4321 gauge model for B-anomalies

CrossTalk Workshop: Flavour anomalies

Vrije Universiteit Brussel - 29.03.20। 8

Luca Di Luzio

[Based on:
LDL, Nardecchia I 706.0I 868
LDL, Greljo, Nardecchia, I 708.08450
LDL, Kirk, Lenz I7I2.06572
LDL, Fuentes-Martin, Greljo, Nardecchia, Renner - work in progress]

Outline

I. Review of "B-anomalies"

- charged currents
- neutral currents

2. Combined explanations

- EFT
- Simplified models
- UV completions $\rightarrow 4321$ model

Part-|

Review of "B-anomalies"

"B-anomalies"

- A seemingly coherent pattern of SM deviations building up since ~ 2013

	$\text { b } \rightarrow c \tau v$	
Lepton Universality	$\begin{gathered} R(D), R\left(D^{*}\right), \\ R(J / \psi) \end{gathered}$	$R(K), R\left(K^{*}\right)$
Angular Distributions		$B \rightarrow K^{*} \mu \mu\left(P_{5}^{\prime}\right)$
Differential BR $\left(d \Gamma / d q^{2}\right)$		$\begin{gathered} B \rightarrow K^{(*)} \mu \mu \\ B_{s} \rightarrow \phi \mu \mu \\ \Lambda_{b} \rightarrow \Lambda \mu \mu \end{gathered}$

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}
$$

- SM prediction quite robust

- Deviation seen in 3 exp. in a consistent way, combined significance $\sim 4 \sigma$
- $R(D)$ and $R\left(D^{*}\right)$ point to constructive interference (+30\%) with SM amplitude
- Suggests NP in LH tau currents (NP in e/mu and RH/scalar amplitudes disfavoured)

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}
$$

- Recently (as of Sept 2017):

$$
R(J / \psi)=\frac{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \tau^{+} \nu_{\tau}\right)}{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}\right)} \quad \sim 2 \sigma \text { above the SM }
$$

Neutral currents - $R(K) \& R\left(K^{*}\right)$

$$
R\left(K^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \bar{\mu}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e \bar{e}\right)}
$$

- SM prediction $=1 \pm \bigcirc(\mid \%)[1406.6482]$
- Combined significance $\sim 4 \sigma$

Neutral currents - R(K) \& R(K^{*})

$$
R\left(K^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \bar{\mu}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e \bar{e}\right)}
$$

$$
R_{K^{*}} \simeq R_{K}-4 p \frac{\operatorname{Re} C_{b_{R}}^{\mathrm{BSM}}\left(\mu-e_{L}\right.}{C_{b_{L}}^{\mathrm{S} \mu_{L}}}
$$

[D'Amico et al, I 704.05438]

- $N P$ in muons requires destructive interference with the $S M$ (-15\%)
- RH currents in quark sector disfavoured (predict wrong correlation)
- NP in electrons possible, but cannot explain anomalies in $b \rightarrow s \mu \mu$ angular observables

Neutral currents - P_{5}^{\prime} et al

- Angular distributions in $B \rightarrow\left(K^{*} \rightarrow K \pi\right) \mu \mu$
i"

$P_{5}^{\prime}: \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{l} d \cos \theta_{K^{*}} d \phi}$
[Descotes-Genon, Matias, Ramon, Virto I207.2753]
*Hadronic uncertainties potentially large
[See e.g. Chiuchini et al, I 5 | 2.07 /57]
+ other low BR w.r.t. the $\mathrm{SM}\left(B_{S}^{0} \rightarrow \phi \mu^{+} \mu^{-}\right)$

Neutral currents - global fits

- Effects well-described by NP in $b \rightarrow s \mu \mu$ (explains also angular distributions, etc.)

$$
\begin{aligned}
O_{9} & \propto\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\ell}_{L} \gamma^{\mu} \ell\right) \\
O_{10} & \propto\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\ell_{L} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

Part-II

Combined explanations

EFT [general considerations]

- $\operatorname{SU}(2)$ L triplet operator (combined explanation in SMEFT)

$$
\frac{\lambda_{i j}^{q} \lambda_{k l}^{\ell}}{\Lambda^{2}}\left(\bar{Q}_{L}^{i} \sigma^{a} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{k} \sigma^{a} \gamma^{\mu} L_{L}^{l}\right)
$$

[Bhattacharya et al 1412.7164
Alonso, Grinstein, Camalich I505.05I64, Greljo, Isidori, Marzocca I 506.0I705,
Calibbi, Crivellin, Ota I506.0266|, ...]

EFT [general considerations]

- $S U(2)\llcorner$ triplet operator (combined explanation in SMEFT)

$$
\frac{\lambda_{i j}^{q} \lambda_{k l}^{\ell}}{\Lambda^{2}}\left(\bar{Q}_{L}^{i} \sigma^{a} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{k} \sigma^{a} \gamma^{\mu} L_{L}^{l}\right) \supset-\frac{1}{\Lambda_{R_{D}}^{2}} 2 \bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}+\frac{1}{\Lambda_{R_{K}}^{2}} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\mu}_{L} \gamma_{\mu} \mu_{L}
$$

$$
\Lambda_{R_{D}}=3.4 \mathrm{TeV} \quad<\quad \Lambda_{R_{K}}=31 \mathrm{TeV}
$$

what is the scale of NP ? (energy/coupling/mass ambiguity: $1 / \Lambda^{2}=g^{2} / M^{2}$)

EFT [general considerations]

