# Results from IceTop: The Surface Array of the IceCube Observatory

**Hershal Pandya** 

20<sup>th</sup> March 2020 Vrije Universiteit Brussel / IIHE (Previously @ University of Delaware / Bartol)

### Outline

### Background

- IceCube and IceTop
- Cosmic-ray measurements
  - Spectrum and Composition
  - Low Energy Spectrum
  - ♦ GeV Muon Density

#### PeV Gamma-ray Searches

- Motivation
- Diffuse Emission from Galactic Plane
- Point Sources

- Muon Neutrino Search using IceTop as Veto
  - Motivation
  - Veto Efficiency of IceTop
  - Neutrino Candidates
- Future of IceTop
  - Scintillator and Radio Array
    - Non Imaging Air Cerenkov Telescopes

# Outline

### Background

- IceCube and IceTop
- Cosmic-ray measurements
  - Spectrum and Composition
  - ♦ Low Energy Spectrum
  - ♦ GeV Muon Density
- PeV Gamma-ray Searches
  - ♦ Motivation
  - ♦ Diffuse Emission from Galactic Plane
  - ♦ Point Sources

- Muon Neutrino Search using IceTop as Veto
  - ♦ Motivation
  - ♦ Veto Efficiency of IceTop
  - ♦ Neutrino Candidates
- ♦ Future of IceTop
  - ♦ Scintillator and Radio Array
  - Non Imaging Air Cerenkov Telescopes

### **Cosmic Rays**

 $10^{-4}$ 

sr s GeV)]  $10^{-8}$ 

[1/(m<sup>2</sup>

 $10^{-10}$ nuclei)

#### **Cosmic Ray Spectra of Various Experiments**

Ionized nuclei and e<sup>+</sup>, e<sup>-</sup>, p

- Relativistic energies : 10<sup>6</sup> -10<sup>20</sup> eV
- ♦ E<sup>-2.7</sup> / E<sup>-3.0</sup> spectrum
- **CR** composition



# Extensive Air Showers



# Extensive Air Showers



### **Air Shower Characteristics**



Photon, proton showers reach their maximum size deeper into atmosphere as compared to heavier nuclei



Photon showers have fewer GeV muons and even fewer TeV muons

### Neutral Messengers: $\gamma$ -rays and $\nu's$

р

р

 $v_{\mu}$ 

 $\rho^+$ 

 $\overline{v}_{\mu}$ 

 $V_{\rho}$ 

р

Shock acceleration

#### Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

.

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

#### Earth

٠

V ....

air shower

Cosmic rays They are charged particles and are deflected by magnetic fields.

# Outline

### Background

### IceCube and IceTop

- Cosmic-ray measurements
  - Spectrum and Composition
  - ♦ Low Energy Spectrum
  - ♦ GeV Muon Density
- PeV Gamma-ray Searches
  - ♦ Motivation
  - ♦ Diffuse Emission from Galactic Plane
  - ♦ Point Sources

- Muon Neutrino Search using IceTop as Veto
  - ♦ Motivation
  - ♦ Veto Efficiency of IceTop
  - ♦ Neutrino Candidates
- ♦ Future of IceTop
  - ♦ Scintillator and Radio Array
  - Non Imaging Air Cerenkov Telescopes

### IceCube Observatory



#### **Detection Principle**

Measure Cerenkov radiation emitted by particles moving at speeds greater than the speed of light in the medium (Ice)

### IceTop Surface Air Shower Array



### Air Shower Event in IceCube & IceTop



#### Red→ Early, Blue→ Late



### IceTop Response To Shower Components



### IceTop Energy Reconstruction

#### Lateral Distribution Function

$$S(R) = S_{125} \left(\frac{R}{125 \ m}\right)^{-\beta - \ 0.303 \ \log_{10}(\frac{R}{125 \ m})}$$







FIG. 7. Relationship between  $S_{125}$  and primary energy: updated version of Figure 4 from [5], for primary protons at high  $(\cos(\theta) \ge 0.95)$  zenith angles.

