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1.   Neutrino physics  
ü  Introduction 
ü  Opened questions  
ü  Neutrino detection with liquid-scintillator based detectors 

2.   Borexino  
q Detector 
q Solar neutrinos 

ü  Motivation 
ü  Latest results from Borexino 

q Geoneutrinos 
ü  Motivation 
ü  Latest results from Borexino 

3.   JUNO 
ü  Reactor neutrino experiments at different baselines 
ü  JUNO experiment 
ü  JUNO physics potential: mass hierarchy and not only   



NEUTRINOS ARE SPECIAL 
Only weak interactions 

ü  Difficult to detect  
o  Large detectors 
o  Underground laboratories 
o  Extreme radio-purity 

ü  Bring unperturbed information 
about the source (Sun, Earth, SN) 

Open questions in neutrino physics 
ü  Mass Hierarchy  
     (Normal vs Inverted) 

o  CP-violating phase 
o  Octant of θ23 mixing angle 
o  Absolute mass-scale 
o  Origin of neutrino mass  
     (Dirac vs Majorana) 

ü  Existence of sterile neutrino 

Δm2
31= has opposite signs in the two hierarchies!   
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i = 1, 2, 3 
Mass eigenstates 
PROPAGATION 

α  = e, µ, τ 
Flavour eigenstates 
INTERACTIONS 

NEUTRINO MIXING AND OSCILLATIONS 
•  3 mixing angles θij:  

o  θ23  ≈ 45° (which quadrant?) 
o  θ13 ≈ 9°  (non-0 value confirmed in 2012)
o  θ12  ≈33° 

•  Majorana phases α1 , α2  and CP-
violating phase δ  unknown 

•  Neutrino oscillations 
o  Non-0 rest mass (Nobel prize 2015) 
o  Survival probability of certain flavour = 

f(baseline L, Eν) 
o  Different combination (L, Eν) => 

sensitivity to different (θij, Δmij
2) 

o  Appearance/disappearance 
experiments 

o  Oscillations in matter -> effective (θij, 
Δmij

2) parameters = f(e- density Ne, Eν) 
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1  has opposite signs in the two hierarchies!   

v Atmospheric Reactor Solar Majorana 



NEUTRINO SOURCES 
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MeV (ANTI-)NEUTRINO DETECTION WITH LIQUID SCINT. 
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νe 
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e- 
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Z + 

νe,µ,τ

Neutrino detection: SINGLES 
•  Elastic scattering of electrons 
•  No threshold 
•  All flavours  

Antineutrino detection: Coincidences (BGR suppression) 
•  Inverse beta decay (IBD) 
•  Charge current, e-flavour only 

Energy threshold = 1.8 MeV 
Electron flavour only 
σ@ few MeV: ~10-42 cm2  

(~100 x more than scattering) 
 

Eprompt = Evisible  

           = Te+ + 2 x 511 keV 

           ~ Eantinu – 0.784 MeV 

νe 
e+ 

p 

W 

n 

σ(νe) ~5-6 x higher 
(both Z and W contributions) 



BOREXINO COLLABORATION 
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~100 scientists 
from 
•  Italy 
•  Germany 
•  Russia 
•  France 
•  USA 
•  Poland 



BOREXINO DETECTOR 
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278 ton 
liquid scintillator 

Laboratori Nazionali del Gran Sasso, Italy 

Operating since 2007 

3600 m.w.e 
4300 muons/day 
crossing  the inner detector 

NIM A600 (2009) 568 

•  the world’s radio-purest LS detector 
       < 9 × 10-19 g(Th)/g , < 8 × 10-20 g(U)/g 
•  ~500 hit PMTs / MeV 
•  energy reconstruction: 5 keV (5%) @ 1 MeV 
•  position reconstruction: 10 cm @ 1 MeV 
•  pulse shape identification (α/β, e+/e-) 
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BOREXINO CALIBRATION 
JINST 7 (2012) P10018 