- SU(2)L triplet operator (combined explanation in SMEFT)

$$
\frac{\lambda_{i j}^{q} \lambda_{k l}^{l}}{\Lambda^{2}}\left(\bar{Q}_{L}^{i} \sigma^{a} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{k} \sigma^{a} \gamma^{\mu} L_{L}^{l}\right) \supset-\frac{1}{\Lambda_{R_{D}}^{2}} 2 \bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}+\frac{1}{\Lambda_{R_{K}}^{2}} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\mu}_{L} \gamma_{\mu} \mu_{L}
$$

- Perturbative unitarity bound from $2 \rightarrow 2$ fermion scatterings $\quad a_{J=0}=\frac{\sqrt{3}}{8 \pi} \frac{s}{\Lambda^{2}}<\frac{1}{2}$

$$
\sqrt{s}_{R_{D}}<9.2 \mathrm{TeV}(1.9 \mathrm{TeV}) \quad \sqrt{s}_{R_{K}}<84 \mathrm{TeV}(17 \mathrm{TeV})
$$

EFT [general considerations]

- $S U(2)\llcorner$ triplet operator (combined explanation in SMEFT)

$$
\frac{\lambda_{i j}^{q} \lambda_{k l}^{\ell}}{\Lambda^{2}}\left(\bar{Q}_{L}^{i} \sigma^{a} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{k} \sigma^{a} \gamma^{\mu} L_{L}^{l}\right) \supset-\frac{1}{\Lambda_{R_{D}}^{2}} 2 \bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}+\frac{1}{\Lambda_{R_{K}}^{2}} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\mu}_{L} \gamma_{\mu} \mu_{L}
$$

- Flavour structure:

1. large couplings in taus (compete with SM tree level)
2. sizable couplings in muons (compete with SM one loop)
3. negligible couplings in electrons (well tested, not much room)

$$
\lambda_{i j}^{q, \ell}=\delta_{i 3} \delta_{j 3}+\text { corrections } \quad U(2)_{q} \times U(2)_{\ell} \quad \text { approx flavor symmetry }
$$

[Barbieri et al $|105.2296,15| 2.0 \mid 560]$

$$
Q_{L}^{(3)} \sim q_{L}^{(b)}=\binom{V_{i b}^{*} u_{L}^{i}}{b_{L}}
$$

\rightarrow link to SM Yukawa pattern?

EFT [general considerations]

- $S U(2)$ L triplet operator (combined explanation in SMEFT)

$$
\frac{\lambda_{i j}^{q} \lambda_{k l}^{\ell}}{\Lambda^{2}}\left(\bar{Q}_{L}^{i} \sigma^{a} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{k} \sigma^{a} \gamma^{\mu} L_{L}^{l}\right)
$$

- Tree-level mediators:

EFT [problems]

- Three main problems mainly driven by $R(D)$
I. High-pt constraints

Vector LQ exclusion

[Faroughy, Greljo, Kamenik 1609.07I38]

EFT [problems]

- Three main problems mainly driven by $R(D)$
I. High-pt constraints

2. Radiative constraints

[Feruglio, Paradisi, Pattori I 606.00524, I 705.00929]

EFT [problems]

- Three main problems mainly driven by $R(D)$
I. High-pt constraints

2. Radiative constraints
3. Flavour bounds

(absent at tree-level with LQ)
(consequence of SU(2)L invariance)
\{

- Lattice results suggest a small discrepancy $\Delta M_{s}^{S M}>\Delta M_{s}^{\mathrm{exp}}=(17.757 \pm 0.021) \mathrm{ps}^{-1}(\mathrm{I} .8 \sigma)$

Source	$f_{B_{s}} \sqrt{\hat{B}}$	$\Delta M_{s}^{\mathrm{SM}}$
HPQCD14 [128]	$(247 \pm 12) \mathrm{MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
ETMC13 [129]	$(262 \pm 10) \mathrm{MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09 [130] = FLAG13 [131]	$(266 \pm 18) \mathrm{MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17 [69]	$(\mathbf{2 7 4} \pm \mathbf{8}) \mathrm{MeV}$	$(\mathbf{2 0 . 0 1} \pm \mathbf{1 . 2 5}) \mathbf{p s}^{-\mathbf{1}}$
Fermilab16 [71]	$(274.6 \pm 8.8) \mathrm{MeV}$	$(20.1 \pm 1.5) \mathrm{ps}^{-1}$
HQET-SR [76, 132]	$\left(278_{-24}^{+28}\right) \mathrm{MeV}$	$\left(20.6_{-3.4}^{+4.4}\right) \mathrm{ps}^{-1}$
HPQCD06 [133]	$(281 \pm 20) \mathrm{MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14 [134]	$(290 \pm 20) \mathrm{MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11 [135]	$(291 \pm 18) \mathrm{MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$

- Lattice results suggest a small discrepancy $\Delta M_{s}^{S M}>\Delta M_{s}^{\mathrm{exp}}=(17.757 \pm 0.021) \mathrm{ps}^{-1}(\mathrm{I} .8 \sigma)$

