New physics fits to the latest bsll data

Nazila Mahmoudi

Lyon University & CERN

Based on arXiv:1603.00865, arXiv:1702.02234 & arXiv:1705.06274 and arXiv:1804.xxxxx

Thanks to T. Hurth, S. Neshatpour, D. Martinez Santos and V. Chobanova

CrossTalk Workshop: Flavour anomalies - Brussels, 29 March 2018

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
Introduction	000000		0000000		000000	0

Several tensions with the SM predictions observed in the $bs\ell\ell$ transitions

 \rightarrow Flavour anomalies

At the moment amongst the most significant tensions with the SM at the LHC!

Focus of this talk:

- \rightarrow Can the deviations be explained by the SM uncertainties?
- $\rightarrow\,$ If the deviations are due to New Physics, what can we learn in a model independent way?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000						
Outline						

Introduction

 \rightarrow Theoretical framework

Observables

- $\rightarrow {\rm Definitions}$
- \rightarrow Recent anomalies

Theoretical uncertainties

- \rightarrow Hadronic effects
- \rightarrow Statistical comparison of NP vs hadronic effects

• NP global fits

- \rightarrow Model independent implications
- Specific NP models
- Future prospects to understand the source of anomalies

Conclusions

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000						
Theoretical	framework					

Effective field theory

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) \right)$$

Separation between short distance (Wilson coefficients) and long distance (local operators) effects

Operator set for $b \rightarrow s$ transitions:

+ the chirality flipped counter-parts of the above operators, \mathcal{O}'_i

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000						
Wilson coef	ficients					

The Wilson coefficients are calculated perturbatively up to NNLO

Two main steps:

• matching between the effective and full theories \rightarrow extraction of the $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$

$$C^{ ext{eff}}_i(\mu) = C^{(0) ext{eff}}_i(\mu) + rac{lpha_s(\mu)}{4\pi}C^{(1) ext{eff}}_i(\mu) + \cdots$$

• Evolving the $C_i^{\text{eff}}(\mu)$ to the scale relevant for *B* decays, $\mu \sim m_b$ using the RGE runnings.

The Wilson coefficients are process independent.

In the SM:

 $C_7 = -0.294$ $C_9 = 4.20$ $C_{10} = -4.01$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000						
Wilson coef	ficients					

The Wilson coefficients are calculated perturbatively up to NNLO

Two main steps:

• matching between the effective and full theories \rightarrow extraction of the $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$

$$C^{ ext{eff}}_i(\mu) = C^{(0) ext{eff}}_i(\mu) + rac{lpha_s(\mu)}{4\pi}C^{(1) ext{eff}}_i(\mu) + \cdots$$

• Evolving the $C_i^{\text{eff}}(\mu)$ to the scale relevant for *B* decays, $\mu \sim m_b$ using the RGE runnings.

The Wilson coefficients are process independent.

In the SM:

 $C_7 = -0.294$ $C_9 = 4.20$ $C_{10} = -4.01$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion	
00000							
Hadronic quantities							

To compute the amplitudes:

$$\mathcal{A}(A \rightarrow B) = \langle B | \mathcal{H}_{\text{eff}} | A \rangle = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A \rangle(\mu)$$

 $\langle B|\mathcal{O}_i|A\rangle$: hadronic matrix element

How to compute matrix elements?

 \rightarrow Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...

 \rightarrow Describe hadronic matrix elements in terms of hadronic quantities

Two types of hadronic quantities:

- Decay constants: Probability amplitude of hadronising quark pair into a given hadron
- Form factors: Transition from a meson to another through flavour change

Once the Wilson coefficients and hadronic quantities calculated, the physical observables (branching fractions,...) can be calculated.

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion

Observables and Anomalies

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^- (\bar{K}^{*0} \rightarrow K^- \pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

 $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(\theta_{\ell}, \theta_{K^*}, \phi)$ $\stackrel{>}{\longrightarrow} \text{ angular coefficients } J_{1-9}$ $\stackrel{>}{\longrightarrow} \text{ functions of the spin amplitudes } A_0, A_{\parallel}, A_{\perp}, A_t, \text{ and } A_S$ Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5\ell) \\ \mathcal{O}_S &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\ell), \qquad \mathcal{O}_P &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\gamma_5\ell) \end{aligned}$$

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \rightarrow \bar{K}^{*0}\ell^+\ell^- (\bar{K}^{*0} \rightarrow K^-\pi^+)$ is completely – described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{l^{-}}{\theta_{l}} = \frac{1}{\beta_{K^{-}}}$$

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi}=\frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

 $J(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi) = \sum_{i} J_{i}(q^{2}) f_{i}(\theta_{\ell}, \theta_{K^{*}}, \phi)$ $\stackrel{\searrow}{\longrightarrow} \text{ angular coefficients } J_{1-9}$ $\stackrel{\searrow}{\longrightarrow} \text{ functions of the spin amplitudes } A_{0}, A_{\parallel}, A_{\perp}, A_{t}, \text{ and } A_{S}$ Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\mathcal{O}_9 = rac{e^2}{(4\pi)^2} (ar{s}\gamma^\mu b_L) (ar{\ell}\gamma_\mu \ell), \quad \mathcal{O}_{10} = rac{e^2}{(4\pi)^2} (ar{s}\gamma^\mu b_L) (ar{\ell}\gamma_\mu\gamma_5 \ell) \quad \mathbb{A}$$

 $\mathcal{O}_S = rac{e^2}{16\pi^2} (ar{s}_L^lpha b_R^lpha) (ar{\ell} \ell), \qquad \mathcal{O}_P = rac{e^2}{16\pi^2} (ar{s}_L^lpha b_R^lpha) (ar{\ell}\gamma_5 \ell) \quad \mathbb{A}$