Internal calibration 
•  ~300 points in the whole 

scintillator volume 
•  LED-based source 

positioning system 

 
 
 
 
 

External calibration 
9 positions with 228Th source 
                         (γ 2.615 MeV) 

Laser calibration 
•  PMT time equalisation 
•  PMT charge calibration 
     (charge calib. also using 14C) 

Optical 
fibers 
reaching 
each 
PMT 



BOREXINO MONTE CARLO 
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Astrop. Phys. 97 (2018) 136 

γ peaks from internal calibration 

Geant-4 based 

Tracking code 
•  Full detector geometry 
•  Energy loss  
•  Photon production & propagation 

C++ Borexino custom 

Electronics simulation 
•  Follows real DAQ conditions 
•  PMT quality and calibration 
•  Dark noise 
•  Trigger condition 
•  Number of working channels on an 

event-by-event basis 

Echidna: C++ Borexino custom 

Reconstruction 
•  Several energy estimators 
•  Position reconstruction 
•  Pulse-shape variables 
•  Output in the same format as 

reconstructed data files 

•  Tuning on calibration data. 
•  Independently measured input parameters: 

emission spectra, attenuation length, PMT 
after-pulse, refractive index, effective quantum 
efficiencies. 

•  Biasing technique for external background. 
•  Simulation of pile-up events. 

Better than 1% (1.9%) precision  
for all relevant quantities in the solar analysis <2 (>3) MeV 
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SOLAR NEUTRINOS 



SOLAR NEUTRINOS AND WHY TO STUDY THEM 
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Solar and stellar physics 
•  Direct probe of nuclear fusion 
•  Testing thermodynamical stability of the Sun 
•  Standard Solar Models  

ü  Helioseimology 
ü  High-Z and Low-Z models (different φν prediction) 
ü  Metallicity problem 

Neutrino physics 
•  Survival probability as f(Eν) and its upturn 
•  Matter effects 
•  Testing LMA-MSW predictions 
•  Searches for Non-standard Neutrino Interactions 
•  Solar mixing angle θ12  and global fits of oscillation 

parameters 

4p + 2e- -> 4He + 2e+ + 2 νe + 26.7 MeV 
99% energy 

LS detectors WCh 



BOREXINO MILESTONE RESULTS 
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•  Geoneutrinos (2010, 2013, 2015) 
•  Search for solar, astro anti-ν 

(2011) 
•  Test of electric charge 

conservation (2015)   
•  Limit on ν-magnetic moment 

(2017) 
•  Search for solar axions (2008, 

2012) 
•  Search for coincidence with 

GRB’s (2016) 
•  Search for coincidence with 

GRB’s (2016) 
•  Search for coincidence with 

GW’s (2017) 
Courtesy A. Pocar, PIC 2018 



LATEST BOREXINO RESULTS Nature Oct 25th 2018 

NEW Spectroscopy of all pp-cycle neutrinos at once 
Low Energy Region (LER) 0.19 – 2.93 MeV: 
       pp (9.5%), 7Be (2.7%), pep (>5σ) 
High Energy Region (HER) 3.2 – 16 MeV: 
       8B (3 MeV threshold, 8%) 
•  First Borexino limit on hep neutrinos 
•  Limit on CNO cycle neutrinos 
•  Neutrino and photon luminosity in agreement 

•  Indication towards HZ Standard Solar Models 
•  BR(ppII/ppI)=<3He+4He>/<3He+3He> = 0.18+0.03 
•  Survival probabilities at different energies in both 

vacuum and matter domains 
•  Vacuum-LMA model excluded at 98.2% CL 



LOW ENERGY REGION (LER): MULTIVARIATE SPECTRAL FIT 

Page 16 

Results on pp, 7Be, pep, and limit on CNO solar neutrinos 

2 energy spectra 
TFC-subtracted:  

 64% of exposure, 8% of 11C 
TFC-tagged:  