Source	$f_{B_{s}} \sqrt{\hat{B}}$	$\Delta M_{s}^{\mathrm{SM}}$
HPQCD14 [128]	$(247 \pm 12) \mathrm{MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
ETMC13 [129]	$(262 \pm 10) \mathrm{MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09 [130] = FLAG13 [131]	$(266 \pm 18) \mathrm{MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17 [69]	$(\mathbf{2 7 4} \pm \mathbf{8}) \mathrm{MeV}$	$(\mathbf{2 0 . 0 1} \pm \mathbf{1 . 2 5}) \mathbf{p s}^{\mathbf{1}}$
Fermilab16 [71]	$(274.6 \pm 8.8) \mathrm{MeV}$	$(20.1 \pm 1.5) \mathrm{ps}^{-1}$
HQET-SR [76, 132]	$\left(278_{-24}^{+28}\right) \mathrm{MeV}$	$\left(20.6_{-3.4}^{+4.4}\right) \mathrm{ps}^{-1}$
HPQCD06 [133]	$(281 \pm 20) \mathrm{MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14 [134]	$(290 \pm 20) \mathrm{MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11 [135]	$(291 \pm 18) \mathrm{MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$

$B_{s}-$ mixing

- Lattice results suggest a small discrepancy $\Delta M_{s}^{\text {SM }}>\Delta M_{s}^{\mathrm{exp}}=(17.757 \pm 0.021) \mathrm{ps}^{-1}(\mathrm{I} .8 \sigma)$

$$
\frac{\Delta M_{s}^{\mathrm{SM}+\mathrm{NP}}}{\Delta M_{s}^{\mathrm{SM}}}=\left|1+\frac{\kappa}{\Lambda_{\mathrm{NP}}^{2}}\right| \quad \text { if } \mathrm{K}>0 \quad \quad \quad \quad \frac{\Lambda_{\mathrm{NP}}^{2017}}{\Lambda_{\mathrm{NP}}^{2015}} \simeq 5 \quad(2 \sigma \text { bound })
$$

$\mathcal{L}_{Z^{\prime}}=\frac{1}{2} M_{Z^{\prime}}^{2}\left(Z_{\mu}^{\prime}\right)^{2}+\left(\lambda_{i j}^{Q} \bar{d}_{L}^{i} \gamma^{\mu} d_{L}^{j}+\lambda_{\alpha \beta}^{L} \bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right) Z_{\mu}^{\prime}$
severe impact on Z ' models for $b \rightarrow s \mu \mu$ anomalies

- Lattice results suggest a small discrepancy $\Delta M_{s}^{\text {sM }}>\Delta M_{s}^{\text {exp }}=(17.757 \pm 0.021) \mathrm{ps}^{-1}(\mathrm{I} .8 \sigma)$

$$
\frac{\Delta M_{s}^{\mathrm{SM}+\mathrm{NP}}}{\Delta M_{s}^{\mathrm{SM}}}=\left|1+\frac{\kappa}{\Lambda_{\mathrm{NP}}^{2}}\right| \quad \text { if } \mathrm{K}>0 \quad \quad \quad \quad \frac{\Lambda_{\mathrm{NP}}^{2017}}{\Lambda_{\mathrm{NP}}^{2015}} \simeq 5 \quad(2 \sigma \text { bound })
$$

$\mathcal{L}_{Z^{\prime}}=\frac{1}{2} M_{Z^{\prime}}^{2}\left(Z_{\mu}^{\prime}\right)^{2}+\left(\lambda_{i j}^{Q} \bar{d}_{L}^{i} \gamma^{\mu} d_{L}^{j}+\lambda_{\alpha \beta}^{L} \bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right) Z_{\mu}^{\prime}$

Possible ways to obtain $\boldsymbol{\kappa}<0$:
I) Imaginary coupling $\kappa \sim\left(\lambda_{b s}^{Q}\right)^{2}$
2) RH currents contamination $\kappa \sim \lambda_{b s}^{Q} \lambda_{b s}^{d_{R}}$

- looking forward for lattice updates !
\}

EFT [solutions]

- Tension gets drastically alleviated if
[Zürich's guide for combined explanations, I 706.07808]
I.Triplet + Singlet operator (more freedom in $\mathrm{SU}(2)$ เ structure)

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right]
$$

2. Deviation from 'pure-mixing' scenario

$$
\begin{gathered}
\bar{Q}^{i} \lambda_{i j}^{q} Q^{j}=\left(\begin{array}{ll}
\bar{u}^{k} V_{k i} & \left.\bar{d}^{i}\right) \lambda_{i j}^{q}\binom{V_{j d^{j}}^{\dagger} u^{l}}{d^{j}} \supset \bar{c}\left(V_{c b} \lambda_{b b}^{q}+V_{c s} \lambda_{s b}^{q}+\ldots\right) b \\
R_{D D^{*}+}^{\tau} \approx 1+2 C_{T}\left(1-\lambda_{s b}^{q} V_{V_{t s}^{*}}^{V_{t s}^{*}}\right) \quad \longrightarrow \lambda_{s b}^{q}>\mathcal{O}\left(V_{c b}\right) \quad \text { allows for larger NP scale }
\end{array}\right.
\end{gathered}
$$

EFT [solutions]

- Tension gets drastically alleviated if
[Zürich's guide for combined explanations, I 706.07808]
I.Triplet + Singlet operator (more freedom in $S \cup(2)$ เstructure)

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right]
$$

2. Deviation from 'pure-mixing' scenario

$\lambda_{s b}^{q}>\mathcal{O}\left(V_{c b}\right) \quad$ allows for larger NP scale

Simplified models

- Finite list of tree-level mediators
[Zürich's guide for combined explanations, I 706.07808]

