RADAR DETECTION OF HIGH-ENERGY NEUTRINO-INDUCED PARTICLE CASCADES

Krijn D. de Vries

WHY RADAR?

NEUTRINO ASTRONOMY

https://history.nasa.gov/SP-4217/ch3.htm

- Radar detection used widely since the 1940's of the previous century.
- In 1941 Blackett and Lovell propose to use the radar detection technique to probe highenergy cosmic-ray induced air showers:
- Method tested at Jodrell Bank Research Station. Attention shifted to meteor research after its first detection in 1946.
- The method was revived in the beginning of this century: On the possibility of radar echo detection of ultra-high energy cosmic ray- and neutrino-induced extensive air showers

Peter W. Gorham Jet Propulsion Laboratory, Calif. Inst. of Technology 4800 Oak Grove, Drive, Pasadena, CA, 91109 USA

- Several experiments performed to search for an in-air scatter. So-far no detection.

Sir Bernard Lovell

P.M.S. Blackett and A.C. Bernard Lovell, "Radio Echoes and Cosmic Ray Showers," Proceedings of the Royal Society of London, ser. A, vol. 177 (1941): 183-86

HOW DOES RADAR WORK?

Beamed emission = larger gain (G), smaller aperture

Directly probe the object by searching for a <u>scattered</u> radio wave

RADAR DETECTION OF HIGH-ENERGY NEUTRINO INDUCED PARTICLE CASCADES

OUTLOOK

The feasibility of the radar detection technique to probe high-energy neutrino-induced particle cascades in ice (arXiv:1312.4331, Astrop. Phys. 60,2015,25-31). On the feasibility of RADAR detection of high-energy neutrino-induced showers in

ice

Krijn D. de Vries^a, Kael Hanson^b, Thomas Meures^b

^aVrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium
^bUniversité Libre de Bruxelles, Department of Physics, B-1050 Brussels, Belgium

- From radar cross-section to sensitivity (to be submitted):

On the Radar detection of high-energy neutrino-induced cascades in ice; From Radar cross-section to sensitivity

Krijn D. de Vries^a, Paul Coppin^a, Aongus Ó Murchadha^b, Olaf Scholten^{a,c}, Simona Toscano^a, Nick van Eindhoven^a

 Experimental verification of the radar detection technique at the Telescope Array Electron Light Source facility (<u>PoS(ICRC2017)1049</u> <u>PoS(ICRC2017)391</u>).

> Krijn D. de Vries^{*a}, Masaki Fukushima^b, Romain Gaior^{cd}, Kael Hanson^e, Daisuke Ikeda^b, Yusuke Inome^f, Aya Ishihara^c, Takao Kuwabara^c, Keiichi Mase^c, John Matthews^g, Thomas Meures^e, Pavel Motloch^h, Izumi S. Ohota^f, Aongus O'Murchadha^e, Florian Partous^a, Matthew Relich^c, Hiroyuki Sagawa^b, Tatsunobu Shibataⁱ, Bokkyun Shin^j, Gordon Thomson^g, Shunsuke Ueyama^c, Tokonatsu Yamamoto^f, Shigeru Yoshida^c

HOW DOES RADAR WORK? APPLY TO NEUTRINO-INDUCED PARTICLE CASCADES

HOW DO WE SCATTER?

Over-dense scattering:

Under-dense scattering:

Figure from arXiv:1210.5140v2

Radar detection of high-energy neutrino-induced particle cascades 24-1-2018 | 8

ledgement that proton transfer across cell membranes may play a significant part in energy conversion and storage in biological

systems¹⁻⁴ and that this transfer may involve hydrogen-bonded chains spanning the membrane^{5,6}. However, there is still much

DO WE SCATTER? OVERDENSE VS UNDERDENSE

Assume 20eV ionization energy, 2MeV/g/cm² energy deposit for high-energy cascade particles.

1 GHz vs 50 MHz: Free electron lifetime: 1-20 ns Free proton lifetime: 10-1000 ns

$$\omega_p = 8980 \sqrt{\frac{m_p}{m_e} n_e},$$

VRIJE UNIVERSITEIT BRUSSEL

SO WHAT ABOUT THE LIFETIME?

Since v_p scales with $n_e \sim E$ (energy), this conditions leads to an energy threshold. Calculations show $E_{th} \sim PeV$ energies.

