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MACHINE LEARNING FOR SCIENCES



• The bumpy 60-year history of ML 

• ML in sciences	



• use cases and challenges	



• examples	



• the RAMP tool	



• Automatic hypothesis generation 
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OUTLINE



B. Kégl Data driven generation3

Machine learning is an 
engineering toolkit 

for induction

Learn a function y = f(x) 
from a large number of 

(x, y) pairs 



• Classification problem y = f(x)
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DATA-DRIVEN INFERENCE
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• Classification problem y = f(x) 

• No model to fit, but a large set of (x, y) pairs	



• The source is typically observation + human labeling 

• Or computer simulation 

• And a loss function L(y, ypred)
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DATA-DRIVEN INFERENCE
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The bumpy 60-year history that 
led to the current state of the 

art 
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DEEP LEARNING = THREE INTERTWINING STORY

techniques / tricks hardware data

1957-69  
dawn perceptron early mainframes toy linear, small images, XOR

2006-  
deep learning deep NNs GPU, TPU, Intel Xeon Phi Imagenet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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1986-95  
golden age early NNs workstations MNIST
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THE PERCEPTRON (ROSENBLATT 1957)

Weights were encoded in potentiometers, and weight 
updates during learning were performed by electric motors.
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THE PERCEPTRON (ROSENBLATT 1957)
Based on Rosenblatt's 
statements, The New York 
Times reported the perceptron 
to be "the embryo of an 
electronic computer that [the 
Navy] expects will be able to 
walk, talk, see, write, reproduce 
itself and be conscious of its 
existence."
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BACK PROPAGATION (RUMELHART ET AL.1986)



• Convolutional nets	



• The first algorithmic tricks: initialization, weight decay, 
early stopping	



• Some limited understanding of the theory	



• First commercial success: AT&T check reader (Bottou, 
LeCun, Burges, Nohl, Bengio, Haffner, 1996)
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THE GOLDEN AGE (1986-95)



• Reading checks is more 
than character 
recognition	



• If all steps are 
differentiable, the whole 
system can be trained 
end-to-end by 
backdrop
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THE AT&T CHECK READER
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Yann Lecun:  
“Deep learning is dead, 

long live 
differentiable programming”
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FIRST TAKE-HOME MESSAGE

Before you jump on 
the deep learning 
bandwagon: scikit-

learn forests + 
xgboost gets  

>90% performance 
on >90% of the 

industrial problems, 
cautious estimate



• NNs are back on the research agenda
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2006: A NEW WAVE BEGINS
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2009: IMAGENET
“We believe that a large-scale ontology of images is a critical 
resource for developing advanced, large-scale content-based 
image search and image understanding algorithms, as well as for 
providing critical training and benchmarking data for such 
algorithms.” (Fei Fei Li et al CVPR09)	



!



• 80K hierarchical categories	



• 80M images of size >100x100	



• labeled by 50K Amazon Turks
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2009: IMAGENET
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GPUS (2004 - )



• dropout, ReLU, max-pooling, data augmentation, batch normalization, 
automatic differentiation, end-to-end training, lots of layers	



• Krizhevsky, Sutskever, Hinton (2012): 1.2M images, 60M parameters, 
6 days training on two GPUs
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TECHNIQUES & TRICKS

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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IMAGENET COMPETITIONS
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SECOND TAKE-HOME MESSAGE

To make deep learning shine, 
you need huge labeled data sets and time to train 



• Imagenet (80M >100x100 color images, 80K classes)	



• FaceBook (300M photos/day)	



• Google (300h of video/minute)
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SECOND TAKE-HOME MESSAGE
To make deep learning shine, 

you need huge labeled data sets and time to train 



• Theano	



• TensorFlow	



• Keras	



• Caffe	



• Torch
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TODAY: EASY-TO-USE LIBRARIES
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TODAY: HARDWARE

Google TPU
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COMMERCIAL APPLICATIONS
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GOOGLE IMAGE SEARCH
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FACE RECOGNITION/DETECTION	


