MACHINE LEARNING FOR SCIENCES

BALÁZS KÉGL Université Paris-Saclay / CNRS

- The bumpy 60-year history of ML
- ML in sciences
 - use cases and challenges
 - examples
 - the **RAMP** tool
- Automatic hypothesis generation

Machine learning is an engineering toolkit for induction

Learn a function y = f(x) from a large number of (x, y) pairs

DATA-DRIVEN INFERENCE

Classification problem y = f(x)

X

DATA-DRIVEN INFERENCE

- Classification problem y = f(x)
- No model to fit, but a large set of (x, y) pairs
 - The source is typically observation + human labeling
 - Or computer simulation
- And a loss function L(y, y_{pred})

The bumpy 60-year history that led to the current state of the art

DEEP LEARNING = THREE INTERTWINING STORY

	techniques / tricks	hardware	data
1957-69 dawn	perceptron	early mainframes	toy linear, small images, XOR
	Inputs Weights Met Input Arthum Inputs Weights Met Input Arthum Inputs Officer Input Inp		
1986-95	early NNs	workstations	MNIST
goldellage			50419 28694 69056 3307 45670
2006- deep learning	deep NNs	GPU, TPU, Intel Xeon Phi	Imagenet
r ·····0	2018 dense 192 192 128 2018 dense 192 192 128 128 dense 192 192 128 128 dense 192 192 128 dense 192 192 128 dense 192 193 192 128 dense 193 192 193 193 193 193 194 195 195 195 195 195 195 195 195 195 195		

THE PERCEPTRON (ROSENBLATT 1957)

$$f(x) = egin{cases} 1 & ext{if} \, w \cdot x + b > 0 \ 0 & ext{otherwise} \end{cases}$$

Weights were encoded in potentiometers, and weight updates during learning were performed by electric motors.

THE PERCEPTRON (ROSENBLATT 1957)

Based on Rosenblatt's statements, The New York Times reported the perceptron to be "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

BACK PROPAGATION (RUMELHART ET AL. 1986)

THE GOLDEN AGE (1986-95)

- Convolutional nets
- The first algorithmic tricks: initialization, weight decay, early stopping
- Some limited understanding of the theory
- First commercial success: AT&T check reader (Bottou, LeCun, Burges, Nohl, Bengio, Haffner, 1996)

THE AT&T CHECK READER

- Reading checks is more than character recognition
- If all steps are differentiable, the whole system can be trained end-to-end by backdrop

Yann Lecun: "Deep learning is dead, long live differentiable programming"

FIRST TAKE-HOME MESSAGE

Before you jump on the deep learning bandwagon: scikitlearn forests + xgboost gets >90% performance on >90% of the industrial problems, cautious estimate

2006: A NEW WAVE BEGINS

• NNs are back on the research agenda

- Hinton, Osindero & Teh « <u>A Fast Learning</u> <u>Algorithm for Deep</u> <u>Belief Nets</u> », Neural Computation, 2006
- Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise Training of Deep Networks », NIPS'2006
- Ranzato, Poultney, Chopra, LeCun <u>« Efficient Learning of</u> <u>Sparse Representations</u> <u>with an Energy-Based</u> <u>Model », NIPS'2006</u>

2009: IMAGENET

"We believe that a large-scale ontology of images is a critical resource for developing advanced, large-scale content-based image search and image understanding algorithms, as well as for providing critical training and benchmarking data for such algorithms." (Fei Fei Li et al CVPR09)

2009: IMAGENET

- 80K hierarchical categories
- 80M images of size >100x100
- labeled by 50K Amazon Turks

GPUs (2004 -)

System and method for accelerating and optimizing the processing of machine learning techniques using a graphics processing unit

US 7219085 B2

ABSTRACT

A system and method for processing machine learning techniques (such as neural networks) and other non-graphics applications using a graphics processing unit (GPU) to accelerate and optimize the processing. The system and method transfers an architecture that can be used for a wide variety of machine learning techniques from the CPU to the GPU. The transfer of processing to the GPU is accomplished using several novel techniques that overcome the limitations and work well within the framework of the GPU architecture. With these limitations overcome, machine learning techniques are particularly well suited for processing on the GPU because the GPU is typically

Publication number Publication type Application number Publication date Filing date Priority date ⑦ Fee status ⑦	US7219085 B2 Grant US 10/837,382 May 15, 2007 Apr 30, 2004 Dec 9, 2003 Paid		
Also published as	CN1627251A, 6 More »		
Inventors	Ian Andrew Buck, Patrice Y. Simard, David W. Steinkraus		
Original Assignee	Microsoft Corporation		
Export Citation	BiBTeX, EndNote, RefMan		
Patent Citations (1), Non-Patent Citations (11), Referenced by (35), Classifications (13), Legal Events (5)			
External Links: USPTO, USPTO Assignment, Espacenet			

much more powerful than the typical CPU. Moreover, similar to graphics processing, processing of machine learning techniques involves problems with solving non-trivial solutions and large amounts of data.