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	00000					
$B o K^* \mu^+ \mu$	z^- observab	les				

Optimised observables: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P_4' \rangle_{\text{bin}} = \frac{1}{N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P_5' \rangle_{\text{bin}} = \frac{1}{2N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P_6' \rangle_{\text{bin}} = \frac{-1}{2N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P_8' \rangle_{\text{bin}} = \frac{-1}{N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{
m bin}' = \sqrt{-\int_{
m bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{
m bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

- + CP violating clean observables and other combinations
 - U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104
 - S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

$$S_i = \frac{J_{i(s,c)} + \bar{J}_{i(s,c)}}{\frac{d\bar{\Gamma}}{dq^2} + \frac{d\bar{\Gamma}}{dq^2}} , \qquad P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_L(1 - F_L)}}$$

 $B
ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

Long standing anomaly $2-3\sigma$:

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCL-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

LHCb, JHEP 02 (2016) 104; Belle, PRL 118 (2017); ATLAS, ATLAS-CONF-2017-023; CMS, CMS-PAS-BPH-15-008

Also measured by ATLAS, CMS and Belle

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000					
The LHCb a	anomalies (2	2)				

$B_s \rightarrow \phi \mu^+ \mu^-$ branching fraction

- Same theoretical description as $B o K^* \mu^+ \mu^-$
 - Replacement of $B
 ightarrow K^*$ form factors with the $B_s
 ightarrow \phi$ ones
 - Also consider the $B_s \bar{B}_s$ oscillations
- June 2015 (3 fb⁻¹): the differential branching fraction is found to be 3.2σ below the SM predictions in the [1-6] GeV² bin

JHEP 1509 (2015) 179

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000					
The LHCb	anomalies (3	3)				

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

- Theoretical description similar to $B \to K^* \mu^+ \mu^-$, but different since K is scalar
- June 2014 (3 fb⁻¹): measurement of R_K in the [1-6] GeV² bin (PRL 113, 151601 (2014)): 2.6 σ tension in [1-6] GeV² bin

SM prediction very accurate (leading corrections from QED, giving rise to large logarithms involving the ratio $m_B/m_{\mu,e}$)

If confirmed this would be a groundbreaking discovery and a very spectacular fall of the SM

The updated analysis is eagerly awaited!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion			
	000000								
The LHCb a	The LHCb anomalies (4)								

Lepton flavour universality in $B^0 \to K^{*0} \ell^+ \ell^-$

• LHCb measurement (April 2017):

$${\it R}_{{\it K}^*}={\it BR}({\it B}^{0}
ightarrow{\it K}^{*0}\mu^+\mu^-)/{\it BR}({\it B}^{0}
ightarrow{\it K}^{*0}e^+e^-)$$

• Two q² regions: [0.045-1.1] and [1.1-6.0] GeV²

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

$$\begin{split} R_{K^*}^{\text{exp,bin1}} &= 0.660^{+0.110}_{-0.070}(\text{stat}) \pm 0.024(\text{syst}) \\ R_{K^*}^{\text{exp,bin2}} &= 0.685^{+0.113}_{-0.069}(\text{stat}) \pm 0.047(\text{syst}) \end{split}$$

JHEP 08 (2017) 055

Lepton flavour universality in $B^0 \to K^{*0} \ell^+ \ell^-$

• LHCb measurement (April 2017):

$${\it R}_{{\it K}^*}={\it BR}({\it B}^0
ightarrow{\it K}^{*0}\mu^+\mu^-)/{\it BR}({\it B}^0
ightarrow{\it K}^{*0}e^+e^-)$$

• Two q² regions: [0.045-1.1] and [1.1-6.0] GeV²

$$\begin{split} R_{K^*}^{\text{exp,bin1}} &= 0.660^{+0.110}_{-0.070}(\text{stat}) \pm 0.024(\text{syst}) \\ R_{K^*}^{\text{exp,bin2}} &= 0.685^{+0.113}_{-0.069}(\text{stat}) \pm 0.047(\text{syst}) \\ R_{K^*}^{\text{SM,bin1}} &= 0.906 \pm 0.020_{\text{QED}} \pm 0.020_{\text{FF}} \\ R_{K^*}^{\text{SM,bin2}} &= 1.000 \pm 0.010_{\text{QED}} \\ \text{Bordone, Isidori, Pattori, arXiv:1605.07633} \end{split}$$

JHEP 08 (2017) 055

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

2.2-2.5 σ tension with the SM predictions in each bin

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		●000000				
Transversity	amplitudes					

$$\mathcal{H}_{ ext{eff}} = \mathcal{H}_{ ext{eff}}^{ ext{had}} + \mathcal{H}_{ ext{eff}}^{ ext{sl}}$$

$$\mathcal{H}_{ ext{eff}}^{ ext{sl}} = -rac{4\,G_F}{\sqrt{2}}\,V_{tb}\,V_{ts}^*\Big[\sum_{i=7,9,10}\,C_i^{(\prime)}\,O_i^{(\prime)}\Big]$$

 $\langle \bar{K}^* | \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} | \bar{B}
angle$: $B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$

Transversity amplitudes:

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \right\} \\ A_{5} &= N_{5} (C_{5} - C_{5}') A_{0}(q^{2}) \\ &\qquad \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Transversity	amplitudes					

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} = -rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8
ight]$$

$$\mathcal{A}_{\lambda}^{(\mathrm{had})} = -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq \cdot x} \langle \ell^{+}\ell^{-}|j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle$$

$$\times \int d^{4}y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^{*}|T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle$$

$$\equiv \frac{e^{2}}{q^{2}}\epsilon_{\mu}L_{V}^{\mu}\Big[\underbrace{\mathrm{LO \ in}\ \mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact.,\ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{\mathrm{power\ corrections}}\Big]$$