Simplified Model	Spin	SM irrep	C_{S} / C_{T}	$R_{D^{(*)}}$	$R_{K^{(*)}}$
Z^{\prime}	1	$(1,1,0)$	∞	\times	\checkmark
V^{\prime}	1	$(1,3,0)$	0	\checkmark	\checkmark
S_{1}	0	$(\overline{3}, 1,1 / 3)$	-1	\checkmark	\times
S_{3}	0	$(\overline{3}, 3,1 / 3)$	3	\checkmark	\checkmark
U_{1}	1	$(3,1,2 / 3)$	1	\checkmark	\checkmark
U_{3}	1	$(3,3,2 / 3)$	-3	\checkmark	\checkmark

$$
\mathcal{B}\left(B \rightarrow K^{*} \nu \nu\right) \propto\left(C_{T}-C_{S}\right)
$$

A clear winner: $U_{1} \longrightarrow C_{T}=C_{S}$ (at threshold)
Linear combinations also possible (e.g. $S_{।}+S_{3}$ or $Z^{\prime}+V^{\prime}$) \square tuning required

UV completion: U $\sim(3,1,2 / 3)$

- Massive vectors point to UV dynamics at the TeV scale

UV completion: $U_{1} \sim(3,1,2 / 3)$

- Massive vectors point to UV dynamics at the TeV scale

- Ambitious program: pNGB Higgs $+U_{1}$ as composite state of G
(:) conceptual link with the naturalness issue of EW scale
(:) light LQ lowers the whole resonances' spectrum: issue with direct searches + EWPTs
: : intrinsically non-calculable (e.g. divergent loop observables)

UV completion: $U_{I} \sim(3,1,2 / 3)$

- An interesting option: minimal Pati-Salam (PS)

$$
\begin{aligned}
& G_{P S}=S U(4)_{P S} \times S U(2)_{L} \times S U(2)_{R} \\
& G_{P S} / G_{S M}=U_{1}+Z^{\prime}+W_{R}
\end{aligned}
$$

gauge boson of an extended gauge sector
(:) hinted by SM chiral structure + everything's calculable

$$
W_{L} \uparrow \stackrel{\left(\begin{array}{cc}
u_{L} & \nu_{L} \\
d_{L} & e_{L}
\end{array}\right)}{\stackrel{U_{1}}{\longleftrightarrow}} \quad \stackrel{W_{R} \mp\left(\begin{array}{ll}
u_{R} & \nu_{R} \\
d_{R} & e_{R}
\end{array}\right)}{\stackrel{U_{1}}{\longleftrightarrow}}
$$

$S U(4)_{P S} \supset S U(3)_{C} \times U(1)_{B-L}$
$Y=T_{R}^{3}+(B-L) / 2$

UV completion: $U_{I} \sim(3,1,2 / 3)$

- An interesting option: minimal Pati-Salam (PS)

$$
\begin{aligned}
& G_{P S}=S U(4)_{P S} \times S U(2)_{L} \times S U(2)_{R} \\
& G_{P S} / G_{S M}=U_{1}+Z^{\prime}+W_{R}
\end{aligned}
$$

gauge boson of an extended gauge sector

(:) hinted by SM chiral structure + everything's calculable
(:) $M_{U_{1}} \gtrsim 86 \mathrm{TeV}$ from $K_{L}^{0}, B^{0}, B_{s} \rightarrow \ell \ell^{\prime}$ decays ($\mathrm{L} \times \mathrm{R}$ couplings)
[Kutznetsov et al I203.0196

+ update from A. D. Smirnov
| 801.02895$]$

mass basis

$$
\begin{aligned}
& \mathcal{L}_{P S} \supset \frac{g_{4}}{\sqrt{2}}\left(\bar{d}_{L}^{i} \delta_{i j} \gamma_{\mu} e_{L}^{j}+\bar{d}_{R}^{i} \delta_{i j} \gamma_{\mu} e_{R}^{j}\right) U_{1}^{\mu} \quad \longrightarrow \frac{g_{4}}{\sqrt{2}}\left(\bar{d}_{L}^{i} \beta_{i j}^{L} \gamma_{\mu} e_{L}^{j}+\bar{d}_{R}^{i} \beta_{i j}^{R} \gamma_{\mu} e_{R}^{j}\right) U_{1}^{\mu} \\
& \beta^{L, R}=U_{d_{L, R}}^{\dagger} U_{e_{L, R}} \quad \text { (unitary matrices) }
\end{aligned}
$$

UV completion: $U_{I} \sim(3,1,2 / 3)$

- An interesting option: minimal Pati-Salam (PS)

$$
\begin{aligned}
& G_{P S}=S U(4)_{P S} \times S U(2)_{L} \times S U(2)_{R} \\
& G_{P S} / G_{S M}=U_{1}+Z^{\prime}+W_{R}
\end{aligned}
$$

gauge boson of an extended gauge sector
(:) hinted by SM chiral structure + everything's calculable
:: $M_{U_{1}} \gtrsim 86 \mathrm{TeV}$ from $K_{L}^{0}, B^{0}, B_{s} \rightarrow \ell \ell^{\prime}$ decays ($\mathrm{L} \times \mathrm{R}$ couplings)
: $:$ Z' direct searches $\left(M_{U_{1}} \sim M_{Z^{\prime}} \sim \mathrm{TeV}+\mathrm{O}\left(\mathrm{g}_{\mathrm{s}}\right) Z^{\prime}\right.$ couplings to valence quarks)
:-) neutrino masses also suggest $M_{U_{1}} \gg \mathrm{TeV}\left(y_{\text {top }} \sim y_{\nu_{3}-\text { Dirac }}\right)$
\Rightarrow Minimal PS cannot explain B-anomalies