IMAGES (11)

TECHNIQUES & TRICKS

- dropout, ReLU, max-pooling, data augmentation, batch normalization, automatic differentiation, end-to-end training, lots of layers
- Krizhevsky, Sutskever, Hinton (2012): I.2M images, 60M parameters, 6 days training on two GPUs

IMAGENET COMPETITIONS

1000 categories and 1.2 million training images

ImageNet Classification Error

Li Fei-Fei: ImageNet Large Scale Visual Recognition Challenge, 2014 http://image-net.org/

SECOND TAKE-HOME MESSAGE

To make deep learning shine, you need huge labeled data sets and time to train

SECOND TAKE-HOME MESSAGE

To make deep learning shine, you need huge labeled data sets and time to train

- Imagenet (80M >100x100 color images, 80K classes)
- FaceBook (300M photos/day)
- Google (300h of video/minute)

TODAY: EASY-TO-USE LIBRARIES

- Theano
- TensorFlow
- Keras
- Caffe
- Torch

update_momentum=0.9, max_epochs=20,

handlers
on_epoch_finished = [EarlyStopping(patience=10, criterion='valid_loss')]

TODAY: HARDWARE

COMMERCIAL APPLICATIONS

GOOGLE IMAGE SEARCH

Sep 14, 2015

https://photos.google.com/search/insect

 \leftarrow

Q insect \times

Yesterday

Aug 10, 2015

Jun 25, 2014

Aug 9, 2015

v

Aug 13, 2014.

☆ 🕐 🗢 🏨 🗟 🥙 🖉 昌 🚍

v

FACE RECOGNITION/DETECTION A 6B\$ MARKET IN 2020

Why Facial Recognition Will Change

Mark Facial recognition tech is allowing stores to reward Facebook facial recognition tech helps parents

'Who is doing what with th CONTROL Who is sharing pics of their children

Usher's new music video uses facial recognition technology to make sure you're paying attention to its message

Usher has released a gripping interactive video for his new song "Chains" that requir utmost attention.

The video, which can be viewed on the streaming platform Tidal, uses facial recognit technology so that the video only plays when you are looking at the screen.

Facial recognition is the next biggest tre pay strong attention to as it is taking fro

MasterCard announced selfie payments – a payment method using a selfie

Finding Rover: The app using facial recognition software to find lost dogs

Self-Drving Cars

Elon Musk Promises to Provide Self-Driving Cars within 2 Years

VOICE RECOGNITION

Speak

TIME SERIES

787.50

🕼 🔓 🚵 🚺 🙀 10:37 PM

33 12 7 T 187 (PT TROMOLOGY BAND ATTRIN.

CONTRACTOR DE LA CONTRACTOR CONTRACTOR

EVERYTHING is a Recommendation

MAINTENANCE

NETFLIX

ML USE CASES IN SCIENCES

https://www.ramp.studio/problems

- Data collection: replace human or algorithmic collector or annotator
 - label insect photos, detect Mars craters, detect particle tracks
- Inference: to invert the generative model
 - "predict" a particle, detect an anomaly, infer a parameter y from observation x
- Generation, model reduction: to replace expensive simulations
 - "learn" a physics simulation or an agent based micro-economical model with a neural net
- Hypothesis generation: to "replace" theoreticians
 - learn, represent structural knowledge and generate novelty in model space, e.g., molecule generation in drug discovery

Data collection

CLASSIFYING POLLENATING INSECT PHOTOS

- collaboration with ecologists at the Paris Museum of Natural History
- 400 classes, I 50K photos, long tail

DETECTING MARS CRATERS

- collaboration with planetary geologists at Paris-Saclay
- complex metrics and detection workflow

Inference

CLASSIFYING VARIABLE STARS

- collaboration with astrophysicists at Paris-Saclay
- variable-length functional data

patch = 327, star = 1726, α = 5° 25'27", δ = -69° 23'43" type = mira, period = 214.28 day Length scale blue = 2.48 / 2π , red = 2.09 / 2π

universite PARIS-SACLA

PREDICT AUTISM FROM BRAIN SCANS

- collaboration with neurologists of Institut Pasteur
- 3000 subjects: a major major data collection effort
- heavy preprocessing and quality control