 36% of exposure, 92% of 11C 
 

Pulse-shape distribution  
11C(e+)/e- discrimination  
Constraining 11C in the TFC-subtracted 
spectrum 
 

Radial distribution:  
To better disentangle external 
background from internal signal 

•  1291.51 days of Borexino Phase II 
•  Selection cuts in 71.3 ton FV  

MC-based  and analytical fit of the 
energy spectra 
•  Complementarity 
•  Thousands of fits 
•  Differences included in sys error 

e- 
internal 

e+ 

11C 
 bump 



SYSTEMATIC ERRORS IN LER 
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Fit models: 
the shapes of fit functions are varied 
within the uncertainties allowed by the 
calibration data. 
Fit methods: 
analytical approach versus Monte Carlo 
approach.  
Energy estimators 
#triggered PMTs in a fixed time window, 
#of hits, #photoelectrons. 
Pile-up modelling: 
Synthetic pile-up vs convolution with with 
random data spectrum. 
85Kr constraint: 
Constrained based on the 85Kr -> 85mRb 
fast coincidence (BR = 0.43%). 
Fiducial Volume: 
Position reconstruction precision based 
on calibration data. 



14C-DOMINATED PILE-UP 
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Method A: convolution of all spectral 
shapes with random data spectrum 
(mostly visible as a kink in 14C spectrum) 

Method B: synthetic pile-up as a separate PDF, 
with constrained shape and rate  
(1. MC- and 2. data- based PDF construction)  

Critical for pp neutrinos: multiple events reconstructed as a single event 

Borexino has 10-18 g/g of 14C 
 

40 + 2 counts / s / 100 ton 

MC- and data- based pile-up spectra 
       and its main components 



THREE-FOLD COINCIDENCE (TFC) TO TAG 11C 
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Critical for pep and CNO neutrinos 

µ + 12C à  µ + 11C + n  

n + p à d + γ (2.2 MeV)             
τ ∼ 260 µs   

11C à  11B + e+ + νe 
τ ~ 30 min 

µ Cylindrical cut  
around µ-track 

Exposure divided to 2 categories: 
TFC-tagged (36% of exposure, 92% of 11C) 
TFC-subtracted (64% of exposure, 8% of 11C) 

Muon detection ε = 99.992%: 
•  Outer Detector triggers 
•  Cluster of hits in Outer 

Detector data 
•  Pulse-shape of Inner 

Detector data 

Likelihood that a certain event is 11C  
uses in input time and space correlations 
between subsequent muons and 
cosmogenic neutrons. 

Neutron detection:  after each ID µ, 1.6 ms gate is opened 
to detect neutrons: example with several tens of neutrons. 

n-capture 



ELECTRON-POSITRON PULSE SHAPE DISCRIMINATION 
 Critical for pep and CNO neutrinos 

Pulse shape estimator: 
normalized likelihood of the position 
reconstruction algorithm that uses light 
emission profiles for electrons. 

e- e+ 

Used to pin-down the remaining 11C(e+) 
in the TFC-subtracted spectrum. 

Single ortho-positronium event,  
in which annihilation occurs  ~10 ns 
after o-Po formation. 

in ~50% of the cases, e+ annihilation is delayed 
by ortho-positronium formation (τ ~3ns); 
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HIGH ENERGY REGION (HER) ANALYSIS 
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Results on 8B solar neutrinos 

•  no natural radioactivity  
expected above 5 MeV 
•  benchmark: compatibility 

with SNO and SuperK 

Analysis in 2 energy regions 

HER1  
~3-5 MeV 
FV: 266 t   

HER2  
~5-17 MeV 
FV:  227.8 t 

Backgrounds after selection cuts 
(neutron, cosmogenics, TFC(10C), 
214Bi-214Po, random coincidence)  
 
 
 
 
 
 

HER1  
ü  cosmogenic 11Be 
ü  208Tl (bulk , emanation 

and vessel surface) 
ü  γ’s from n-captures 

HER2  
ü  cosmogenic 11Be 
ü  γ’s from n-captures 

•  Almost all scintillator volume used in the analysis. 
•  Factor 2 improvement wrt PRD 82 (2010) 033006. 
•  5x lower internal 208Tl background estimated from 

212Bi-212Po coincidences within 3 m radius. 
•  Two components of the external 208Tl background: 

pure surface (from IV) and due to 220Rn emanation. 
•  Identified new source of background: γ’s from 

neutrons captured on materials different than H,C. 
The source of neutrons are (α,n) reactions and 
fissions from U and Th chains. 

