRB)

- neutrino and γ -ray fluxes in pp scenarios follow initial CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- constrained by Fermi IGRB [Murase, MA & Lacki'13; Chang & Wang'14]
- extra-galactic emission (cascaded in EBL): $\Gamma \lesssim 2.15 2.2$
- ★ combined IceCube analysis: $\Gamma \simeq 2.4 - 2.6$ [IceCube'15]

[Murase, MA & Lacki'14; Tamborra, Ando & Murase'14] [Ando, Tamborra & Zandanel'15] [Bechtol, MA, Ajello, Di Mauro & Vandenbroucke'15]

- Photon fluctuation analyses of Fermi data allow to constrain the source count distribution of blazars below the source detection threshold.
- inferred blazar contribution above 50 GeV:
 - Fermi Collaboration'15:

 $86^{+16}_{-14}\%$ of EGB

• Lisanti et al.'16:

 $68^{+9}_{-8}(\pm10)_{sys}\%$ of EGB

• Zechlin et al.'16

 $81^{+52}_{-19}\%$ of EGB

[Fermi'15]

 non-blazar contribution above 50 GeV: [Fermi'15]

$14_{-14}^{+14}\%$ of EGB

- **strong tension** with IceCube observation ($E_{\nu} \leq 100 \text{ TeV}$)
- limits apply to generic cosmic ray calorimeters
- even stronger tension for individual calorimeters, *e.g.* star-forming galaxies

[Bechtol, MA, Ajello, Di Mauro & Vandenbroucke'15]

non-blazar contribution above
 50 GeV: [Fermi'15]

$14_{-14}^{+14}\%$ of EGB

- **strong tension** with IceCube observation ($E_{\nu} \lesssim 100 \text{ TeV}$)
- limits apply to generic cosmic ray calorimeters
- even stronger tension for individual calorimeters, *e.g.* star-forming galaxies

[Bechtol, MA, Ajello, Di Mauro & Vandenbroucke'15]

non-blazar contribution above
 50 GeV:
 [Fermi'15]

$14_{-14}^{+14}\%$ of EGB

- **strong tension** with IceCube observation ($E_{\nu} \leq 100 \text{ TeV}$)
- limits apply to generic cosmic ray calorimeters
- even stronger tension for individual calorimeters, *e.g.* star-forming galaxies

[Bechtol, MA, Ajello, Di Mauro & Vandenbroucke'15]

January 24, 2018

non-blazar contribution above
 50 GeV: [Fermi'15]

 $14^{+14}_{-14}\%$ of EGB

- **strong tension** with IceCube observation ($E_{\nu} \leq 100 \text{ TeV}$)
- limits apply to generic cosmic ray calorimeters
- even stronger tension for individual calorimeters, *e.g.* star-forming galaxies

Comments & Consequences

- Strong limits apply to CR calorimeters, like starburst galaxies or galaxy clusters.
- Some direct γ -ray emission can be reduced by **absorption** ($\gamma\gamma_{BG}$) in sources. [Chang & Wang'14]
- Neutrino flux at 10 TeV at the level of 10% (100%) of atmospheric ν_{μ} (ν_{e}) background: **failure of veto mechanism**? [Gaisser, Jero, Karle & van Santen'14]
- Broken power-law would be a natural consequence of a combination of **multiple** diffuse neutrino source populations.
- The diffuse neutrino flux at $E_{\nu} \gtrsim 100$ TeV saturates limits from UHE CR sources. Is this population also responsible for UHE CRs? [Katz, Waxman, Thompson & Loeb'13]
- Is secondary γ -ray emission in the Fermi range "hidden"? [Murase, Guetta & MA'15]

UHE CR association?

UHE CR proton emission rate density:
 [e.g. MA & Halzen'12]

$$[E_p^2 Q_p(E_p)]_{10^{19.5} \text{eV}} \simeq 8 \times 10^{43} \, \text{erg} \, \text{Mpc}^{-3} \, \text{yr}^{-1}$$

• corresponding per flavor neutrino flux ($\xi_z \simeq 0.5 - 2.4$ and $K_\pi \simeq 1 - 2$):

$$E_{\nu}^{2}\phi_{\nu}(E_{\nu}) \simeq f_{\pi} \frac{\xi_{z}K_{\pi}}{1+K_{\pi}} 1.5 \times 10^{-8} \,\mathrm{GeV}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}$$

- similar UHE nucleon emission rate density (local minimum at $\Gamma \simeq 2.04$) [Auger'16] $[E_N^2 Q_N(E_N)]_{10^{19.5} eV} \simeq 2.2 \times 10^{43} \, erg \, Mpc^{-3} \, yr^{-1}$
- Waxman-Bahcall bound: $f_{\pi} \leq 1$

[Waxman & Bahcall'98]

X But, how to reach $E_{\text{max}} \simeq 10^{20}$ eV in environments of high energy loss $(f_{\pi} \simeq 1)$?

UHE CR association?

two-zone models: CR accelerator + CR "calorimeter"?

starburst galaxies

```
[Loeb & Waxman'06]
```

galaxy clusters

[Berezinsky, Blasi & Ptuskin'96; Beacom & Murase'13]

"unified" sources (UHE CRs, γ-ray & neutrinos):

[Kachelriess, Kalashev, Ostapchenko & Semikoz'17]

[Fang & Murase'17]

X However, $E_{\nu} < 100$ TeV neutrino data remains a challenge!

