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Why it is not obvious that the Higgs 
and W/Z are physical particles

Or: What states can be gauge-invariant
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Gauge symmetry – a reminder

● A gauge symmetry allows to 
choose a coordinate system 
for the symmetry at every 
space-time point differently

● E.g. in QCD: Choose what is 
red, green, and blue at every 
point differently

● Human choice: Physics 
cannot depend on it – only 
what is independent of the 
choice is physical

● Field theory: Cannot be 
prohibited/broken [Elitzur’74]



The Problem

● Consider the Higgs sector of the standard model

● The Higgs sector is a gauge theory

● Local SU(2) gauge symmetry

● Global SU(2) Higgs custodial (flavor) symmetry
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What did we see here?
Is this really the Higgs?

Higgs depends on the gauge choice!
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Physical states

● Need invariant states

● Cannot be the elementary particles

● Gauge choice needs to be canceled

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● But the PDG! Why does perturbation theory work?

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)

● Can this matter?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 't Hooft'80,
 Bank et al.'79]
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Lattice calculations

● Take a finite volume – usually a hypercube

● Discretize it, and get a finite, hypercubic 
lattice

● Calculate observables using path integral

● Can be done numerically

● Uses Monte-Carlo methods

● Artifacts

● Finite volume/discretization

● Masses vs. wave-lengths

● Euclidean formulation
L

a
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Masses from the lattice

● Masses from ‘wave-functions’

● Affected by finite volume and contamination

● Needs to be analyzed and extracted
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-
Higgs mass 

requires renormalization
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Mass relation - Higgs

● Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV

● Scheme exists to shift Higgs mass always to 120 GeV

● Coincidence? No.

● Duality between elementary states and bound states 
[Fröhlich et al.'80]

● Same poles to leading order

● Fröhlich-Morchio-Strocchi (FMS) mechanism

● Deeply-bound relativistic state

● Mass defect~constituent mass

● Cannot describe with quantum mechanics

● Very different from QCD bound states

[Fröhlich et al.'80
 Maas'12, Maas & Mufti'13]
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Mass relation - W

● Vector state: 80 GeV

● W at tree-level: 80 GeV

● W not scale or scheme dependent

● Same mechanism

● Same poles at leading order

● Remains true beyond leading order

● Exchanges a gauge for a custodial triplet

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩
h=v+η

≈
∂ v=0

const .+⟨W μ(x)W μ( y)⟩+O (η3)

[Fröhlich et al.'80
 Maas'12]
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● Quantitatively equivalent spectrum

● Special to this case? Standard model?

● Lattice also for SU(2)xU(1) [Shrock et al. 85-88]
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Flavor

● Flavor has two components

● Global SU(3) generation 

● Local SU(2) weak gauge (up/down distinction)

● Same argument: Weak gauge not observable

● Replaced by bound state – FMS applicable

● Gauge-invariant state, but custodial doublet

● Yukawa terms break custodial symmetry

● Different masses for doublet members

[Fröhlich et al.'80,
 Egger, Maas, Sondenheimer'17]

⟨(hia
+ f a)(x) + (hib

+ f b)( y)⟩
h=v+η

≈ ⟨ f a
+ (x) f a( y)⟩+O (η)
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Flavor of hadrons

● Flavor is replaced by custodial symmetry

● Straightforward for leptons

● Implications for hadrons?

● Open flavor must be replaced by custodial symmetry

● Requires Higgs component

● Consider nucleon

● qqq open flavor, cannot be gauge invariant

● Impossible to build a gauge-invariant 3-quark state

● Replacement: qqqh

● FMS mechanism as usual yields QCD

● Detectable at LHC? Large QCD background. Test leptons

[Egger, Maas, Sondenheimer'17]
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Collision of bound states - 'constituent' particles

● Higgs partners just spectators

● Similar to pp collisions

● Sub-leading contributions

● Ordinary ones: Large and detected

● New ones: Small, require more sensitivity

[Maas'12]
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--H bound stateμ

+-H bound stateμ

● Description of impact? Gauge-invariant perturbation 
theory!

● Ordinary contribution

● Modification of ordinary contribution

● Higgs as initial state

● More contributions...complicated
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

● Description of impact? PDF-type language!