•  New estimation of the 11Be background compatible 
with 0. 



RADIAL FITS IN HER1 AND HER2 
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No use of energy spectra is a choice:  no assumptions on the Pee(Eν) shape 

HER1: ~3-5 MeV HER2:  ~5-17 MeV 

8B 
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RESULTS AND SYSTEMATIC ERRORS IN HER 

Page 23 

Additionally studied: 
•  PDF’s radial distortion +3%. 
•  Emanation vessel shift +1%. 
•  Distortion of the emanation PDF’s. 
•  Binning dependence. 



BOREXINO QUEST FOR CNO SOLAR NEUTRINOS 

F. Villante et al., Phys. Lett. B 701 (2011) 

•  Nylon vessel holding the scintillator is a source of 210Po 
ü  diffusion slow -> 210Po cannot penetrate to the FV 
ü  block convection -> thermal stabilisation 

R(210Po, Dec 2011) ~1400 cpd/100 ton 
R(210Bi, Phase II) = 17.5 + 1.9 cpd/100 ton  fit with CNO constrained to SSM 

210Bi and CNO correlated 
•  external constraint on 210Bi from 210Po (time) needed 

Seasonal effect 
Thermal stabilisation 

? 

Strategy 
•  identify portion of the 

detector in which 
210Bi rate low, stable, 
and known 

•  additional water 
extraction campaign 
for further 210Bi 
reduction possible 

nPo (t) = [nPo,0 – nBi] exp(-t/τPo) + nB:  at regime R(210Po) = R(210Bi)   
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GEONEUTRINOS 



GEONEUTRINOS AND WHY TO STUDY THEM 

Abundance of 
radioactive 

elements 

Radiogenic  
heat 

(Main goal) 

Distribution of radioactive elements 
(models) 

Geoneutrino flux To predict: 
From geoneutrino 
measurement: 

Nuclear physics 

  (3-25 TW) 

can help! 

 Surface heat flux: 47 + 3 TW 
 

(based on the measured 
temperature gradients along 30,000 
bore holes around the globe) 

Earth shines in antineutrinos: flux ~106 cm-2 s-1  
leaving freely and instantaneously the Earth interior 

(to compare: solar neutrino (NOT antineutrino!) flux ~1010 cm-2 s-1) 



DETECTING GEONEUTRINOS (IBD with LS-detectors) 
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Only 2 experiments have measured geoneutrinos: 
•  Borexino in Gran Sasso, Italy (280 ton LS) 

ü  CONTINENTAL CRUST 
•  KamLAND in Kamioka, Japan (1000 ton LS) 

ü Border between OCEANIC / CONTINENTAL CRUST 

The signal is small, we need big detectors! 

Expected “known” crustal signal 

1 TNU = 1 event / 1032 target protons / year 
Cca 1 event /1 kton /1 year, 
100% detection  efficiency 

50 TNU 

MANTLE = Bulk Silicate Earth model – CRUST 

KamLAND 
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1.8 MeV kinematic threshold 

40K  
below the 
threshold 

•  IBD cross section 
•  U/Th in chondritic ratio 

GEONEUTRINOS ENERGY SPECTRA 
 
 



BACKGROUNDS  

Seite 29 

Limestone rock 

µ µ µ µ

n 
n 

n 
n, 
9Li,8He 

1) Cosmogenic background 

•  9Li and 8He (T1/2 = 119/178 ms)      
• decay: β(prompt) + neutron (delayed); 
•  fast neutrons  
  scattered protons (prompt) 
Estimated by studying coincidences detected 
AFTER muons. 