Beneke et al.: 106067; 0412400

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
Transversity	amplitudes	000000	00000000	000000	000000	
	<u> </u>					

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} = -rac{4\,G_F}{\sqrt{2}}\,V_{tb}\,V_{ts}^*\left[\sum_{i=1...6}\,C_i\,O_i + C_8\,O_8
ight]$$

$$\mathcal{A}_{\lambda}^{(\mathrm{had})} = -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq \cdot x} \langle \ell^{+}\ell^{-}|j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle$$

$$\times \int d^{4}y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^{*}|T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle$$

$$\equiv \frac{e^{2}}{q^{2}}\epsilon_{\mu}L_{V}^{\mu}\left[\underbrace{\mathrm{LO \ in \ }\mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact., \ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{power \ corrections}\right]$$

$$\xrightarrow{\text{power corrections}}_{partial calculation: \ \mathsf{Khodjar}}$$

106067; 0412400

rtial calculation: Khodjamirian et al., 1006.4945

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000	000000	0●00000	00000000		000000	O
Transversity	amplitudes					

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1\dots 6} C_i O_i + C_8 O_8 \right]$$

$$\mathcal{A}_{\lambda}^{(\mathrm{had})} = -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq\cdot x} \langle \ell^{+}\ell^{-}|j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle$$

$$\times \int d^{4}y \ e^{iq\cdot y} \langle \bar{K}_{\lambda}^{*}|T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle$$

$$\equiv \frac{e^{2}}{q^{2}}\epsilon_{\mu}L_{V}^{\mu}\Big[\underbrace{\mathrm{LO \ in \ }\mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact., \ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{\mathrm{power \ corrections}}\Big]$$

$$\xrightarrow{\text{power corrections}}_{1006,4945}$$

Anomalies can be explained with 20-50% non-factorisable power corrections at the observable level in the critical bins (Ciuchini et al., 1512.07157)

This corresponds to more than 150% error at the amplitude level for the critical bins!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Hadronic e	ffects					

Description also possible in terms of helicity amplitudes:

$$H_{V}(\lambda) = -i N' \left\{ C_{9} \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \hat{m}_{b}}{m_{B}} (C_{7} \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \tilde{T}_{R\lambda}(q^{2})) - 16\pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right]$$

$$H_{A}(\lambda) = -i N' (C_{10} \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \tilde{V}_{R\lambda}(q^{2})), \qquad \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda}$$

$$H_{5} = i N' \frac{\hat{m}_{b}}{m_{W}} (C_{5} - C_{5}') \tilde{S}(q^{2}) \qquad \qquad \left(N' = -\frac{4G_{F}m_{B}}{\sqrt{2}} \frac{e^{2}}{16\pi^{2}} V_{tb} V_{ts}^{*} \right)$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_\lambda(q^2) = h_\lambda^{(0)} + rac{q^2}{1 {
m GeV}^2} h_\lambda^{(1)} + rac{q^4}{1 {
m GeV}^4} h_\lambda^{(2)}$$

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028

M. Ciuchini et al., JHEP 1606 (2016) 116

lt seems

$$h_{\lambda}^{(0)} \longrightarrow C_7^{NP}, \quad h_{\lambda}^{(1)} \longrightarrow C_9^{NP}$$

and $h_{\lambda}^{(2)}$ terms cannot be mimicked by C_7 and C_9

M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence!

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Hadronic e	ffects					

Description also possible in terms of helicity amplitudes:

$$H_{V}(\lambda) = -i N' \left\{ C_{9} \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \hat{m}_{b}}{m_{B}} (C_{7} \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \tilde{T}_{R\lambda}(q^{2})) - 16\pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right\}$$

$$H_{A}(\lambda) = -i N' (C_{10} \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \tilde{V}_{R\lambda}(q^{2})), \qquad \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda}$$

$$H_{5} = i N' \frac{\hat{m}_{b}}{m_{W}} (C_{5} - C_{5}') \tilde{S}(q^{2}) \qquad \qquad \qquad \left(N' = -\frac{4G_{F}m_{B}}{\sqrt{2}} \frac{e^{2}}{16\pi^{2}} V_{tb} V_{ts}^{*} \right)$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_{\lambda}(q^2) = h_{\lambda}^{(0)} + rac{q^2}{1 {
m GeV}^2} h_{\lambda}^{(1)} + rac{q^4}{1 {
m GeV}^4} h_{\lambda}^{(2)}$$

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028

M. Ciuchini et al., JHEP 1606 (2016) 116

It seems

$$h_{\lambda}^{(0)} \longrightarrow C_7^{NP}, \quad h_{\lambda}^{(1)} \longrightarrow C_9^{NP}$$

and $h_{\lambda}^{(2)}$ terms cannot be mimicked by C_7 and C_9

M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence!