Beyond minimal PS

- We want something like

$$
\beta^{L} \sim\left(\begin{array}{ccc}
\epsilon & \epsilon & \epsilon \\
\epsilon & 0.02 & 0.2 \\
\epsilon & 0.06 & 1
\end{array}\right) \quad \beta^{R} \sim \epsilon \quad\left(\beta^{\dagger} \beta \neq 1\right)
$$

Beyond minimal PS

- We want something like

$$
\beta^{L} \sim\left(\begin{array}{ccc}
\epsilon & \epsilon & \epsilon \\
\epsilon & 0.02 & 0.2 \\
\epsilon & 0.06 & 1
\end{array}\right) \quad \beta^{R} \sim \epsilon \quad\left(\beta^{\dagger} \beta \neq 1\right)
$$

I): non-minimal matter content (mixing with heavy fermions)

$$
\frac{g_{4}}{\sqrt{2}} \overline{\mathcal{D}}^{A} \hat{\beta}_{A B} \gamma_{\mu} \mathcal{E}^{B} U_{1}^{\mu} \quad \hat{\beta}=\left(\begin{array}{ll}
\beta_{\mathrm{LL}} & \beta_{\mathrm{LH}} \\
\beta_{\mathrm{HL}} & \beta_{\mathrm{HH}}
\end{array}\right)
$$

$$
\begin{array}{r}
\hat{\beta}^{\dagger} \hat{\beta}=1 \\
\beta_{\mathrm{LL}}^{\dagger} \beta_{\mathrm{LL}} \neq 1
\end{array}
$$

(:) Z' direct searches
(:) neutrino masses

Beyond minimal PS

- We want something like

$$
\beta^{L} \sim\left(\begin{array}{ccc}
\epsilon & \epsilon & \epsilon \\
\epsilon & 0.02 & 0.2 \\
\epsilon & 0.06 & 1
\end{array}\right) \quad \beta^{R} \sim \epsilon \quad\left(\beta^{\dagger} \beta \neq 1\right)
$$

I): non-minimal matter content (mixing with heavy fermions)
[Calibbi, Crivellin, Li I709.00692]
2): non-universal gauge interactions
[Bordone, Cornella, Fuentes-Martin, Isidori I 7 I 2.01368]

$$
\sum_{i=1,2,3} \frac{g_{4}^{i}}{\sqrt{2}} \bar{Q}^{i} \gamma^{\mu} L^{i} U_{\mu}^{i} \xrightarrow[m_{U_{1}} \gg m_{U_{2}} \gg m_{U_{3}}]{ } \quad \beta^{L O}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{422}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(:) flavour hierarchies
(:) neutrino masses [Greljo, Stefanek 1802.04274]
(:) low-energy effective theory similar to 4321 model

Beyond minimal PS

- We want something like

$$
\beta^{L} \sim\left(\begin{array}{ccc}
\epsilon & \epsilon & \epsilon \\
\epsilon & 0.02 & 0.2 \\
\epsilon & 0.06 & 1
\end{array}\right) \quad \beta^{R} \sim \epsilon \quad\left(\beta^{\dagger} \beta \neq 1\right)
$$

I): non-minimal matter content (mixing with heavy fermions)
[Calibbi, Crivellin, Li I709.00692]
2): non-universal gauge interactions
[Bordone, Cornella, Fuentes-Martin, Isidori I 712.01368]
$3)$: non-minimal matter and gauge content (4321 model)
[LDL, Greljo, Nardecchia I708.08450]

$$
G=S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)^{\prime} \quad+\text { heavy fermions }
$$

The '432 I' model

[LDL, Greljo, Nardecchia I708.08450. Inspired by Diaz, Schmaltz, Zhong I706.05033, Georgi, Nakai I606.05865]

$$
G=S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)^{\prime} \quad \longrightarrow \quad G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

Embedding:

$$
\begin{array}{rlr}
S U(3)_{C}=\left(S U(3)_{4} \times S U(3)^{\prime}\right)_{\text {diag }} & g_{s}=\frac{g_{4} g_{3}}{\sqrt{g_{4}^{2}+g_{3}^{2}}} \simeq g_{3} \\
U(1)_{Y} & =\left(U(1)_{4} \times U(1)^{\prime}\right)_{\text {diag }} & g_{Y}=\frac{g_{4} g_{1}}{\sqrt{g_{4}^{2}+\frac{2}{3} g_{1}^{2}}} \simeq g_{1}
\end{array}
$$

Gauge boson spectrum:

$$
\begin{aligned}
& G / G_{\mathrm{SM}}=U+Z^{\prime}+g^{\prime} \\
& M_{g^{\prime}} \simeq \sqrt{2} M_{U} \quad M_{Z^{\prime}} \simeq \sqrt{\frac{3}{2}} M_{U}
\end{aligned}
$$

Structure of gauge symmetry breaking does not allow to decouple g' and Z'

The '432 I' model

[LDL, Greljo, Nardecchia I708.08450. Inspired by Diaz, Schmaltz, Zhong I706.05033, Georgi, Nakai I606.05865]

$$
G=S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)^{\prime} \quad \longrightarrow \quad G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

Matter content:

Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$
$q_{L}^{\prime i}$	1	3	2	$1 / 6$
$u_{R}^{\prime i}$	1	3	1	$2 / 3$
$d_{R}^{\prime i}$	1	3	1	$-1 / 3$
$\ell_{L}^{\prime i}$	1	1	2	$-1 / 2$
$e_{R}^{\prime i}$	1	1	1	-1
Ψ_{L}^{i}	4	1	2	0
Ψ_{R}^{i}	4	1	2	0
H	1	1	2	$1 / 2$
Ω_{3}	$\overline{4}$	3	1	$1 / 6$
Ω_{1}	$\overline{4}$	1	1	$-1 / 2$