Learning to discover: the Higgs boson machine learning challenge

Claire Adam-Bourdarios^a, Glen Cowan^b, Cécile Germain^c, Isabelle Guyon^d, Balázs Kégl^{a,c}, David Rousseau^a

^a LAL, IN2P3/CNRS & University Paris-Sud, France
^b Physics Department, Royal Holloway, University of London, UK
^c TAO team, INRIA & LRI, CNRS & University Paris-Sud, France
^d ChaLearn

21 July 2014, version 1.8

THE LHC IN GENEVA

THE ATLAS DETECTOR

эr

DATA COLLECTION

 Hundreds of millions of proton-proton collisions per second

40

- Filtered down to 400 events per second
 - still petabytes per year
 - real-time (budgeted) classification: trigger
 - a research theme on its own

FEATURE ENGINEERING

- Each collision is an event
 - hundreds of particles: decay products
 - hundreds of thousands of sensors (but sparse)
 - for each particle: type, energy, direction is measured
 - a fixed-length list of ~30-40 extracted features: x
 - e.g., angles, energies, directions, reconstructed mass
 - based on 50 years of accumulated domain knowledge

CLASSIFICATION FOR DISCOVERY

Goal: optimize the expected discovery significance

GENERATION AND MODEL REDUCTION

FORECASTING EL NINO: SPATIOTEMPORAL TIME SERIES

- collaboration with the Climate Informatics workshop
- also on Arctic sea ice and California rainfall prediction

• • • 300.14 299.83 298.76 299.87 299.82 300.15 300.10 299.50 • • •

GENERATION AND MODEL REDUCTION

Why?

- Cost cutting I: looking at the form of *f*, I can place my fixed number of temperature sensors optimally
- Cost cutting 2: f can replace costly simulation in a detector optimization loop
- Cost cutting 3: if I can generate realistic galaxy images, I can replace costly manual labeling of real photos

Universite PARIS-SACLAY **5** Paris-Saclay **Center for Data Science**

A multi-disciplinary initiative, building interfaces, matching people, helping them launching projects

345 affiliated researchers, 50 laboratories

Biology & bioinformatics

IBISC/UEvry LRI/UPSud Hepatinov CESP/UPSud-UVSQ-Inserm IGM-I2BC/UPSud MIA/Agro MIAj-MIG/INRA LMAS/Centrale

Chemistry EA4041/UPSud

Earth sciences LATMOS/UVSQ GEOPS/UPSud IPSL/UVSQ LSCE/UVSQ LMD/Polytechnique Economy LM/ENSAE RITM/UPSud LFA/ENSAE

Neuroscience

UNICOG/Inserm U1000/Inserm NeuroSpin/CEA

Particle physics astrophysics & cosmology LPP/Polytechnique DMPH/ONERA CosmoStat/CEA IAS/UPSud AIM/CEA LAL/UPSud

Machine learning

LRI/UPSud LTCI/Telecom CMLA/Cachan LS/ENSAE LIX/Polytechnique MIA/Agro CMA/Polytechnique LSS/Supélec CVN/Centrale LMAS/Centrale DTIM/ONERA IBISC/UEvry LIST/CEA Visualization INRIA LIMSI

Signal processing

LTCI/Telecom CMA/Polytechnique CVN/Centrale LSS/Supélec CMLA/Cachan LIMSI DTIM/ONERA

Statistics

universite

PARIS-SACLAY

LMO/UPSud LS/ENSAE LSS/Supélec CMA/Polytechnique LMAS/Centrale MIA/AgroParisTech

🗖 Paris-Saclav

Center for Data Science

B. Kégl (CNRS)

B. Kégl (CNRS)

UNIVERSITE PARIS-SACLAY

TECHNICAL CHALLENGES

- Workflows and metrics
 - Designing the workflow, interaction with the rest of the pipeline, metrics is often more important than "hyperopting" the predictor
- Data generation
 - training is often done on simulations, so we need to design data generation
 - systematic uncertainties
 - the iid oracle is a fairy tale, happening only in machine learning textbooks
 - opportunity for diversifying ML benchmarks