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Hadronic ef	fects					

 $\implies q^4$ terms can rise due to terms which multiply Wilson coefficients $\implies C_7^{\rm NP}$ and $C_9^{\rm NP}$ can each cause effects similar to $h_{\lambda}^{(0,1,2)}$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000	000000	0000000	00000000	0000000	000000	
Hadronic eff	ects					

Hadronic power correction effect:

$$\delta H_V^{\text{p.c.}}(\lambda) = i N' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = i N' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)$$

New Physics effect:

$$\delta H_V^{C_9^{\rm NP}}(\lambda) = -iN'\tilde{V}_L(q^2)C_9^{\rm NP} = iN'm_B^2\frac{16\pi^2}{q^2}\left(a_\lambda C_9^{\rm NP} + q^2b_\lambda C_9^{\rm NP} + q^4c_\lambda C_9^{\rm NP}\right)$$

and similarly for C_7

 \Rightarrow NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities $h_{+,-,0}^{(0,1,2)}$ (18 parameters) and Wilson coefficients $C_i^{NP}(2 \text{ or } 4 \text{ parameters})$

Due to this embedding the two fits can be compared with the Wilk's test

Introduction 00000	Anomalies 000000	Theory uncertainties 0000●00	Global fits 00000000	NP scenarios	Prospects	Conclusion O
Hadronic eff	ects					

Hadronic power correction effect:

$$\delta H_V^{\text{p.c.}}(\lambda) = i N' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = i N' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)$$

New Physics effect:

$$\delta H_{V}^{C_{9}^{\mathrm{NP}}}(\lambda) = -i\mathcal{N}'\tilde{V}_{L}(q^{2})C_{9}^{\mathrm{NP}} = i\mathcal{N}'m_{B}^{2}\frac{16\pi^{2}}{q^{2}}\left(a_{\lambda}C_{9}^{\mathrm{NP}} + q^{2}b_{\lambda}C_{9}^{\mathrm{NP}} + q^{4}c_{\lambda}C_{9}^{\mathrm{NP}}\right)$$

and similarly for C_7

 \Rightarrow NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities $h_{+,-,0}^{(0,1,2)}$ (18 parameters) and Wilson coefficients $C_i^{NP}(2 \text{ or } 4 \text{ parameters}))$

Due to this embedding the two fits can be compared with the Wilk's test

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		0000000				
Wilk's test						

SM vs 2 parameters and 4 parameters p-values were independently computed through 2D profile likelihood integration, and they give similar results

For low q^2 (up to 8 GeV²):

	2 (δC_9)	$4 (\delta C_7, \delta C_9)$	$18~(h^{(0,1,2)}_{+,-,0})$
0	$3.7 imes10^{-5}$ (4.1 σ)	$6.3 imes10^{-5}$ (4.0 σ)	$6.1 imes10^{-3}$ (2.7 σ)
2	-	$0.13 (1.5\sigma)$	0.45 <mark>(0.76</mark> σ)
4	-	_	$0.61 (0.52\sigma)$

 \rightarrow Adding $\delta \textit{C}_{9}$ improves over the SM hypothesis by 4.1σ

ightarrow Including in addition δC_7 or hadronic parameters improves the situation only mildly

 \rightarrow One cannot rule out the hadronic option

Adding 16 more parameters does not really improve the fits

The situation is still inconclusive

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
	C 1 1 1	· .				

Estimates of hadronic effects

Various methods for hadronic effects

$$\frac{e^2}{q^2}\epsilon_{\mu}L_V^{\mu}\Big[Y(q^2)\tilde{V_{\lambda}} + \text{LO in }\mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) + h_{\lambda}(q^2)\Big]$$

	factorisable	non- factorisable	power corrections (soft gluon)	region of calculation	physical region of interest
Standard	1	1	×	$q^2 \lesssim 7 ~{ m GeV^2}$	directly
Khodjamirian et al. [1006.4945]	1	x	1	$q^2 < 1 { m GeV^2}$	extrapolation by dispersion relation
Bobeth et al. [1707.07305]	1	1	1	$q^2 < 0 { m GeV^2}$	extrapolation by analyticity

	Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
-							

Global fits

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
			0000000			
New Physics	s interpretat	ion?				

Many observables \rightarrow Global fits of the latest LHCb data

Relevant Operators:

$$\mathcal{O}_7$$
, \mathcal{O}_8 , $\mathcal{O}_{9\mu,e}^{(')}$, $\mathcal{O}_{10\mu,e}^{(')}$ and $\mathcal{O}_{S-P}\propto (ar{s}P_Rb)(ar{\mu}P_L\mu)\equiv \mathcal{O}_0'$

NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000	000000	0000000	0000000	0000000	000000	
Theoretical uncertainties and correlations						

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- use for the $B_{(s)} \to V$ form factors of the lattice+LCSR combinations from 1503.05534, including correlations
- $B \rightarrow K$ form factors are obtained from the lattice+LCSR combinations (1411.3161, 1503.05534), including all the correlations
- for $B_s
 ightarrow \phi \mu^+ \mu^-$, mixing effects taken into account
- Parameterisation of uncertainties from power corrections:

$$egin{aligned} \mathcal{A}_k
ightarrow \mathcal{A}_k \left(1 + \mathsf{a}_k \exp(i\phi_k) + rac{q^2}{6~ ext{GeV}^2} b_k \exp(i heta_k)
ight) \end{aligned}$$

 $|a_k|$ between 10 to 60%, $b_k \sim 2.5 a_k$ Low recoil: $b_k = 0$

 \Rightarrow Computation of a (theory + exp) correlation matrix

Introduction 00000	Anomalies 000000	Theory uncertainties 0000000	Global fits 00●00000	NP scenarios	Prospects	Conclusion O
Global fits						

Global fits of the observables obtained by minimisation of

$$\chi^2 = \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big) \cdot (\Sigma_{\texttt{th}} + \Sigma_{\texttt{exp}})^{-1} \cdot \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big)$$

 $(\Sigma_{\tt th}+\Sigma_{\tt exp})^{-1}$ is the inverse covariance matrix.