A 6B$ MARKET IN 2020
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SELF-DRVING CARS
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BEYOND IMAGES



• Data collection: replace human or algorithmic collector or 
annotator	



• label insect photos, detect Mars craters, detect particle tracks	



• Inference: to invert the generative model	



• “predict” a particle, detect an anomaly, infer a parameter y from observation x	



• Generation, model reduction: to replace expensive simulations	



• “learn” a physics simulation or an agent based micro-economical model with a 
neural net	



• Hypothesis generation: to “replace” theoreticians	



• learn, represent structural knowledge and generate novelty in model space, 
e.g., molecule generation in drug discovery
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ML USE CASES IN SCIENCES
https://www.ramp.studio/problems

https://www.ramp.studio/problems
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Data collection
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CLASSIFYING POLLENATING INSECT PHOTOS

• collaboration with ecologists at the Paris Museum of Natural 
History	



• 400 classes, 150K photos, long tail
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DETECTING MARS CRATERS

• collaboration with planetary geologists at Paris-Saclay 

• complex metrics and detection workflow
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Inference



Center for Data Science
Paris-Saclay

CLASSIFYING VARIABLE STARS
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• collaboration with astrophysicists at Paris-Saclay 

• variable-length functional data
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PREDICT AUTISM FROM BRAIN SCANS

• collaboration with neurologists of Institut Pasteur  

• 3000 subjects: a major major data collection effort	



• heavy preprocessing and quality control
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B. Kégl / AppStat@LAL Learning to discover

THE LHC IN GENEVA
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B. Kégl / AppStat@LAL Learning to discover

THE ATLAS DETECTOR
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B. Kégl / AppStat@LAL Learning to discover

DATA COLLECTION

• Hundreds of millions of proton-proton collisions per 
second	



• Filtered down to 400 events per second	



• still petabytes per year 	



• real-time (budgeted) classification: trigger 	



• a research theme on its own 
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B. Kégl Data driven generation

FEATURE ENGINEERING

• Each collision is an event	



• hundreds of particles: decay products 	



• hundreds of thousands of sensors (but sparse) 	



• for each particle: type, energy, direction is measured 	



• a fixed-length list of ~30-40 extracted features: x	



• e.g., angles, energies, directions, reconstructed mass	



• based on 50 years of accumulated domain knowledge
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B. Kégl Data driven generation

count (per year)

background

signal

probability

background

signal

CLASSIFICATION FOR DISCOVERY
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Goal: optimize the expected discovery significance 

flux × time

selection
expected background	



say, b = 100 events

total count,	


say, 150 events

excess is s = 50 events

AMS = = 5 sigma

approaches a simple asymptotic form related to the chi-squared distribution in the large-sample
limit. In practice the asymptotic formulae are found to provide a useful approximation even for
moderate data samples (see, e.g., [6]). Assuming that these hold, the p-value of the background-
only hypothesis from an observed value of q0 is found to be

p = 1 � F (
p

q0) , (11)

where F is the standard Gaussian cumulative distribution.
In particle physics it is customary to convert the p-value into the equivalent significance Z,

defined as
Z = F�1(1 � p), (12)

where F�1 is the standard normal quantile. Eqs. (11) and (12) lead therefore to the simple result

Z =
p

q0 =

s

2
✓

n ln
✓

n
µb

◆
� n + µb

◆
(13)

if n > µb and Z = 0 otherwise. The quantity Z measures the statistical significance in units
of standard deviations or “sigmas”. Often in particle physics a significance of at least Z = 5 (a
five-sigma effect) is regarded as sufficient to claim a discovery. This corresponds to finding the
p-value less than 2.9 ⇥ 10�7.11

4.2 The median discovery significance
Eq. (13) represents the significance that we would obtain for a given number of events n observed
in the search region G, knowing the background expectation µb. When optimizing the design of
the classifier g which defines the search region G = {x : g(x) = s}, we do not know n and µb. As
usual in empirical risk minimization [9], we estimate the expectation µb by its empirical counter-
part b from Eq. (5). We then replace n by s + b to obtain the approximate median significance

