Gamma Ray Overview

Liz Hays NASA Goddard Space Flight Center

Gamma Rays and Cosmic Rays

The High-Energy Gamma-ray Sky

So we're done right? Universe in gamma rays
– 1000s of sources – all questions answered!

What makes this hard?

- 2D projection
- Confusion
- Sampling
 - Selection effects
 - Geometric effects
 - Horizon effects
- Photon astronomy is only skin deep

Collecting Gamma Rays

Demographics: High Energy

Demographics: Very High Energy

Pre-Fermi Expectations

The Promise of the High-Energy Sky (pre-Fermi)

Locate candidate cosmic-ray accelerators

Following earlier balloon and satellite exploratory work, OSO-3, SAS-2, and COS-B mapped cosmic gamma-ray emission, found Galactic and extragalactic components, and ultimately resolved individual sources.

The Promise of the High-Energy Sky (pre-Fermi)

Locate candidate cosmic-ray accelerators

EGRET on the Compton Gammaray Observatory found 10X more sources – many difficult to associate with counterparts.

No definitive detection of gamma-ray emission from supernova remnants by EGRET

The Promise of the High-Energy Sky (pre-Fermi)

What Fermi Found

The Promise of the High-Energy Sky (pre-Fermi)

Resolve sites of fresh cosmic-ray acceleration

What Fermi Found

Resolve sites of fresh cosmic-ray acceleration

Liz Hays, SuGAR 2018

High-Energy Galactic Sources

Full-Sky Extended Source Search

21

Using LAT sources to Resolve the Extragalactic Background

Point sources (blazars) explain 86 (+16 -14)% of the EGB above 50 GeV

Blazars not found to be dominant contributor to IceCube neutrino flux.

Constrains contribution of other source classes to neutrino background.

Variability and Transients

Gamma Rays from Stellar Novae

Stellar novae predicted to accelerate CR to high energy (Hernanz & Tatischeff) but gamma rays not anticipated for LAT.

Fermi-LAT detects ~1 classical nova per year.

Hadronic model favored to avoid uncomfortably high efficiency for IC.

ASASSN-16ma Time Development

The Crab Nebula

NASA/STScl; NASA/ JPL/Caltech; NSF/ NRAO/VLA; ESA/ XMM-Newton

27

Extremely Rapid Gamma-ray Flares

Where are the gamma rays from?

Rapid variability observed in blazars, Crab Nebula maxes out resolution capabilities of multiwavelength observations and defies shock acceleration.

Binary Neutron Star Mergers

Fermi-GBM independently triggered on a short GRB matching GW 170817

Where are the Gamma Rays From? II

GRB 170817A was not very bright for being close (43 Mpc). Why? Iong GRB and jet illustration Colliding shells emit low-energy gamma rays (internal shock wave)

Liz Hays, SuGAR 2018

Possibly off-axis, implying a structured jet or cocoon (wind) component.

1 H	Element Origins																2 He	
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne	
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
87 Fr	88 Ra																	
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			89 Ac	90 Th	91 Pa	92 U												
Me	rgin	g Ne	eutr	on S	tars	E	Exploding Massive Stars						Big Bang					
Dying Low Mass Stars							Exploding White Dwarfs							Cosmic Ray Fission				

MeV Prospects for Neutron Star Mergers

MeV Prospects for GRBs

Intrinsic population of long duration GRBs given luminosity function, redshift distribution, prompt light curves/spectra derived from Swift-BAT using method of Lien et al. 2014.

Sample subset of population above sensitivity limit for an MeV instrument (AMEGO) and adjust for FOV.

Reminder about Beamed Sources

- Gamma-ray emission from GRBs is relativistically beamed
- Detected GRBs are a few percent of the entire population (depending on jet angle)
- The detection of a few GRBs at high redshift provides a sample of the entire population existing in a younger Universe
- (That goes for blazars, too)

MeV prospects for blazars

- Energy output peaks in MeV,
- below LAT band Among the most powerful persistent sources in the Universe
- Large jet power, > accretion ٠ luminosity
- Host massive black holes, ~10⁹ ٠ solar masses or more
- Detected up to high redshift • (expect \sim 100 at z>3)
- Evolution of MeV blazars is stronger than any other source class - maximum density might be very early

J1653-329 a candidate PeV neutrino emitter (Krauss+ 2014)

Themes for the Future in Gamma Rays

- Fermi-LAT continues to deepen all-sky view above in the multi-GeV to TeV range, especially important for spatially extended and diffuse studies
- Fermi all-sky monitoring (GBM and LAT) continue to promote discovery and uniquely support multiwavelength variability and transient work
- Enhanced context
 - Multiwavelength overlap and complementarity
 - Challenges for interpreting relationship of emission sites and processes within a source and making connecting to acceleration sites and populations
 - MeV is critical for extending horizon of GRBs and blazars in support of multimessenger studies (and loads of other reasons – see e-ASTROGAM talk)
- Angular Resolution
 - I begin to see what I would really like to see better

Concluding Thoughts

- Relation between gamma rays and cosmic rays remains complex
 - Fermi LAT has answered many questions, but raised many more.
 - The sites of gamma-ray emission do not provide a complete answer about where and how cosmic rays are accelerated
 - Gamma rays from freshly accelerated cosmic rays remain elusive
 - In some of the most interesting cases for understanding acceleration, the sites are surprisingly compact, but difficult to localize