- Your estimators f(x) should not only be efficient but also insensitive to variables/parameters you don't know
 - I know this problem because I worked with physicists
 - unsolved and even unknown in machine learning
 - google "Fair ML" to learn about the closest problem in ML
- Simulation-based training is biased by design
 - Because if we new all the distributions and parameters, we would not need to simulate

- ML is exacerbating the problem because it is so efficient in optimizing the score
 - unless the score contains systematics, which is hard because systematics is usually not an event-wise metrics
 - makes it similar to adversarial generative models, see the works of Kyle Cranmer and Gilles Louppe
- The classical approach: vary unknown parameters within their known range, train on one extreme, evaluate on the other
 - exponential explosion which makes computation-heavy deep learning even heavier
 - doesn't minimize systematics, but at least measures it
 - some are uncomfortable of not "understanding" the black-box estimator

THIRD TAKE-HOME MESSAGE

MANAGEMENT AND ORGANIZATIONAL CHALLENGES

- Lack of manpower, misplaced incentives
 - hammers & nails
 - engineering: who deals with production?
- Lack of collaboration/innovation management tools
- Bottleneck is sometimes data collection/annotation
 - since domain scientists do not know ML, they do not collect the right data

RAMP.STUDIO Data challenge with code submission

We have "industrialized" workflow-building and optimization

By separating them

Then optimizing "graduate student descent"

RAMP.STUDIO

DATA CHALLENGE WITH CODE SUBMISSION

	≝ RAMP	Hi Balázs! +
	Sandbox You can either edit and save the code in the left column or upload the files in the right column. You can also import code from other submissions when the lead	derboard links are open.
	Edit and save your code! Upload you	ır files!
	Classifier File list	
	1 from sklearn.base import BaseEstimator 2 from sklearn.ensemble import RandomForestClassifier 3	,
RAMP	4 5 class Classifier(BaseEstimator): 6 definit(self): 7 pass	
Leaderboard	8 9 def fit(self, X, y): 10 self.olf = RandomForestClassifier(11 n_estimators=2, max_leaf_nodes=3, random_state=61) 12 Def restriction = 2, max_leaf_nodes=3, random_state=61)	io file chosen
Combined score: 0.899 Show 10 + entries	<pre>12 self.clf.fit(x, y) 13 14 def predict(self, X): 15 return self.clf.predict(X) 16 17 def predict_proba(self, X): 18 return self.clf.predict_proba(X)</pre>	
team submission it contributivity histo	ical auc accuracy nII train test submitted butivity ⊥↑ ↓↑ ↓↑ time ⊥↑ time ⊥↑ at (UTC) ↓↑	
diego.souza tuning_xgboost3 9 5	0.896 0.820 0.385 3074 30 2017-01-17 11:34:53 Tue	
ndeye-fatou.diop kit_from_all 5 1	0.896 0.819 0.382 1167 10 2017-01-14 20:03:00 Sat	
diego.souza tuning_xgboost2 4 2	0.896 0.819 0.385 4900 17 2017-01-15 19:35:03 Sun	
ndeye-fatou.diop kit_from_all_clearer 3 0	0.896 0.819 0.384 1175 10 2017-01-15 03:45:44 Sun	
etienne.boursier combine_features 2 7	0.896 0.820 0.383 2712 3 2017-01-10 15:26:21 Tue	
clement.vignac boursier_improved_1 1 0	0.896 0.819 0.385 2499 4 2017-01-16 08:21:55 Mon	

RAMP is a tool for

- I. Collaborative prototyping
- 2. Teaching
- 3. Data science process management

Code submission

I ets us deliver a working prototype
 Iets the participants collaborate

RAMP.STUDIO Data challenge with code submission

20+ challenges 40+ events 1200+ users 7000+ predictive models

https://www.ramp.studio/problems

THE POWER OF THE (COLLABORATING) CROWD OPTIMIZING GRADUATE STUDENT DESCENT

Hep detector anomalies test scores

COMMUNICATION AND REUSE

Hep detector anomalies submissions

frontend: www.ramp.studio toolkit: github.com/paris-saclay-cds/ramp-workflow examples: github.com/ramp-kits slack: <u>ramp-studio.slack.com</u> blogs: medium.com/@balazskegl mail: balazs.kegl@gmail.com

FOURTH TAKE-HOME MESSAGE

If you want ML experts to tackle your problem, make benchmarks, make it easy for them to contribute, without having to become a physicist

MACHINE LEARNING IN SCIENCE

Inference Generation/simulation and model reduction

- We can automate almost everything
 - simulation, inference, experimental design
 - this is not even controversial, just an extension of the current paradigm
- But not the hypothesis generation: what model to test?