AMS2 =

r
2
⇣
(s + b) ln

⇣
1 +

s
b

⌘
� s

⌘
. (14)

Taking into consideration that (x + 1) ln(x + 1) = x + x2/2 +O(x3), AMS2 can be rewritten as

AMS2 = AMS3 ⇥
s

1 +O
✓⇣ s

b

⌘3
◆

,

where
AMS3 =

sp
b

. (15)

The two criteria Eqs. (14) and (15) are practically indistinguishable when b � s. This approxima-
tion often holds in practice and may, depending on the chosen search region, be a valid surrogate
in the Challenge.

In preliminary runs it happened sometimes that AMS2 was maximized in small selection
regions G, resulting in a large variance of the AMS. While large variance in the real analysis is
not necessarily a problem, it would make it difficult to reliably compare the participants of the
Challenge if the optimal region was small. So, in order to decrease the variance of the AMS, we
decided to bias the optimal selection region towards larger regions by adding and artificial shift
breg to b. The value breg = 10 was determined using preliminary experiments.

11This extremely high threshold for statistical significance is motivated by a number of factors related to multiple
testing, accounting for mismodeling and the high standard one would like to require for an important discovery.

10

selection 	


thresholdselection threshold
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GENERATION AND MODEL REDUCTION



FORECASTING EL NINO: SPATIOTEMPORAL TIME SERIES

44

… 300.14 299.83 298.76 299.87 299.82 300.15 300.10 299.50… …

time series feature 
extractor

x 
(a fixed length feature vector) regressor

• collaboration with the Climate Informatics workshop 

• also on Arctic sea ice and California rainfall prediction
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GENERATION AND MODEL REDUCTION

Why?

• Cost cutting 1: looking at the form of f, I can place my 
fixed number of temperature sensors optimally	



• Cost cutting 2: f can replace costly simulation in a 
detector optimization loop	



• Cost cutting 3: if I can generate realistic galaxy images, I 
can replace costly manual labeling of real photos



Center for Data Science
Paris-SaclayB. Kégl (CNRS)

Biology & bioinformatics
IBISC/UEvry 
LRI/UPSud
Hepatinov
CESP/UPSud-UVSQ-Inserm 
IGM-I2BC/UPSud 
MIA/Agro
MIAj-MIG/INRA
LMAS/Centrale

Chemistry
EA4041/UPSud

Earth sciences
LATMOS/UVSQ 
GEOPS/UPSud
IPSL/UVSQ
LSCE/UVSQ
LMD/Polytechnique

Economy
LM/ENSAE 
RITM/UPSud
LFA/ENSAE

Neuroscience
UNICOG/Inserm
U1000/Inserm
NeuroSpin/CEA

Particle physics 
astrophysics & 
cosmology
LPP/Polytechnique 
DMPH/ONERA
CosmoStat/CEA
IAS/UPSud
AIM/CEA
LAL/UPSud

The Paris-Saclay Center for Data Science
Data Science for scientific Data

250 researchers in 35 laboratories

Machine learning
LRI/UPSud 
LTCI/Telecom
CMLA/Cachan 
LS/ENSAE
LIX/Polytechnique
MIA/Agro
CMA/Polytechnique
LSS/Supélec
CVN/Centrale 
LMAS/Centrale
DTIM/ONERA
IBISC/UEvry

Visualization
INRIA
LIMSI

Signal processing
LTCI/Telecom
CMA/Polytechnique
CVN/Centrale
LSS/Supélec
CMLA/Cachan
LIMSI
DTIM/ONERA

Statistics
LMO/UPSud 
LS/ENSAE
LSS/Supélec
CMA/Polytechnique
LMAS/Centrale
MIA/AgroParisTech