More than 100 observables relevant for leptonic and semileptonic decays:

- BR($B \rightarrow X_s \gamma$)
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B
 ightarrow K^{*+} \mu^+ \mu^-$)
- BR($B
 ightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- *R*_K
- $B \to K^{*0}\mu^+\mu^-$: BR, F_L , A_{FB} , S_3 , S_4 , S_5 , S_7 , S_8 , S_9 in 8 low q^2 and 4 high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000	000000	0000000	000●0000		000000	O
NP Fit resu	lts: single o	perator				

Best fit values considering all observables besides R_K and R_{K^*}

(under the assumption of 10% non-factorisable power corrections)

	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$
ΔC_9	-0.24	70.5	4.1σ
$\Delta C'_9$	-0.02	87.4	0.3σ
ΔC_{10}	-0.02	87.3	0.4σ
$\Delta C'_{10}$	+0.03	87.0	0.7σ
ΔC_9^{μ}	-0.25	68.2	4.4 σ
ΔC_9^e	+0.18	86.2	1.2σ
ΔC^{μ}_{10}	-0.05	86.8	0.8σ
ΛC_{10}^{e}	-2.14	86.3	1.1σ
A C10	+0.14	00.5	1.10

- \rightarrow $C_{\rm 9}$ and $C_{\rm 9}^{\mu}$ solutions are favoured with SM pulls of 4.1 and 4.4 σ
- \rightarrow Primed operators have a very small SM pull
- $\rightarrow\,{\it C}_{10}\text{-like}$ solutions do not play a role

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
			00000000			
NP Fit resu	ılts: single o	operator				

Best fit values considering all observables besides R_K and R_{K^*}

(under the assumption of 10% non-factorisable power corrections)

	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$
ΔC_9	-0.24	70.5	4.1σ
$\Delta C'_9$	-0.02	87.4	0.3σ
ΔC_{10}	-0.02	87.3	0.4σ
$\Delta C'_{10}$	+0.03	87.0	0.7σ
ΔC_9^{μ}	-0.25	68.2	4.4 σ
ΔC_9^e	+0.18	86.2	1.2σ
ΔC^{μ}_{10}	-0.05	86.8	0.8σ
ΛC_{10}^{e}	-2.14	86.3	11σ
10	+0.14	00.0	1.10

 \rightarrow $C_{\rm 9}$ and $C_{\rm 9}^{\mu}$ solutions are favoured with SM pulls of 4.1 and 4.4 σ

 \rightarrow Primed operators have a very small SM pull $\rightarrow C_{10}$ -like solutions do not play a role

Best fit values in the one operator fit considering only R_K and R_{K^*}

	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$
ΔC_9	-0.48	18.3	0.3σ
$\Delta C'_9$	+0.78	18.1	0.6σ
ΔC_{10}	-1.02	18.2	0.5σ
$\Delta C'_{10}$	+1.18	17.9	0.7σ
ΔC_9^{μ}	-0.35	5.1	3.6 σ
ΔC_9^e	+0.37	3.5	3.9σ
ΔC_{10}^{μ}	-1.66 -0.34	2.7	4 .0 <i>σ</i>
ΔC_{10}^e	-2.36 +0.35	2.2	4. 0 <i>σ</i>

→ NP in C_9^{e} , C_9^{μ} , C_{10}^{e} , or C_{10}^{μ} are favoured by the $R_{K^{(*)}}$ ratios (significance: $3.6 - 4.0\sigma$) → NP contributions in primed operators do not play a role.

The two sets are compatible at least at the 2σ level.

Introduction 00000	Anomalies 000000	Theory uncertainties	Global fits 00000●00	NP scenarios	Prospects	Conclusion O
Fit results fo	or two opera	tors: form factor o	lependence			

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000	000000	0000000	000000000	0000000	000000	
Fit results f	or two oper	rators: form factor				

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000	000000	000000	00000000	0000000	000000	
Fit results f	or two oper	ators: form factor				

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

The size of the form factor errors has a crucial role in constraining the allowed region!

Introduction 00000	Anomalies 000000	Theory uncertainties	Global fits 000000●0	NP scenarios	Prospects 000000	Conclusion O
Fit results v	vith more th	nan two operators				

Wilson coefficients sensitive to NP:

$$C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$$

- ightarrow 10 independent WC (considering $\ell=e,\mu$)
- + 10 primed Wilson coefficents

In the general case, the WC can be complex

 \rightarrow 40 independent real parameters!

Introduction	Anomalies 000000	Theory uncertainties	Global fits 0000000●	NP scenarios	Prospects	Conclusion O			
Fit results w	Fit results with more than two operators: All observables								

Preliminary!

Set of WC	Nb parameters	χ^2_{min}	Pull _{SM}	Improv.
SM	0	105.56	-	-
$C_9^{(e,\mu)}$ real	2	79.84	4.70σ	4.70σ
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$ real	6	79.03	3.75σ	0.08 <i>σ</i>
All non-primed WC real	10	78.20	3.05σ	0.07 σ
All WC real (incl. primed)	20	75.90	1.78σ	0.01 <i>o</i>
All WC complex (incl. primed)	40	67.20	0.61σ	0.01 <i>o</i>

107 observables

- No real improvement in the fits when going beyond the $C_9^{(e,\mu)}$ case
- $\bullet\,$ Pull with the SM below 1σ when all WC are varied
- Many parameters are not constrained, in particular the imaginary parts
- Significant contribution also from the electron scalar coefficient