# Outline

### Background

- IceCube and IceTop
- Cosmic-ray measurements
  - Spectrum and Composition
  - Low Energy Spectrum
  - ♦ GeV Muon Density
- PeV Gamma-ray Searches
  - ♦ Motivation
  - ♦ Diffuse Emission from Galactic Plane
  - ♦ Point Sources

- Muon Neutrino Search using IceTop as Veto
  - ♦ Motivation
  - ♦ Veto Efficiency of IceTop
  - ♦ Neutrino Candidates
- ♦ Future of IceTop
  - ♦ Scintillator and Radio Array
  - ♦ Non Imaging Air Cerenkov Telescopes

### Measuring Spectrum and Composition



Air shower muons with energy > 500 GeV will deposit energy in IceCube

Hershal Pandya https://doi.org/10.1103/PhysRevD.100.082002 16

### Measuring Spectrum and Composition



### Measuring CR Spectrum below PeV

#### Triggering on InFill stations with separation < 50 m



### GeV Muon Density Measurement





Hershal Pandya https://doi.org/10.1051/epjconf/201920803003 19

### GeV Muon Density Measurement



Figure 8. Measured muon density divided by the muon density in air showers for a pure-proton flux and scaled by the difference between iron and proton (see equation 4). Hershal Pandya https://doi.org/10.1051/epjconf/201920803003

20

# Outline

### Background

- IceCube and IceTop
- Cosmic-ray measurements
  - Spectrum and Composition
  - ♦ Low Energy Spectrum
  - ♦ GeV Muon Density

#### PeV Gamma-ray Searches

- Motivation
- Diffuse Emission from Galactic Plane
- Point Sources

- Muon Neutrino Search using IceTop as Veto
  - ♦ Motivation
  - ♦ Veto Efficiency of IceTop
  - ♦ Neutrino Candidates
- ♦ Future of IceTop
  - ♦ Scintillator and Radio Array
  - Non Imaging Air Cerenkov Telescopes

### PeV $\gamma$ -rays Produced At CR Acceleration Sites



### PeV $\gamma$ -rays Produced in CR collisions with ISM



### PeV $\gamma$ -ray Attenuation

Gamma rays pair produce via interaction with background radiation fields

- ♦ Infra-red (IR)
- Cosmic microwave background (CMB)

↔ γ + γ<sub>CMB</sub> → e<sup>+</sup> e<sup>-</sup> dominates in PeV regime

- Attenuation is most significant at  $\sim$ 2 PeV where IceCube is most sensitive to  $\gamma$ -rays
- Only Galactic PeV  $\gamma$ -rays can be observed

PeV  $\gamma$ -rays from Galactic center



### Classify $\gamma$ -ray and CR showers

Expected fraction of  $\gamma$ -rays in the IceCube air shower data is less than 1 for every 10<sup>4</sup> CR showers ! (:: CASA-MIA result)

What shower properties separate  $\gamma$ -rays from CRs?

### $\gamma$ -ray Candidate in IceCube

### $\gamma$ -ray Simulation **Proton Simulation Shower Footprint** Differences Due to Depth of Shower Maximum , Local Charge Fluctuations, GeV Muon count TeV Muon Count

### IceTop Radial Distribution of Charges

- Distribution of tank charges as a function of distance to the shower core
- ↑ Primary Mass ⇒ ↑ Muons , ↓ Slope, ↑ Local Charge Fluctuations

 $0.8 \le \log_{10} (S_{125}) < 0.9$  i.e.  $\approx 6.3$  PeV

 $0.85 \le \cos(\theta) < 0.9$ 



### IceTop Log-likelihood Ratio (IT-LLHR)

Log-likelihood ratio for event classification between class A and B is defined as,

- $\diamond \quad \Lambda_{A,B} = \log_{10} \left( \frac{L_A}{L_B} \right)$
- $\diamond \ L_{A} = \prod_{i=1}^{162} P(q_{i}, t_{i}, r_{i} \mid H_{A})$
- ♦ P = probability for observing an IceTop tank with  $q_i$ ,  $t_i$ ,  $r_i$  under hypothesis  $H_A$

IT-LLHR gives the degree to which an event favors one class over the other

For IceTop, the hypotheses are normalized histograms (PDFs) in charge/ time/ distance dimensions.