Data science
statistics 

machine learning
information retrieval 

signal processing
data visualization

databases

Domain science
human society

life 
brain 
earth

universe

Tool building
software engineering

clouds/grids
high-performance 

computing
optimization

Data scientist

Applied scientist

Domain scientist

Data engineer

Software engineer

Center for Data Science
Paris-Saclay

 datascience-paris-saclay.fr

 @SaclayCDS

LIST/CEA 
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Center for Data Science
Paris-Saclay

A multi-disciplinary initiative, building interfaces, matching 
people, helping them launching projects

345 affiliated researchers, 50 laboratories 



Center for Data Science
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Data scientist

Data Value Architect

Domain expertSoftware engineer

Data engineer

Tool building Data domains

Data science
statistics 

machine learning 
information retrieval 

signal processing 
data visualization 

databases

software engineering 
clouds/grids 

high-performance 
computing 

optimization

energy  and physical sciences 
health and life sciences 
Earth and environment 

economy and society 
brain

THE DATA SCIENCE ECOSYSTEM
https://medium.com/@balazskegl

https://medium.com/@balazskegl/the-data-science-ecosystem-678459ba6013


• Workflows and metrics	



• Designing the workflow, interaction with the rest of the pipeline, metrics 
is often more important than “hyperopting” the predictor	



• Data generation	



• training is often done on simulations, so we need to design data 
generation 

• systematic uncertainties	



• the iid oracle is a fairy tale, happening only in machine learning textbooks	



• opportunity for diversifying ML benchmarks
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TECHNICAL CHALLENGES



B. Kégl Data driven generation

SYSTEMATICS

• Your estimators f(x) should not only be efficient but also 
insensitive to variables/parameters you don’t know	



• I know this problem because I worked with physicists	



• unsolved and even unknown in machine learning	



• google “Fair ML” to learn about the closest problem in ML	



• Simulation-based training is biased by design	



• Because if we new all the distributions and parameters, we would not 
need to simulate
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B. Kégl Data driven generation

SYSTEMATICS

• ML is exacerbating the problem because it is so efficient in optimizing 
the score	



• unless the score contains systematics, which is hard because systematics is usually not 
an event-wise metrics	



• makes it similar to adversarial generative models, see the works of Kyle Cranmer and 
Gilles Louppe	



• The classical approach: vary unknown parameters within their known 
range, train on one extreme, evaluate on the other	



• exponential explosion which makes computation-heavy deep learning even heavier	



• doesn’t minimize systematics, but at least measures it	



• some are uncomfortable of not “understanding” the black-box estimator 
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B. Kégl Data driven generation

SYSTEMATICS

51

y

f(x)

simulation

real data



B. Kégl Data driven generation

SYSTEMATICS
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y

f(x)

simulation

real data
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THIRD TAKE-HOME MESSAGE

Systematics



• Lack of manpower, misplaced incentives	



• hammers & nails	



• engineering: who deals with production?	



• Lack of collaboration/innovation management tools	



• Bottleneck is sometimes data collection/annotation 

• since domain scientists do not know ML, they do not collect the right 
data
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MANAGEMENT AND ORGANIZATIONAL 
CHALLENGES
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We have “industrialized” 
workflow-building and optimization

By separating them

Then optimizing 
“graduate student descent”

RAMP.STUDIO	


DATA CHALLENGE WITH CODE SUBMISSION
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RAMP.STUDIO	


DATA CHALLENGE WITH CODE SUBMISSION



57

RAMP is a tool for

1. Collaborative prototyping 
2. Teaching 
3. Data science process management
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Code submission

1. lets us deliver a working prototype 
2. lets the participants collaborate
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RAMP.STUDIO	


DATA CHALLENGE WITH CODE SUBMISSION

20+ challenges 
40+ events 
1200+ users 

7000+ predictive models 

https://www.ramp.studio/problems

https://www.ramp.studio/problems
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what you achieved with a well tuned deep net

the diversity gap

the human blender gap

competitive phase

collaborative phase

THE POWER OF THE (COLLABORATING) CROWD	


OPTIMIZING GRADUATE STUDENT DESCENT
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COMMUNICATION AND REUSE	
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toolkit: 
github.com/paris-saclay-cds/ramp-workflow

examples: 
github.com/ramp-kits

blogs: 
medium.com/@balazskegl

slack: 
ramp-studio.slack.com

frontend: 
www.ramp.studio

mail: 
balazs.kegl@gmail.com

https://github.com/paris-saclay-cds/ramp-workflow
https://github.com/ramp-kits
https://medium.com/@balazskegl
http://ramp-studio.slack.com
http://www.ramp.studio
mailto:balazs.kegl@gmail.com
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FOURTH TAKE-HOME MESSAGE