Introduction 00000	Anomal	ies 7 0 (F heory uncertain	ties Glob	al fits NF 0000● 00	scenarios	Prospects 000000	Conclusion O
Fit results	with mo	ore thar	ı two opera	itors: All o	bservables			
			All observal	bles $(\chi^2_{ m SM}=10$	5.6, $\chi^2_{\rm min} = 67.2$?)] Prolim	inaryl
			δ	C7	δ	C ₈		innary.
		$Re(\delta C_i)$	0.02 =	± 0.01	0.03	± 0.35		
		$Im(\delta C_i)$	0.01 =	± 0.17	-1.10	± 0.68		
			δ	C '	δ	C'8		
		$\operatorname{Re}(\delta C_i)$	0.02 =	0.02 ± 0.03		± 1.18		
		$\operatorname{Im}(\delta C_i)$	-0.07	± 0.02	-0.45 ± 1.50			
			δC_9^{μ}	δCg	δC_{10}^{μ}	δC_{10}^e]	
		$Re(\delta C_i)$	-1.25 ± 0.17	-0.45 ± 0.54	-0.20 ± 0.20	$\textbf{4.39} \pm \textbf{3.27}$		
		$Im(\delta C_i)$	0.40 ± 4.27	-2.54 ± 0.47	0.02 ± 2.55	-0.29 ± 3.00		
			$\delta C_{9}^{\prime \mu}$	$\delta C_{9}^{\prime e}$	$\delta C_{10}^{\prime \mu}$	$\delta C_{10}^{\prime e}$		
		$\operatorname{Re}(\delta C_i)$	0.10 ± 0.31	0.00 ± 1.41	-0.10 ± 0.17	0.00 ± 1.41		
		$\operatorname{Im}(\delta C_i)$	0.43 ± 0.59	0.32 ± 4.63	-0.14 ± 0.24	0.00 ± 5.01		
			$\delta C^{\mu}_{Q_1}$	$\delta C^e_{Q_1}$	$\delta C^{\mu}_{Q_2}$	$\delta C_{Q_2}^e$]	
		$\operatorname{Re}(\delta C_i)$	-0.07 ± 0.02	-3.57 ± 0.96	0.10 ± 0.14	-0.01 ± 10.58		
		$Im(\delta C_i)$	0.00 ± 0.19	-3.53 ± 0.48	-0.01 ± 0.11	-0.02 ± 7.77		
			$\delta C_{Q_1}^{\prime \mu}$	$\delta C_{Q_1}^{\prime e}$	$\delta C_{Q_2}^{\prime \mu}$	$\delta C_{Q_2}^{\prime e}$		
		$\operatorname{Re}(\delta C_i)$	0.07 ± 0.02	0.00 ± 1.41	-0.06 ± 0.14	0.00 ± 1.41		
		$\operatorname{Im}(\delta C_i)$	0.00 ± 0.19	-3.61 ± 0.94	0.02 ± 0.11	-0.07 ± 9.58		

- No real improvement in the fits when going beyond the $C_9^{(e,\mu)}$ case
- $\bullet\,$ Pull with the SM below 1σ when all WC are varied
- Many parameters are not constrained, in particular the imaginary parts
- Significant contribution also from the electron scalar coefficient

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion

NP scenarios

Introduction 00000	Anomalies 000000	Theory uncertainties	Global fits 00000000	NP scenarios ●000000	Prospects	Conclusion O
New physics	scenarios					

Global fits: New physics is likely to appear in C_9 :

$$O_9=rac{e^2}{(4\pi)^2}(ar{s}\gamma^\mu b_L)(ar{\ell}\gamma_\mu\ell)$$

It can also affect C'_9 and C_{10} in a much lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

Very difficult in the MSSM!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM						

Fit results in the pMSSM

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM						

Fit results in the pMSSM

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM						

Fit results in the pMSSM

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM and	C ₉					

Contributions to C_9 and C'_9 can come from Z and photon penguins, and box diagrams

- Z-penguins suppressed by small vector coupling
- $\bullet\,$ charged Higgs contributions proportional to $1/\tan^2\beta$
- other penguin diagrams suppressed by the LHC squark and gluino mass limits
- in any case, only box diagrams can lead to lepton flavour non-universality...
- $\bullet \ \ldots \ {\rm but \ box} \ {\rm diagrams} \ {\rm suppressed} \ {\rm by \ the \ LEP} \ {\rm slepton} \ {\rm and} \ {\rm chargino} \ {\rm mass} \ {\rm bounds}$

Introduction 00000	Anomalies 000000	Theory uncertainties	Global fits 00000000	NP scenarios 000●000	Prospects	Conclusion O
New physics	scenarios					

Global fits: New physics is likely to appear in C_9 :

$$O_9=rac{e^2}{(4\pi)^2}(ar{s}\gamma^\mu b_L)(ar{\ell}\gamma_\mu\ell)$$

It can also affect C'_9 and C_{10} in a much lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

 \rightarrow Need for tree level diagrams...

Mainstream scenarios:

- Z' bosons
- leptoquarks
- composite models

 b_{L} μ

Z' obvious candidate to generate the O_9 operator

Needs:

- Flavour-changing couplings to left-handed quarks
- Vector-like couplings to leptons
- Flavour violation or non-universality in the lepton sector

Strong constraints from $B_s - \bar{B}_s$ mixing and LEP contact interactions.

Anomalies consistent with a Z' of 1 to 10 TeV

Can appear in many models, like 331 models, gauge $L_{\mu}-L_{ au}$ models, ...

See e.g. Altmannshofer et al. 1308.1501, Gauld et al. 1308.1959, Buras et al. 1309.2466, Gauld et al. 1310.1082, Buras et al. 1311.6729, Altmannshofer et al. 1403.1269, Buras et al. 1409.4557, Glashow et al. 1411.0565, Crivellin et al. 1501.00993, Altmannshofer et al. 1411.3161, Crivellin et al. 1503.03477, Niehoff et al. 1503.03865, Crivellin et al. 1505.02026, Celis et al. 1505.03079, ...