Hypothesis generation is crucial and, at the same time, not covered by the scientific method

ROBOT SCIENTIST

Artificially-intelligent Robot Scientist 'Eve' could boost search for new drugs

ROBOT SCIENTIST

"Robot scientists are a natural extension of the trend of increased involvement of automation in science. They can **automatically develop and test hypotheses** to explain observations, **run experiments** using laboratory robotics, **interpret the results** to amend their hypotheses, and then **repeat the cycle**, automating high-throughput **hypothesis-led research**."

http://www.cam.ac.uk/research/news/artificially-intelligent-robot-scientist-eve-could-boost-search-for-new-drugs

Hypothesis generation is crucial and, at the same time, not covered by the scientific method

This ignorance has already bitten us, but with the appearance of the robot scientist, it is unavoidable

The scientific method in the trenches

- Come up with a hypothesis
- Design an experiment to exclude it
- Use a statistical test to show that the data is unlikely to be generated by a world in which the hypothesis does not hold ("background")

The scientific method in the trenches

- Rutherford: "If your experiment needs statistics, you ought to have done a better experiment"
- Without statistics, science would be over
 - we went out of slam dunk infinite significance ("background free") hypotheses
 - phenomena are inherently noisy: nobody has seen or will ever see a Higgs boson

1 (i) rsos.royalsocie	ypublishing.org	content/1/3/3	140216						
HE ROYAL	SOCIET	Y	-			y	f	You Tube	1
	~~~~					search			Q
OYAL	SOC	NCE	Y					A	Advanced
Home Conte	nt Infor	mation for	About us	Sign up	Submit				
An inves	tigatio	n of th	e false d	liscove	ry rate	and the			
An inves misinter David Colque Published 19 Nove	tigatio pretatic oun mber 2014. De	n of the on of p OI: 10.1098/rs	e false d -values sos.140216	liscove	ry rate	and the	•		
An inves misinter David Colque Published 19 Nove	tigatio pretatic oun mber 2014. De	n of the on of p OI: 10.1098/rs	e false d -values sos.140216 Review History	liscove	PDF	e and the	•		Next >
An inves     Misinter     David Colque     Published 19 Nove  Article Figures	tigatio pretatic oun mber 2014. Do	n of the on of p OI: 10.1098/rs	e false d -values sos.140216 Review History	liscove	PDF	Previous	Table	of Contents	Next >
An inves misinter David Colque Published 19 Nove Article Figures Abstract If you use p=0.02	tigatio pretatic oun mber 2014. Do Data Info	n of the on of p OI: 10.1098/rs & Metrics	e false d -values sos.140216 Review History	you will be	PDF	Previous	Table of About	of Contents the Cover	Next >
An inves     misinter     David Colque     David Colque     Published 19 Nove  Article     Figures      Abstract      If you use p=0.0      wrong at least 30	tigatio pretatic oun mber 2014. Do 2 Data Info	n of the on of p OI: 10.1098/rs & Metrics	e false d -values	you will be ments are	PDF	Previous	Table o About Index I	of Contents the Cover by author	Next >

#### THE P-VALUE CONTROVERSY

#### But the main problem is a tautology: if none of your hypotheses are true, all your positives are false

But of course: if all your hypotheses are true, you are not exploring
## GUIDELINES

- Register all experiments and publish negatives
- Don't do underpowered experiments
- Put the significance bar high enough
- Test only "plausible" hypotheses



- What is a **plausible but non-trivial** hypothesis?
- How to measure plausibility?
- How to generate them (automatically)?
- How are hypotheses related to prior/current knowledge?

## GENERATIVE MODELS IN ML

## Interesting tools but it's a whole new ballgame and paradigmatically we are in the dark

Train on digits, test on letters

## Train on all music up to the Beatles, test on Sex Pistols

## Train on all phones up to 2006, test on the iPhone

#### Train on all scientific knowledge up to Einstein, test on relativity theory

## CAN WE GENERATE NEW TYPES?



## Some written stuff

https://medium.com/@balazskegl/the-epistemological-challenges-of-automating-ab-testing-or-how-will-ai-do-science-b724f8217811#.q041gyvkt

#### https://arxiv.org/abs/1606.04345

#### http://openreview.net/forum?id=ByEPMj5el



## FIFTH TAKE-HOME MESSAGE

# Scientific knowledge representation and hypothesis generation is where real AI will go

## Thank you!