Would-be SM fields

Vector-like fermions (Q'+L')
mix after SSB

SSB

Yukawa sector:

$$
\begin{aligned}
\mathcal{L}_{Y}= & -\bar{q}_{L}^{\prime} Y_{d} H d_{R}^{\prime}-\bar{q}_{L}^{\prime} Y_{u} \tilde{H} u_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{e} H e_{R}^{\prime} \\
& -\bar{q}_{L}^{\prime} \lambda_{q} \Omega_{3}^{T} \Psi_{R}-\bar{\ell}_{L}^{\prime} \lambda_{\ell} \Omega_{1}^{T} \Psi_{R}-\bar{\Psi}_{L} M \Psi_{R}
\end{aligned}
$$

Key phenomenological features

I. LQ couples dominantly to 3rd generation LH fields (can satisfy Zürich's EFT criteria)

Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$
$q_{L}^{\prime i}$	1	3	2	$1 / 6$
u_{R}^{i}	1	3	1	$2 / 3$
$d_{R}^{\prime i}$	1	3	1	$-1 / 3$
$\ell_{L}^{\prime i}$	1	1	2	$-1 / 2$
$e_{R}^{\prime i}$	1	1	1	-1
Ψ_{L}^{i}	4	1	2	0
Ψ_{R}^{i}	4	1	2	0
H	1	1	2	$1 / 2$
Ω_{3}	$\overline{4}$	3	1	$1 / 6$
Ω_{1}	$\overline{4}$	1	1	$-1 / 2$

$$
\begin{aligned}
\mathcal{L}_{Y}= & -\bar{q}_{L}^{\prime} Y_{d} H d_{R}^{\prime}-\bar{q}_{L}^{\prime} Y_{u} \tilde{H} u_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{e} H e_{R}^{\prime} \\
& -\bar{q}_{L}^{\prime} \lambda_{q} \Omega_{3}^{T} \Psi_{R}-\bar{\ell}_{L} \lambda_{e} \Omega_{1}^{T} \Psi_{R}-\bar{\Psi}_{L} M \Psi_{R}
\end{aligned}
$$

Key phenomenological features

I. LQ couples dominantly to 3rd generation LH fields (can satisfy Zürich's EFT criteria)
2. Down-alignment to avoid tree-level FCNC in the down sector

$$
\begin{aligned}
& \mathcal{M}_{d}=\left(\begin{array}{cc}
\frac{v}{\sqrt{2}} Y_{d}^{\text {diag }} & \frac{v_{3}}{\sqrt{2}} \lambda_{q} \\
0 & M^{\text {iagg }}
\end{array}\right) \quad \lambda_{q}=\left(\begin{array}{ccc}
\lambda_{q}^{d} & 0 & 0 \\
0 & \lambda_{q}^{s} & 0 \\
0 & 0 & \lambda_{q}^{b}
\end{array}\right) \\
& \mathcal{M}_{u}=\left(\begin{array}{cc}
\frac{v}{\sqrt{2}} V^{\dagger} Y_{u}^{\text {diag }} & \frac{v_{3}}{\sqrt{2}} \lambda_{q} \\
0 & M^{\text {diag }}
\end{array}\right) \longrightarrow \begin{array}{l}
\text { CKM-induced } \\
\text { D-mixing }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{Y}= & -\bar{q}_{L}^{\prime} Y_{d} H d_{R}^{\prime}-\bar{q}_{L}^{\prime} Y_{u} \tilde{H} u_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{e} H e_{R}^{\prime} \\
& -\bar{q}_{L}^{\prime} \lambda_{q} \Omega_{3}^{T} \Psi_{R}-\bar{\ell}_{L}^{\prime} \lambda_{e} \Omega_{1}^{T} \Psi_{R}-\bar{\Psi}_{L} M \Psi_{R}
\end{aligned}
$$

Key phenomenological features

I. LQ couples dominantly to 3rd generation LH fields (can satisfy Zürich's EFT criteria)
2. Down-alignment to avoid tree-level FCNC in the down sector
3. Suppressed Z^{\prime} and g' couplings to light generations

$$
\begin{aligned}
& \mathcal{L}_{L} \supset \frac{g_{4}}{\sqrt{2}} \bar{Q}_{L}^{\prime} \gamma^{\mu} L_{L}^{\prime} U_{\mu}+\text { h.c. } \\
& +\frac{g_{4} g_{s}}{g_{3}}\left(\bar{Q}_{L}^{\prime} \gamma^{\mu} T^{a} Q_{L}^{\prime}-\frac{g_{3}^{2}}{g_{4}^{2}} \bar{q}_{L}^{\prime} \gamma^{\mu} T^{a} q_{L}^{\prime}\right) g_{\mu}^{\prime a} \\
& +\frac{1}{6} \frac{\sqrt{3} g_{4} g_{Y}}{\sqrt{2} g_{1}}\left(\bar{Q}_{L}^{\prime} \gamma^{\mu} Q_{L}^{\prime}-\frac{2 g_{1}^{2}}{3 g_{4}^{2}} \bar{q}_{L}^{\prime} \gamma^{\mu} q_{L}^{\prime}\right) Z_{\mu}^{\prime} \\
& -\frac{1}{2} \frac{\sqrt{3} g_{4} g_{Y}}{\sqrt{2} g_{1}}\left(\bar{L}_{L}^{\prime} \gamma^{\mu} L_{L}^{\prime}-\frac{2 g_{1}^{2}}{3 g_{4}^{2}} \bar{\ell}_{L}^{\prime} \gamma^{\mu} \ell_{L}^{\prime}\right) Z_{\mu}^{\prime}
\end{aligned}
$$