Nazila Mahmoudi

Introduction 00000	Anomalies 000000	Theory uncertainties	Global fits 00000000	NP scenarios 00000●0	Prospects	Conclusion O
Leptoquarks	;					

- t-channel diagrams
- Different possible representations, can be scalar (spin 0) or vector (spin 1)
- \bullet Cannot alter only C_9, but both C_9 and C_{10} (= -C_9)
- Cannot be lepton flavour non-universal and conserve lepton number simultaneously

Model can be tested with $R_{K^{(*)}}$ measurements and searches for $b \to s \mu^{\pm} e^{\mp}$ and $\mu \to e \gamma$

Possible scenario: two leptoquarks coupling to one lepton type only.

See e.g. Hiller et al. 1408.1627, Biswas et al. 1409.0882, Buras et al. 1409.4557, Sahoo et al. 1501.05193, Hiller et al. 1411.4773, Becirevic et al. 1503.09024, Alonso et al. 1505.05164, ...

- $\bullet\,$ Neutral resonance ρ_{μ} coupling to the muons via composite elementary mixing
- requires some compositeness for the muons
- can allow for lepton flavour violating couplings
- constrained by the LEP Z-width measurements and $B_s \bar{B}_s$ mixing

See e.g. Gripaios et al. 1412.1791, Niehoff, et al. 1503.03865, Niehoff et al. 1508.00569, Carmona et al. 1510.07658, ...

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion

Future prospects

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
					00000	
How to reso	lve the issue	e?				

1) Unknown power corrections

- Significance of the anomalies depends on the assumptions on the power corrections
- Anomalies can be explained with 20-50% non-factorisable power corrections at the observable level in the critical bins (Ciuchini et al. 1512.07157)
- This corresponds to more than 100% error at the amplitude level (for S_3 , S_4 and S_5)!
- Towards a calculation...
- Problem: they are not calculable in QCD factorisation
- Alternative approaches exist based on light cone sum rule techniques (Khodjamirian et al. 1006.4945)
 - \rightarrow the available partial calculation increases the tension in P_5^\prime

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion				
00000	000000	0000000	00000000		O●0000	O				
How to reso	lve the issu	How to resolve the issue?								

2) Cross-check with other $R_{\mu/e}$ ratios

- R_K and R_{K^*} ratios are theoretically very clean
- The tensions cannot be explained by hadronic uncertainties

Cross-checks needed with other ratios:

	Predictions assuming 12 fb ⁻¹ luminosity						
Obs.	C_9^{μ}	C ₉ ^e	C^{μ}_{10}	C ₁₀			
$R_{F_l}^{[1.1,6.0]}$	[0.785, 0.913]	[0.909, 0.933]	[1.005, 1.042]	[1.001, 1.018]			
$R_{A_{FB}}^{[\bar{1}.1,6.0]}$	[6.048, 14.819]	[-0.288, -0.153]	[0.816, 0.928]	[0.974, 1.061]			
$R_{S_{\rm S}}^{[1.1,6.0]}$	[-0.787, 0.394]	[0.603, 0.697]	[0.881, 1.002]	[1.053, 1.146]			
$R_{F_l}^{[15,19]}$	[0.999, 0.999]	[0.998, 0.998]	[0.997, 0.998]	[0.998, 0.998]			
$R_{A_{FB}}^{[15,19]}$	[0.616, 0.927]	[1.002, 1.061]	[0.860, 0.994]	[1.046, 1.131]			
$R_{S_{\rm S}}^{[15,19]}$	[0.615, 0.927]	[1.002, 1.061]	[0.860, 0.994]	[1.046, 1.131]			
$R_{K^*}^{[15,19]}$	[0.621, 0.803]	[0.577, 0.771]	[0.589, 0.778]	[0.586, 0.770]			
$R_{K}^{[15,19]}$	[0.597, 0.802]	[0.590, 0.778]	[0.659, 0.818]	[0.632, 0.805]			
$R_{\phi}^{[1.1,6.0]}$	[0.748, 0.852]	[0.620, 0.805]	[0.578, 0.770]	[0.578, 0.764]			
$R_{\phi}^{[15,19]}$	[0.623, 0.803]	[0.577, 0.771]	[0.586, 0.776]	[0.583, 0.769]			

A confirmation of the deviations in the ratios would indirectly confirm the NP interpretation of the anomalies in the angular observables!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
					000000	
How to reso	lve the issue	e?				

3) Future LHCb prospects

Global fits using the angular observables only (NO theoretically clean R ratios) Considering several luminosities, assuming the current central values

LHCb will be able to establish new physics within the angular observables even in the pessimistic case that there will be no theoretical progress on non-factorisable power corrections!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
					000000	
How to reso	lve the issue	2?				

Pull_{SM} for the fit to ΔC_9^{μ} based on the ratios R_K and R_{K^*} for the LHCb upgrade Assuming current central values remain.

	Syst.	Syst./2	Syst./3
ΔCg	$Pull_{\mathrm{SM}}$	$Pull_{\mathrm{SM}}$	$Pull_{\mathrm{SM}}$
12 fb^{-1}	6. 1 <i>σ</i> (4.3 <i>σ</i>)	7.2σ (5.2 σ)	7.4 σ (5.5 σ)
50 fb ⁻¹	8.2σ (5.7 σ)	11.6 σ (8.7 σ)	12.9σ (9.9 σ)
300 fb ⁻¹	9.4 σ (6.5 σ)	15.6 σ (12.3 σ)	19.5 σ (16.1 σ)

(): assuming 50% correlation between each of the R_K and R_{K^*} measurements

Only a small part of the 50 fb⁻¹ is needed to establish NP in the $R_{K^{(*)}}$ ratios even in the pessimistic case that the systematic errors are not reduced by then at all.

This is independent of the hadronic uncertainties!

Introduction 00000	Anomalies 000000	Theory uncertainties	Global fits 00000000	NP scenarios	Prospects 0000●0	Conclusion
How to reso	lve the issue	e?				

