

Highlight from ARA

K. Mase, Chiba Univ. for the ARA collaboration

SuGAR2018

Universe seen with neutrinos

K. Mase

SuGAR2018

Astrophysical neutrinos

- ✓ Where do they come from?
- Single power law spectrum?
- ✓ No cut-off?
- \checkmark Want to know the high energy tail \rightarrow Larger telescope

N. Wandkowsky, TeVPA 2017

Ultra high energy (UHE) neutrinos (> 100 PeV)

- Ultra high energy neutrinos (> 100 PeV) inevitably produced from UHECRs
- Neutrinos can shed light on the UHECR origin
 - ♦ Composition (proton/iron)?
 - \diamond Source evolution
 - \diamond Source position
- IceCube upper limit: ~0.3 event/year
- \rightarrow Want to detect UHE neutrinos
- \rightarrow Larger telescope

High light talk at ICRC, Jaime

Universe seen with neutrinos

Universe seen with neutrinos (E>100 PeV)

Nothing seen yet

SuGAR2018

Askaryan Radio Array (ARA)

- \diamond Total surface area ~100 km²
- ~x10 IceCube sensitivity
 @ trigger level
- ~x5 IceCube sensitivity
 @ analysis level
- Reasonable cost (~10 M\$)
- ♦ 5 station running (2 more stations built this season)

7

ARA station

Astroparticle Physics 35 (2012) 457-477

Antenna for vertically polarized radio

Antenna for horizontally polarized radio (Hpol antenna)

♦ Each station has 4 strings of 200m depth

♦ Each string has 2 Vpol + 2Hpol broadband antennas (200–800 MHz)

Askaryan effect

1962: Askaryan predicted coherent radio emission from excess negative charge in an EM shower

 \rightarrow Askaryan effect

G. Askaryan

Cherenkov emission (Frank-Tumm result)

$$\frac{d^2 W}{dv dl} = \frac{4\pi^2 \hbar}{c} \alpha z^2 y \left(1 - \frac{1}{\beta^2 n^2}\right)$$

 $\label{eq:second} \begin{array}{l} \text{in case N electrons,} \\ \text{z=1 (not coherent)} \rightarrow \text{W} \propto \text{N} \\ \text{z=N (coherent)} \qquad \rightarrow \text{W} \propto \text{N}^2 \end{array}$

Power $\propto \Delta q^2 \propto E^2$, thus prominent at EHE (>~ 100 PeV)

SuGAR2018

Verification of the Askaryan effect

Saltzberg et al. PRL 2001

♦ Askaryan effect has been verified using an accelerator

- 2001: firstly confirmed at SLAC with Silica sand (D. Saltzberg et al.)
- 2007: confirmed with ice (P. Gorham et al.)

Gorham et al. PRD 2005

4

Gorham et al. PRL 2007

The ARA calibration with the TA-ELS (ARAcalTA)

ARAcalTA results

12

Sudden appearance signal

- Four experiments observed radio signals when electrons come out
- ✓ Well understood the signals
- Can be applicable for the UHECR detection

Why radio?

- Signal strength enhances by interference (Askaryan effect)
- Longer attenuation length (radio: 1 km, optical: 100 m)

Shadow by shallow ice

- Refractive index depends on the density \checkmark
- Density depends on the depth (Shallow ice is not compressed yet) \checkmark
- Makes a shadow because ray bends \checkmark
- Effect is less at deeper than -150 m \checkmark
- ARA deployed at -200 m
- ✓ Gain the effective area by ~factor 2

0 m station depth

How to reconstruct Askaryan signals

SuGAR2018

Cherenkov light

Resolutions

- Vertex distance resolution: 2% @ 1 km
- Vertex direction resolution: 0.3°
- Neutrino direction resolution: 6°
- Shower energy resolution: 2% @ 1 km
- Neutrino energy resolution is 100% dominated by the energy transfer to the cascade (Bjorken-y)

ARA collaboration, Astropart. Phys., 35 (2012) 457

Verification with a deep pulser

- Verification of the reconstruction and the ice model by a deep pulser
- Vertex distance resolution of 3%
- Vertex direction resolution of ~1°
- Small angular offset
- Improve the ice model with another pulser (this season)

Birefringence

- Relatively strong Hpol signals observed from originally Vpol signals
- ✓ Hpol signal comes earlier than Vpol
- \rightarrow Strong indication of birefringence (different refractive index)