Key phenomenological features

I. LQ couples dominantly to 3rd generation LH fields (can satisfy Zürich's EFT criteria)
2. Down-alignment to avoid tree-level FCNC in the down sector
3. Suppressed Z^{\prime} and g' couplings to light generations

$$
\begin{aligned}
& \mathcal{L}_{L} \supset \frac{g_{4}}{\sqrt{2}} \bar{Q}_{L}^{\prime} \gamma^{\mu} L_{L}^{\prime} U_{\mu}+\text { h.c. } \\
& +\frac{g_{4} g_{s}}{g_{3}}\left(\bar{Q}_{L}^{\prime} \gamma^{\mu} T^{a} Q_{L}^{\prime}-\frac{g_{3}^{2}}{g_{4}^{2}} \bar{q}_{L}^{\prime} \gamma^{\mu} T^{a} q_{L}^{\prime}\right) g_{\mu}^{\prime a} \\
& +\frac{1}{6} \frac{\sqrt{3} g_{4} g_{Y}}{\sqrt{2} g_{1}}\left(\bar{Q}_{L}^{\prime} \gamma^{\mu} Q_{L}-\frac{2 g_{1}^{2}}{3 g_{4}^{2}} \bar{q}_{L}^{\prime} \gamma^{\mu} q_{L}^{\prime}\right) Z_{\mu}^{\prime} \\
& -\frac{1}{2} \frac{\sqrt{3} g_{4} g_{Y}}{\sqrt{2} g_{1}}\left(\bar{L}_{L}^{\prime} \gamma^{\mu} L^{\prime}-\frac{2 g_{1}^{2}}{3 g_{4}^{2}} \bar{\ell}_{L}^{\prime} \gamma^{\mu} \ell_{L}^{\prime}\right) Z_{\mu}^{\prime}
\end{aligned}
$$

requires the phenomenological limit $g_{4} \gg g_{3} \simeq g_{s} \gg g_{1} \simeq g_{Y}$

Key phenomenological features

I. LQ couples dominantly to 3rd generation LH fields (can satisfy Zürich's EFT criteria)
2. Down-alignment to avoid tree-level FCNC in the down sector
3. Suppressed Z^{\prime} and g' couplings to light generations
4. B and L accidental global symmetries as in the $\mathrm{SM}\left(m_{\nu}=0\right)$

$$
\mathcal{O}_{5}=\frac{1}{\Lambda_{\chi}} \ell^{\prime} \ell^{\prime} H H \quad \quad \Lambda_{\swarrow} \gg v
$$

High-pt searches

- LQ pair production via QCD
- 3rd generation final states, fixed by anomaly and $\operatorname{SU}(2)$ L invariance

$$
\left\{\begin{array}{l}
U \rightarrow b \tau^{+}, \quad \mathrm{BR}=50 \% \\
U \rightarrow t \bar{\nu}, \quad \mathrm{BR}=50 \%
\end{array}\right.
$$

[CMS search for spin-0, I 703.03995
recast for spin- I 1706.0I868 (see also I706.05033) + Moriond EW update]
$m_{U} \gtrsim 1.5 \mathrm{TeV} \longrightarrow \mathrm{LQ}$ mass sets the overall scale: $M_{g^{\prime}} \simeq \sqrt{2} M_{U} M_{Z^{\prime}} \simeq \sqrt{\frac{3}{2}} M_{U}$

High-pt searches

- LQ pair production via QCD
- Z' Drell-Yan production enough suppressed
$\sin \theta_{Z^{\prime}}=\sqrt{\frac{3}{2}} \frac{g_{Y}}{g_{4}} \simeq 0.09 \quad$ requires $g_{4} \gtrsim 3$
- g' resonant di-jet searches [ATLAS, 1703.09|27]
$\sin \theta_{g^{\prime}}=\frac{g_{s}}{g_{4}} \simeq 0.3$
$\rightarrow 2 \mathrm{TeV}$ coloron naively excluded

High-pt searches

[LDL, Fuentes-Martin, Greljo, Nardecchia, Renner (work in progress)]

- However, bump-searches loose in sensitivity for large width/mass

$$
\frac{\Gamma}{m} \lesssim 15 \% \text { (exp. analysis) } \quad \frac{\Gamma_{g^{\prime}}}{m_{g^{\prime}}} \simeq 25 \% \quad \begin{aligned}
& \text { (unavoidable in our scenario: } \\
& \text { large } g_{4}+\text { extra channel in VLF) }
\end{aligned}
$$

Conclusions

I. We will know much more by ~ 2020 (LHCb + Belle II)
2. Early speculations point to TeV -scale vector leptoquark ($\mathrm{R}(\mathrm{D})+\mathrm{R}(\mathrm{K})$ explanation)
\longrightarrow who ordered that?
3. Are flavour anomalies part of a bigger picture?

EW naturalness / SMYukawa puzzle / DM / ...
4. Lesson from UV complete models
unexpected experimental signatures (coloron, D-mixing, ...)