4) Cross-check with inclusive modes

Inclusive decays are theoretically cleaner (see e.g. T. Huber, T. Hurth, E. Lunghi, JHEP 1506 (2015) 176)

At Belle-II, for inclusive $b \rightarrow s\ell\ell$:

T. Hurth, FM, JHEP 1404 (2014) 097 T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

Predictions based on our model-independent analysis

black cross: future measurements at Belle-II assuming the best fit solution red cross: SM predictions

ightarrow Belle-II will check the NP interpretation with theoretically clean modes

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
00000	000000		00000000	0000000	00000●	O
SuperIso						

All the results shown in this talk are obtained using the SuperIso program

- public C program
- dedicated to the flavour physics observable calculations
- based on the most precise calculations publicly available
- various models implemented
- interfaced to several spectrum calculators
- modular program with a well-defined structure
- reference manual available (\sim 160 pages)
- Latest version: SuperIso v3.6

http://superiso.in2p3.fr

FM, Comput. Phys. Commun. 178 (2008) 745
 FM, Comput. Phys. Commun. 180 (2009) 1579
 FM, Comput. Phys. Commun. 180 (2009) 1718

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						•
Conclusion						

- The full LHCb Run 1 results still show some tensions with the SM predictions
- Significance of the anomalies depends on the assumptions on the power corrections
- Model independent fits point to about 25% reduction in C_9 , and new physics in muonic C_9^{μ} is preferred
- We compared the fits for NP and hadronic parameters through the Wilk's test
- At the moment adding the hadronic parameters does not improve the fit compared to the new physics fit, but the situation is inconclusive
- The LHCb upgrade will have enough precision to distinguish between NP and power corrections
- If the issue remains, Belle-II will be able to resolve it
- The recent measurement of R_{K}^{*} supports the NP hypothesis, but the exp. errors are still large and the update of R_{K} (or other ratio measurements) is eagerly awaited!

Backup

$\delta \langle P_2 \rangle_{[0.1,2]}$	\simeq	$+0.37 \delta C_7$	$+0.02\delta C_{8}$		$-0.03\delta C_{10}$
$\delta \langle P_2 angle_{[2,4.3]}$	\simeq	$-2.48 \delta C_7$	$-0.10\delta C_8$	$-0.17\delta C_9$	$+0.03\delta C_{10}$
$\delta \langle P_2 \rangle_{[4.3,8.68]}$	\simeq	$-0.71 \delta C_7$	$-0.04 \delta C_8$	$-0.09\delta C_9$	$-0.04\delta C_{10}$
$\delta \langle P_4' angle_{[0.1,2]}$	\simeq	$+0.59\delta C_{7}$		$-0.08\delta C_9$	$-0.13\delta C_{10}$
$\delta \langle P_4' \rangle_{[2,4.3]}$	\simeq	$+2.45\delta C_{7}$	$+0.11\delta C_8$	$+0.06\delta C_9$	$-0.14\delta C_{10}$
$\delta \langle P_4' \rangle_{[4.3,8.68]}$	\simeq	$+0.33\delta C_{7}$	$+0.01\delta C_8$	$+0.01\delta C_9$	
$\delta \langle P_5' angle_{[0.1,2]}$	\simeq	$-0.91\delta C_7$	$-0.04 \delta C_8$	$-0.12\delta C_9$	$-0.03\delta C_{10}$
$\delta \langle P_5' angle_{ extsf{[2,4.3]}}$	\simeq	$-3.04 \delta C_7$	$-0.14\delta C_8$	$-0.29\delta C_9$	$-0.03\delta C_{10}$
$\delta \langle P_5' \rangle_{[4.3,8.68]}$	\simeq	$-0.52 \delta C_7$	$-0.03 \delta C_8$	$-0.08 \delta C_9$	$-0.03 \delta C_{10}$

New Physics contributions to C'_i are suppressed by a factor m_s/m_b and $m_s m_b/m_t^2$ The rest of the observables are less sensitive to real NP contributions in $C_{7,8,9,10}$

Nazila Mahmoudi

Role of S_5

Removing S_5 from the fit:

While the tension of $C_9^{\rm SM}$ and best fit point value of C_9 is slightly reduced in the various two operator fits, still the tension exists at more than 2σ

 \rightarrow S5 is not the only observable which drives C9 to negative values!

Nazila Mahmoudi

VUB - 29 March 2018

Role of R_K

Removing R_K from the fit:

 R_{κ} is the main measurement resulting in the best fit values for C_9^{μ} and C_9^{e} which are in more than 2σ tension with lepton-universality

Nazila Mahmoudi

Fit results for four operators: $\{C_9^{\mu}, C_9^{e}, C_{10}^{\mu}, C_{10}^{e}\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Considering 4 operator fits considerably relaxes the constraints on the Wilson coefficients leaving room for more diverse new physics contributions which are otherwise overlooked.

Fit results for four operators: $\{C_9^{\mu}, C_9^{\prime \mu}, C_9^{e}, C_9^{\prime e}\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Fit results for four operators: $\{C_9, C'_9, C_{10}, C'_{10}\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Fit results for two operators: likelihood vs. method of moments

LHCb presented the $B \to K^* \mu^+ \mu^-$ angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust, but larger uncertainties How does the choice of method affect fits? Let's consider only $B \to K^* \mu^+ \mu^$ measurements.

likelihood fits: solid lines method of moments: filled areas

Fit results for two operators: likelihood vs. method of moments

LHCb presented the $B
ightarrow K^* \mu^+ \mu^-$ angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust, but larger uncertainties How does the choice of method affect fits? Let's consider only $B \to K^* \mu^+ \mu^$ measurements.

likelihood fits: solid lines method of moments: filled areas

Tension decreases using the method of moments results!