● Interacting particles either electrons or Higgs

● Fragmentation 100% efficient – like for quarks

[Maas'12,
 Egger et al.’17]
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e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

●Strong constraints from sumrules
● Only electron carries charge!
● Will change if W etc. included

Higgs at 0 energy
Just like a condensate

Electron carries
everything

[Maas'12,
 Egger et al.’17]
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

No effect below 2xHiggs mass
Higgs need to get on-shell

[Maas'12,
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How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

Remainder driven by Yukawa coupling

[Maas'12,
 Egger et al.’17]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

Top case:
Strong dependence 

on the amount of 
Higgs and energy

[Maas'12,
 Egger et al.’17]



How events looks like (LEP/ILC)

e--H bound state

e+-H bound state

Z-H-H bound state

--H bound stateμ

+-H bound stateμ

Not all quantities are
equally influenced

[Maas'12,
 Egger et al.’17]



Why it can matter beyond the 
standard model

And when this can be dealt with using
gauge-invariant perturbation theory
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Status of the standard model

● Physical states are bound states

● Observed in experiment

● Described using gauge-invariant perturbation 
theory based on the FMS mechanism

● Mostly the same as ordinary perturbation theory

● Is this always true? No. [Maas'15, Maas & Mufti'14]

● Fluctuations can invalidate it

● Seen on the lattice – but SM is fine

● Local and global multiplet structure must fit

● Has to be checked for BSM theories
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Example: GUT-like structure

Gauge-invariant perturbation theory correct
and

different from ordinary perturbation theory

Other cases looked at: 2HDM, generic single-Higgs 
theories, compositness → 1712.04721
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Implications for GUTs

● GUTs: Large gauge group, small custodial 
group

● Standard model structure: diagonal subgroup – 
not gauge-invariant

● Toy-GUT: SU(3) broken to SU(2)

● U(1) Custodial group

[Maas & Törek'16
 Maas, Sondenheimer & Törek'17]
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Toy-GUT: Vectors

● Theory weakly interacting

Perturbation theory FMS expansion
Gauge-dependent U(1) singlets U(1) non-singlets
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[Maas & Törek'16
 Maas, Sondenheimer & Törek'17,
 Maas & Törek’18]



Toy-GUT: Vectors

● Quantitative agreement

Perturbation theory FMS expansion
Gauge-dependent U(1) singlets
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[Maas & Törek'16
 Maas, Sondenheimer & Törek'17,
 Maas & Törek’18]
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Toy-GUT: Vectors
Perturbation theory FMS expansion
Gauge-dependent U(1) non-singlets
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0
[Maas & Törek'16
 Maas, Sondenheimer & Törek'17,
 Maas & Törek’18]
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Implications for GUTs

● GUTs: Large gauge group, small custodial 
group

● Standard model structure: diagonal subgroup – 
not gauge-invariant

● Toy-GUT: SU(3) broken to SU(2)

● U(1) Custodial group

● Qualitative (!) disagreement to standard 
perturbation theory but good agreement to FMS

● Suitability for model building?

● Disagreement generic [Maas, Sondenheimer & Törek'17]

● Some lattice support for one adjoint Higgs
[Lee & Shigimetsu’85]

[Maas & Törek'16
 Maas, Sondenheimer & Törek'17]
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Summary

● Observable spectrum must be gauge-invariant

● In non-Abelian gauge theories: Bound states

● Gauge-invariant perturbation theory as a tool

● Requires a Brout-Englert-Higgs effect

● Yields the same results for the standard model

● More robust

● Mostly not much more complicated

● Applicable to beyond-the standard model

● Structural requirement: Multiplets must match

● Dynamical requirement: Small fluctuations

● Questions several current BSM models

Review: 1712.04721

@axelmaas
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Outlook

● Investigations under way

● More predictions for other theories

● Lattice test for different Higgs types

● Predictions/tests for the standard model

● Size of ‘W’ bound state

● Anomalous gauge couplings

● Quantitative prediction for ILC

● HERWIG version with Higgs components

● Tops at the LHC

Review: 1712.04721

@axelmaas
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