+ playground to compute correlations
[More pheno to come: LDL, Fuentes-Martin, Greljo, Nardecchia, Renner (work in progress)]

Backup slides

L. Di Luzio (IPPP, Durham) - 432I gauge model for B-anomalies

Down-alignment (flavour symmetry)

- Down-alignment to avoid tree-level FCNC in the down sector
- Identify $d_{R}^{\prime}, \Psi_{L}, \Psi_{R}$ as triplets of the flavour group $U(3)_{d_{R}^{\prime}} \equiv U(3)_{\Psi_{L}} \equiv U(3)_{\Psi_{R}}$
- $M \propto$ identity
- Y_{d} and $\lambda_{q} \propto$ to the same spurion $(\overline{3}, 3)$ of $U(3)_{q_{L}^{\prime}} \times U(3)_{d_{R}^{\prime}}$
simultaneously diagonalizable

$$
\mathcal{M}_{d}=\left(\begin{array}{cc}
\frac{v}{\sqrt{2}} Y_{d}^{\text {diag }} & \frac{v_{3}}{\sqrt{2}} \lambda_{q} \\
0 & M^{\text {diag }}
\end{array}\right) \quad \lambda_{q}=\left(\begin{array}{ccc}
\lambda_{q}^{d} & 0 & 0 \\
0 & \lambda_{q}^{s} & 0 \\
0 & 0 & \lambda_{q}^{b}
\end{array}\right) \quad\left|\lambda_{q}^{d, s}\right| \ll\left|\lambda_{q}^{b}\right|
$$

$$
\mathcal{M}_{u}=\left(\begin{array}{cc}
\frac{v}{\sqrt{2}} V^{\dagger} Y_{u}^{\text {diag }} & \frac{v_{3}}{\sqrt{2}} \lambda_{q} \\
0 & M^{\text {diag }}
\end{array}\right)
$$

$$
\begin{aligned}
\mathcal{L}_{Y}= & -\bar{q}_{L}^{\prime} Y_{d} H d_{R}^{\prime}-\bar{q}_{L}^{\prime} Y_{u} \tilde{H} u_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{e} H e_{R}^{\prime} \\
& -\bar{q}_{L}^{\prime} \lambda_{q} \Omega_{3}^{T} \Psi_{R}-\bar{\ell}_{L} \lambda_{\ell} \Omega_{1}^{T} \Psi_{R}-\bar{\Psi}_{L} M \Psi_{R}
\end{aligned}
$$

EFT [details fit]

- 4 parameters fit: $C_{S}, C_{T}, \lambda_{b s}^{q}, \lambda_{\mu \mu}^{\ell} \quad\left(\lambda_{b b}^{q}=\lambda_{\tau \tau}^{\ell}=1\right) \quad$ [Zürich's guide for combined explanations, I 706.07808]

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right]
$$

LH Z-T-T coupling
LH Z-v-v coupling LFUV in \mathbf{T} decays LFV in \mathbf{T} decays

Observable	Experimental bound	Linearised expression
$R_{D^{(*)}}^{\tau \ell}$	1.237 ± 0.053	$1+2 C_{T}\left(1-\lambda_{s b}^{q} V_{t b}^{*} / V_{t s}^{*}\right)\left(1-\lambda_{\mu \mu}^{\ell} / 2\right)$
$\Delta C_{9}^{\mu}=-\Delta C_{10}^{\mu}$	$-0.61 \pm 0.12 \quad[36]$	$-\frac{\pi}{\alpha_{\mathrm{em}} V_{t b} V_{t s}^{*}} \lambda_{\mu \mu}^{\ell} \lambda_{s b}^{q}\left(C_{T}+C_{S}\right)$
$R_{b \rightarrow c}^{\mu e}-1$	0.00 ± 0.02	$2 C_{T}\left(1-\lambda_{s b}^{q} V_{t b}^{*} / V_{t s}^{*}\right) \lambda_{\mu \mu}^{\ell}$
$B_{\left.K^{(*)}\right) \nu \bar{\nu}}^{\mu e}$	0.0 ± 2.6	$1+\frac{2}{3} \frac{\pi}{\alpha_{\mathrm{em}} V_{t b} V_{t s}^{*} C_{S J}^{S M}}\left(C_{T}-C_{S}\right) \lambda_{s b}^{q}\left(1+\lambda_{\mu \mu}^{\ell}\right)$
$\delta g_{\tau_{L}}^{Z}$	-0.0002 ± 0.0006	$0.033 C_{T}-0.043 C_{S}$
$\delta g_{\nu_{\tau}}^{Z}$	-0.0040 ± 0.0021	$-0.033 C_{T}-0.043 C_{S}$
$\left\|g_{\tau}^{W} / g_{\ell}^{W}\right\|$	1.00097 ± 0.00098	$1-0.084 C_{T}$
$\mathcal{B}(\tau \rightarrow 3 \mu)$	$(0.0 \pm 0.6) \times 10^{-8}$	$2.5 \times 10^{-4}\left(C_{S}-C_{T}\right)^{2}\left(\lambda_{\tau \mu}^{\ell}\right)^{2}$

EFT [details fit]

- 4 parameters fit: $C_{S}, C_{T}, \lambda_{b s}^{q}, \lambda_{\mu \mu}^{\ell} \quad\left(\lambda_{b b}^{q}=\lambda_{\tau \tau}^{\ell}=1\right) \quad$ [Zürich's guide for combined explanations, I 706.07808]

Future prospects

- $\mathrm{LHCb}+$ Belle-ll have the potential to fully establish NP in B-anomalies
[Albrecht et al, I 709.I 0308]

Future prospects

- LHCb + Belle-ll have the potential to fully establish NP in B-anomalies

\[

\]

[Albrecht et al, I 709.I 0308]