### IceTop Log-likelihood Ratio (IT-LLHR)



Hershal Pandya https://doi.org/10.3847/1538-4357/ab6d67

### **Combined IT-LLHR**

 $\Lambda_{CR,\gamma} = \Lambda_{CR,\gamma}(Q R) + \Lambda_{CR,\gamma}(Q \Delta T) + \Lambda_{CR,\gamma}(\Delta T R)$ 



- Can also use these PDFs :  $\diamond$ 
  - Charge Vs Time ( $Q \Delta T$ )
  - Time Vs Radius ( $\Delta T R$ )

### IceTop + IceCube Gamma-Hadron Separation

- The total charge from the In Ice Muon:  $Q_{InIce}$
- The following features are used in a Random Forest classifier:
  - $\label{eq:constraint} \begin{array}{l} \diamond \quad \log_{10}(S_{125}), \ \cos(\theta) \ , \ \Lambda_{CR,\gamma}, \ \mathsf{Q}_{\mathsf{Inlce}} \\ \ , \ \mathsf{C} \end{array}$
  - C = parameter for shower axis' containment within in-ice array
  - A sample of  $\gamma$ -ray like events is obtained based on the random forest score
    - Optimised to increase sensitivity in sky searches



### Sky Searches for PeV Gamma Rays

Unbinned maximum likelihood search for :

- Point Sources in IceTop Field of View i.e. declination -90° to -55°
- Diffuse emission from the Galactic plane
- Femplate used for diffuse emission expectation:
  - Neutral pion decay component from the fit to Fermi-LAT's data



### **Diffuse Emission From Galactic Plane**



Hershal Pandya https://doi.org/10.3847/1538-4357/ab6d67

### **Result from Point Source Search**

No evidence of a point source in all sky search

#### Analysis Sensitivity to Point Sources

Maximum E<sub>cutoff</sub> for some of the sources



### Outline

- Background
- IceCube and IceTop
- Cosmic-ray measurements
  - ♦ Spectrum and Composition
  - ♦ Low Energy Spectrum
  - ♦ GeV Muon Density
- PeV Gamma-ray Searches
  - ♦ Motivation
  - ♦ Diffuse Emission from Galactic Plane
  - ♦ Point Sources

- Muon Neutrino Search using IceTop as Veto
  - Motivation
  - Veto Efficiency of IceTop
  - Neutrino Candidates
- ♦ Future of IceTop
  - ♦ Scintillator and Radio Array
  - ♦ Non Imaging Air Cerenkov Telescopes

### IceCube's High Energy v Sample

Veto atmospheric (air shower) muons by requiring interaction inside the fiducial volume Atmospheric  $\nu$  flux drops below Astrophysical flux above  $E_{\nu} \approx 10^5$  GeV



### IceTop For v Search

- High energy  $\nu's$  cannot pass through Earth
  - ♦ E<sub>v</sub>>100 TeV, 30% neutrinos from sin(declination) = 1 will survive
  - ♦  $E_{\nu}$ >1000 TeV, o% survive



### IceTop For v Search

Using IceTop can allow detection of  $\nu's$  that interact above IceCube's fiducial volume

- Basic Principle :
  - Look for IceTop hits correlated to the reconstructed in-ice muon track
- IT-LLHR developed for Gamma-Hadron further improved and applied here

Events required to have:

- Axis passing through both IceTop and InIce
- Bright muon track in ice for good angular reconstruction (effectively E<sub>CR</sub>>100 TeV)