<u>The big unknown:</u> <u>The free charge collision</u> <u>rate!! Linked to lifetime??</u>

TOWARDS THE SENSITIVITY: OVERDENSE SCATTERING CROSS SECTION

$$\sigma_{od} = \sum_{i=1}^{N} A_c^i \times f_{geom} \times f_{skin}^i$$

Amount of reflected power determined by skin depth:

$$\delta = c/2w_p \longrightarrow P_{sc}(x) = P_0(1 - e^{-x/\delta})$$

Plasma frequency $\omega_p \sim$ electron density: Integrate over layers of equal density:

TOWARDS THE SENSITIVITY: POLARIZATION AND DIFFRACTION

$$\sigma_{od} = \sum_{i=1}^{N} A_c^i \times f_{geom} \times f_{skin}^i$$

Cascade dimensions of the order of the wavelength: Diffraction!!

Model as single slit diffraction.

$$f_{geom} = (1 - \vec{e}_{tc} \cdot \vec{e}_c)(\vec{e}_t \cdot \vec{e}_c)f_{dif}$$

$$f_{dif} = \frac{I(\alpha)}{\langle I(\alpha) \rangle}$$

1

Credit: Simona Toscano, Paul Coppin

OPEN QUESTIONS: MODEL PARAMETERS/ASSUMPTIONS?

Experimental verification needed!!!!

EXPERIMENTAL VERIFICATION AT THE TELESCOPE ARRAY ELECTRON LIGHT SOURCE FACILITY

Krijn D. de Vries^{*a}, Masaki Fukushima^b, Romain Gaior^{cd}, Kael Hanson^e, Daisuke Ikeda^b, Yusuke Inome^f, Aya Ishihara^c, Takao Kuwabara^c, Keiichi Mase^c, John Matthews^g, Thomas Meures^e, Pavel Motloch^h, Izumi S. Ohota^f, Aongus O'Murchadha^e, Florian Partous^a, Matthew Relich^c, Hiroyuki Sagawa^b, Tatsunobu Shibataⁱ, Bokkyun Shin^j, Gordon Thomson^g, Shunsuke Ueyama^c, Tokonatsu Yamamoto^f, Shigeru Yoshida^c

Many thanks to the TA collaboration!!

EXPERIMENTAL SETUP

RADAR WHAT DID WE SEE?

- Accelerator noise interferes with our transmit signal
- Non-linear amplifier response
- Signal can be mimicked by these effects!
- What if we look at a different frequency than our transmit frequency?

NO ICE CONFIGURATION: AIR!!

ICE CONFIGURATION

PART 2: WHAT DID WE CHANGE?

- Detect/transmit over wider band-width (50 MHz – 2.4 GHz)
- Phase out transmit leakage
 - Filter out accelerator noise (S-band 2.856 GHz)
 - Shield reflective materials with RF absorbers

PART 2: SETUP

RADAR PART 2: RESULTS

SUMMARY AND OUTLOOK

- We investigate the radar detection technique to probe the PeV-EeV (and above) cosmic neutrino flux.
- Radar scattering modelled in detail. Scattering cross-section modelled for the first time (previously given by empirical thin wire approximation).
- 16 (receiver) + 5 (transmit) antenna set-up is predicted to detect > 10 evts/jr in the PeV-EeV region in case of efficient scattering.
 - Sensitivity strongly depends on unknown parameters due to plasma properties (lifetime, free charge collision rate).
 - Two experiments performed at the TA-ELS facility. Possible signals found, data not fully understood yet.
- Higher energy beam at SLAC used for next test (early 2018).

fwo

Research Foundation Flanders Opening new horizons

THE ELECTRON BEAM SUDDEN APPEARANCE

SIGNAL

No Ice configuration, still very strong emission observed!!

THE ELECTRON BEAM SUDDEN APPEARANCE

SIGNAL ANALYSED AND WELL UNDERSTOOD

Four experiments observed the sudden appearance signal in different frequency ranges

THE ELECTRON BEAM SUDDEN APPEARANCE

VERY INTERESTING APPLICATION IN NATURE: THE COSMIC-RAY AIR SHOWER SIGNAL IN ASKARYAN RADIO DETECTORS