Need to be taken into account for the neutrino direction reconstruction

J. Kelly et al., PoS (ICRC2017) 1030

SuGAR2018

In-situ calibration and the verification

- Calibration in situ performed with the calibrated noise source
- Critical to the event reconstruction both for geometry and energy
- Antenna gain and system gain are obtained
- ✓ Verified with antenna simulation results
- Understand the gain above 500 MHz by improving the antenna simulation model
- Detector uncertainty: level of 30%

Search for UHE neutrinos

Current status and further plan

- ♦ Currently 5 stations
- ♦ Working right now at the South Pole
- ♦ Sensitivity will be comparable to IceCube @ 10¹⁸ eV

Phased array

- ✓ Current ARA energy threshold ~100 PeV → want to lower the energy threshold
- A. G. Vieregg et al. showed interferometry tequnique can lower the energy threshold and increase the sensitivity
- ✓ Interferometry: coherently sum signals from multiple antennas before trigger
- ✓ SNR goes up as sqrt(N)

Test of phased array at South Pole

- Test at the South Pole this season (one station)
- Used as trigger (16 antennas)
- Tested at laboratory
- ✓ Installed at the South Pole

ARA phased array layout

Horizontal propagation?

ARIANNA group found horizontal propagation

- Non uniformity of the refractive index change (1% per 0.5 m) due to a seasonal snow accumulation can explain the data
- No need to bury antennas if horizontal propagation is true and useful for the event reconstruction
- Can reduce the installation cost significantly
- Further characterization of the signal is crucial for the future detector configuration

ARIANNA site @ Moore's bay

Idealistic Firn

Realistic Firn

S. W. Barwick, PoS(ICRC2017)1042

Investigation of horizontal propagation at South Pole

- ✓ Tests at the South Pole performed this season
- Collaboration with ARIANNA
- Use SpiceCore for Tx antennas
- Received the signals by ARA stations / at surface for the ARIANA antenna
- Analysis on going

Summary

- 2 more stations deployed this season and 5 stations running
- Sensitivity similar to IceCube @ 1 EeV
- Phased array lowers the energy threshold (down to ~10 PeV) as well as increasing the sensitivity at 1 EeV

Astrophysics

- Understanding of what is happening / happened in the Universe
- ✓ Can "see" the history of the Universe by looking at distant place
- Test theories which can not be tested on the Earth
- Good example: gravitational wave (Observing the orbital speed of a binary pulsar, and then the direct measurement)
- I am interested in high energy phenomena in the Universe

NASA/Goddard Space Flight Center Conceptual Image Lab

Why neutrinos

proton

Neutrinos are rarely interacting particles \rightarrow Deep Universe or/and inside objects Need a large telescope to detect neutrinos

VHE

High energy particles from space: Cosmic rays

✓ Extend to 10²⁰ eV

- Galactic and extragalactic components
- Origin not completely understood
 - ightarrow Want to know the origin

Multi messengers

Neutrino production is closely related to production of **cosmic rays** and **gamma rays**

$$p + p(\gamma) \rightarrow \pi^{\pm} / \pi^{0} + anything$$

$$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \quad E_{\nu_{\mu}} \approx E_{\nu_{e}} \approx E_{\overline{\nu}_{\mu}}$$

$$\pi^{0} \rightarrow 2\gamma$$

$$E_{\nu} \approx \frac{1}{20} E_{p} \quad \because E_{\pi} \approx \frac{1}{5} E_{p}, E_{\nu} \approx \frac{1}{4} E_{\pi}$$

$$\mathcal{V}$$

$$E_{v} \approx E_{\gamma}$$

To understand the high energy phenomena in the universe, all information should be utilized

Activities at Chiba

Focus on understanding of the detector and the improvement

Understanding of the antennas

 \rightarrow Important for the neutrino energy estimation and direction using the polarization

- Optimization of antenna gain (Kurusu)
 - \rightarrow Antenna gain improved by ~20% \rightarrow Signal increased by ~10%
- Understanding of Askaryan signal (ARAcalTA experiment) (KM)
 - \rightarrow Confirmation of fundamental process

SuGAR2018

Antenna optimization

- Antennas have been optimized with a software with FDTD (Finite-Difference Time-Domain) method (calculating E-field and B-field by solving Maxwell's equations)
- Realistic model implemented
- ✓ With ice block
- ✓ ~20% gain improvement
- ✓ See Kurusu's poster

Realized gain sphere average [dBi]

Background rejection

Understanding of the antenna

- Antenna characteristics have been measured in a anechoic chamber
- Reasonable agreement between measurement and antenna simulation (~30% level)

The ARA sensitivity