If you want ML experts to tackle your problem, make 
benchmarks, make it easy for them to contribute, 

without having to become a physicist
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MACHINE LEARNING IN SCIENCE

Generation/simulation and model reduction
Inference

• We can automate almost everything	



• simulation, inference, experimental design	



• this is not even controversial, just an extension of the current 
paradigm	



• But not the hypothesis generation: what model to test? 
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Hypothesis generation is crucial 
and, at the same time, 

not covered by the scientific method
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ROBOT SCIENTIST
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ROBOT SCIENTIST

“Robot scientists are a natural extension of the trend of 
increased involvement of automation in science. They can 
automatically develop and test hypotheses to explain 
observations, run experiments using laboratory robotics, 
interpret the results to amend their hypotheses, and 
then repeat the cycle, automating high-throughput 
hypothesis-led research.”

http://www.cam.ac.uk/research/news/artificially-intelligent-robot-scientist-eve-could-boost-search-for-new-drugs

http://www.cam.ac.uk/research/news/artificially-intelligent-robot-scientist-eve-could-boost-search-for-new-drugs
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Hypothesis generation is crucial 
and, at the same time, 

not covered by the scientific method

This ignorance has already bitten us, 
but with the appearance of the robot 

scientist, it is unavoidable



• Come up with a hypothesis	



• Design an experiment to exclude it	



• Use a statistical test to show that the data is unlikely to 
be generated by a world in which the hypothesis does 
not hold (“background”)
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THE SCIENTIFIC METHOD IN THE 
TRENCHES



• Rutherford:  “If your experiment needs statistics, you ought to 
have done a better experiment”	



• Without statistics, science would be over	



• we went out of slam dunk infinite significance (“background free”) 
hypotheses	



• phenomena are inherently noisy: nobody has seen or will ever see a 
Higgs boson
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THE SCIENTIFIC METHOD IN THE 
TRENCHES



71
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THE P-VALUE CONTROVERSY

But the main problem is a tautology: 
if none of your hypotheses are true, 

all your positives are false

But of course: if all your hypotheses are true, 
you are not exploring



• Register all experiments and publish negatives	



• Don’t do underpowered experiments	



• Put the significance bar high enough	



• Test only “plausible” hypotheses
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GUIDELINES



• What is a plausible but non-trivial hypothesis?	



• How to measure plausibility?	



• How to generate them (automatically)?	



• How are hypotheses related to prior/current 
knowledge?
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QUESTIONS
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GENERATIVE MODELS IN ML

Interesting tools but it’s a whole new ballgame 
and paradigmatically we are in the dark
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Train on digits, 
test on letters
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Train on all music up to the Beatles, 
test on Sex Pistols
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Train on all phones up to 2006,  
test on the iPhone
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Train on all scientific knowledge up to Einstein,  
test on relativity theory
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CAN WE GENERATE NEW TYPES?
Existing objects of known types.

generative model

New objects. New types?

learning

generation
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SOME WRITTEN STUFF

http://openreview.net/forum?id=ByEPMj5el

https://arxiv.org/abs/1606.04345

https://medium.com/@balazskegl/the-epistemological-challenges-of-automating-a-
b-testing-or-how-will-ai-do-science-b724f8217811#.q041gyvkt

http://openreview.net/forum?id=ByEPMj5el
https://arxiv.org/abs/1606.04345
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FIFTH TAKE-HOME MESSAGE

Scientific knowledge representation and hypothesis 
generation is where real AI will go
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Thank you!