Correlation with UHE CRs?

- $\theta_{\rm rms} \simeq 1^{\circ} (D/\lambda_{\rm coh})^{1/2} (E/55 {\rm EeV})^{-1} (\lambda_{\rm coh}/1 {\rm Mpc}) (B/1 {\rm nG})$ [Waxman & Miralda-Escude'96]
- "hot spots" (dashed), but no significant auto-correlation in Auger and Telescope Array data

Identification of Extragalactic Point-Sources?

- Do astrophysical neutrinos correlate with sources of UHE CRs?
- UHE CRs trace sources within

 $\lambda_{\rm GZK}\simeq 200~{\rm Mpc}$

neutrinos visible up to Hubble horizon

 $\lambda_{
m Hubble} \simeq 4.4~
m Gpc$

maximal overlap:

$$\lambda_{
m GZK}/\lambda_{
m Hubble}\sim 5\%$$

- HESE 4yr : ca. 30 signal events
- → 1 2 neutrinos expected to correlate
- magnetic deflections, angular resolution, incompleteness,...

Summary

- IceCube has identified a diffuse flux of astrophysical neutrinos in the TeV-PeV energy range of unknown origin.
- Galactic and Extragalactic Sources are candidate sources, but absence of anisotropies favours the latter.
- No compelling scenario for the TeV-PeV energy range.
- **High intensity** of the emission is comparable to that of ultrahigh-energy cosmic rays and γ -ray backgrounds.
- Large neutrino flux in the 1 10 TeV range is **challenged** by constraints set by the extra-galactic γ -ray background observed by Fermi.
- Saturation of calorimetric bounds of UHE CR sources might indicate common origin.

Appendix

Updated Multi-Messenger Panorama

Cosmic Ray Accelerators?

• Hillas bound:

[Hillas'84]

$$E/Z \lesssim 10^{11} \frac{\beta}{\Gamma} \left(\frac{B}{\mu G}\right) \left(\frac{R}{100 \text{ kpc}}\right) \text{GeV}$$

Iuminosity bound:

[Waxman'95]

$$L_{
m B}\gtrsim 10^{45.5}rac{\Gamma^2}{eta}\left(rac{E/Z}{10^{11}\,{
m GeV}}
ight)^2rac{{
m erg}}{{
m s}}$$

- **X** few luminous source candidates within GZK horizon ($\simeq 200 \text{ Mpc}$)
- → heavy composition (Z ≫ 1) and/or transient sources:
 - gamma-ray bursts?
 - tidal disruption events?

Flux Distribution of a Standard Candle

• point-source flux F

$$F = \frac{L}{4\pi r^2} \quad \rightarrow \quad |\mathrm{d}F| = 2\frac{L}{4\pi r^3}\mathrm{d}r$$

• point-source number *N* per distance *r*

$$\mathrm{d}N = 4\pi r^2 \rho \mathrm{d}r$$

flux distribution

$$\frac{\mathrm{d}N}{\mathrm{d}F} \propto r^5 \propto F^{-5/2}$$

 distribution of the closest source [MA & Halzen'14]

$$F\frac{\mathrm{d}p}{\mathrm{d}F} = \frac{3}{2} \left(\frac{F_1}{F}\right)^{\frac{3}{2}} e^{-\left(\frac{F_1}{F}\right)^{\frac{3}{2}}}$$

Fermi Bounds for $p\gamma$ Sources

- Fermi constraints less severe for *pγ* scenarios:
- 1 **no power-law extrapolation** to Fermi energy range
- 2 high pion production efficiency implies strong γ -absorption in sources
- source candidates:
 - AGN cores [Stecker'91;'13] [Kimura, Murase & Toma'14]
 - choked GRB jets

[Mészáros & Waxman'01] [Senno, Murase & Mészáros'16]

Corresponding Opacities

required cosmic ray energy:

 $E_{\rm CR} \sim 20 E_{\nu}$

required target photon energy:

$$\varepsilon_t \sim 200 \,\mathrm{keV} igg(\frac{\Gamma}{10} igg)^2 igg(\frac{E_{
u}}{3 \,\mathrm{TeV}} igg)^{-1}$$

- opacity relation:
 - $au_{\gamma\gamma}(E_{\gamma}) \sim 1000 f_{p\gamma}(E_p)$
- strong internal γ-absorption:

$$E_{\gamma} \gtrsim 100 \, {
m MeV} igg({E_{
u} \over 3 \, {
m TeV}} igg)$$

Gamma-Ray Opacity

- production and decay of neutral pions into gamma rays
- strong pair production (PP) in CMB: $\gamma + \gamma_{\text{CMB}} \rightarrow e^+ + e^-$
- → PeV gamma-ray only observable locally (≤ 10kpc)
- ✓ recyling of gamma-rays via inverse Compton scattering (ICS):
 e[±] + γ_{CMB} → e[±] + γ
 - rapid cascade interactions produce universal GeV-TeV emission [Berezinsky&Smirnov'75]