### Construction of IceTop v Hypothesis

- What does a neutrino event look like in IceTop?
  - Has non-correlated background hits.
- Constructing Neutrino-like IceTop event:
  - Take a regular cosmic ray muon event
  - Erase its IceTop hits
  - Periodic (every 30 s) unbiased recording of IceTop (for 10 ms) contains background hits
    - …from stray muons or particles from very low energy air showers
    - Copy-Paste a snapshot of these background hits onto IceTop



Hershal Pandya https

### IT-LLHR 3D PDFs



### **IT-LLHR Performance**

- Classification cut fixed using LLHR distribution for Neutrino-like events (Blue histogram)
  - 80% Nu-like retention for log(MuEx)< 5.2</li>
  - 100% Nu-like retention for log(MuEx)>=5.2



Hershal Pandya https://pos.sissa.it/358/445/

### Veto Efficiency of IceTop

 $2 \times 10^{-5}$  to  $5 \times 10^{-6}$  reduction in atmospheric background at Energy Proxy (MuEx) = 80 TeV i.e. minimum Neutrino Energy of 100 TeV



### Neutrino Candidate



230 TeV Energy Proxy (MuEx) i.e. 1 PeV (median) neutrino primary Or 10-30 PeV cosmic ray primary

# Outline

### Background

- IceCube and IceTop
- Cosmic-ray measurements
  - ♦ Spectrum and Composition
  - ♦ Low Energy Spectrum
  - ♦ GeV Muon Density
- PeV Gamma-ray Searches
  - ♦ Motivation
  - ♦ Diffuse Emission from Galactic Plane
  - ♦ Point Sources

- Muon Neutrino Search using IceTop as Veto
  - ♦ Motivation
  - ♦ Veto Efficiency of IceTop
  - ♦ Neutrino Candidates
- Future of IceTop
  - ♦ Scintillator and Radio Array
    - Non Imaging Air Cerenkov Telescopes

### Future of IceTop

Snow accumulation over the years raises the trigger threshold of IceTop

- Scintillator panels will lower the trigger threshold as well as help characterize effect of snow on IceTop tanks
- Inherent drawback of surface particle detectors:
  - Capture a snapshot of the shower
  - Interpretation dependent on hadronic interaction models used during simulations

Solution: Measuring calorimetric energy deposition by electromagnetic part of the shower

- ♦ Radio Antennae
- Non Imaging Air Cerenkov Telescopes

### Planned Scintillator + Radio Extension

- Scintillators required for triggering
- Radio would provide calorimetric energy estimate, Xmax reconstruction
- Prototypes of scintillator panels, antennae, DAQ, being tested currently.
- More Details: https://pos.sissa.it/358/ 418/



**Figure 1:** Conceptual layout of the scintillator-radio hybrid array (left) comprised of 32 stations (right). Each station consists of 8 scintillation panels arranged in pairs, one pair at the center of the station where the local data-acquisition is located in an elevated field hub, and three pairs at 72 m distance from the station center. Along the same spoke-trenches to these scintillators, three radio antennas with two polarization channels each will be deployed in 35 m distance to the center.

### Non Imaging Air Cerenkov Telescopes

- Can trigger without scintillators but IceTop/IceCube hits required for proper shower reconstruction
- Prototype being developed for South Pole environment, array configuration not yet fixed.
- Will provide independent air shower composition measurements
- Can lower energy threshold for veto of air showers
  - Shower might decay before reaching lceTop surface
  - Cerenkov emission higher up in the atmosphere is still measurable
- More details: arXiv:1910.06945v2



(a) IceAct roof-telescope on the roof of the Ice-Cube Laboratory (ICL) in the antartic winter 2019.



Figure 1: Drawing of the IceAct telescope design. The IceAct demonstrator of 2016 was equipped with a 7-pixel camera with 4° field-of-view and was deployed at the South Pole on the roof of the ICL. In the figure a 61 pixel version of the camera is shown which is the current default design of IceAct.

### Thank you.