2) Accidental coincidences; 
Estimated from OFF-time coincidences. 

3) Due to the internal radioactivity:  
 (α, n) reactions: 13C(α, n)16O  
Prompt: scattered proton, 12C(4.4 MeV) & 16O (6.1 MeV)  
Estimated from 210Po(α) and 13C contaminations, 
cross section. 

A) Reactor antineutrino background 

B) Non-antineutrino background 



BOREXINO GEONEUTRINO RESULTS AND ANALYSIS 
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PRD 92 (2015) 031101 (R)  

ü    Non-antineutrino background  almost invisible! 
ü  5.5 x 1031 target-proton year 

~1 MeV ~7 MeV 

Borexino 2015: 23.7 +6.5 (stat) +0.9 (sys) geonu’s 

First geologically significant results available but 
more statistics needed! 
Important new tool for future experiments 

> 5σ CL 

•  Unbinned maximum likelihood fit of 77 candidates. 
•  Non-antineutrino background almost negligible    

(< 1 event) and constrained in the fit. 
•  Reactor background left free in the fit: results 

compatible with expectations. 
•  2 kinds of fit: 

ü  U/Th left free; 
ü  U/Th constrained to chondritic value. 

•  Statistical error largely dominates systematic 
uncertainty (reactor spectra, uncertainty of 
backgrounds, and detector response). 

New update with ~20% precision under preparation. 



FIRST GEOLOGICAL INTERPRETATIONS 
•  Measured geoneutrino signal is in agreement 

with expectations, but we cannot distinguish 
among various geological models: 

    Borexino: Sgeo = 43.5 +11.8
-10.4 (stat)+2.7

-2.4(sys) TNU 
     KamLAND: Sgeo = 34.9 +6.0

-5.4 TNU 
 

•  U/Th ratio is compatible with chondritic ratio, 
but the errors are too big: 

    KamLAND: Th/U = 4.1+5.5
-3.3 

 

•  First indications of the measured non-zero 
mantle signal  

    Borexino 2015: Smantle   = 20.1+15.1
-10.3 TNU 

 

•  Idea of Herndon about the active geo-reactor in 
the Earth core excluded  

     Borexino 2010 < 3TW @95% CL 
     KamLAND 2011  < 5.2 TW @ 90% CL 

More statistics 
 

Multi-site 
experiments 
 

Experiments at 
geologically 
particular locations 
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JUNO AND REACTOR NEUTRINOS 
the strongest human-made ν-source 



TYPICAL REACTOR ANTINU SPECTRUM AND FUEL CYCLE 
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SURVIVAL PROBABILITY FOR REACTOR ANTINU 
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Full oscillation probability 



REACTOR NEUTRINO OSCILLATIONS 
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•  1950: Savannah River: discovery of 
(anti)neutrino 

•  1980+90s: ILL, Bugey... Reactor 
neutrino flux measurements 

•  2000s: KamLAND: 1st evidence for 
Δm2

12 – driven oscillations 
•  2012: Daya Bay, Double Chooz, 

RENO – non-zero θ13 mixing angle 
•  2014: Double Chooz, Daya Bay, 

RENO – “5 MeV bump” in energy 
spectrum 

•  Since 2014: Stereo, NEOS, DANS, 
PROSPECT, Double Chooz, Daya 
Bay, RENO… – reactor anomaly 
and sterile neutrinos 

•  Since 2017: Daya Bay, RENO – fuel 
vs spectral time evolution 

•  DAQ start in 2021: JUNO – mass 
hierarchy, precision θ12, Δm2

ee, astro-
particle goals 



Jiangmen Underground Neutrino Observatory 
the first multi-kton liquid scintillator detector ever 

1	

  

J. Phys.G: Nucl. Part. Phys.  43 (2016) 030401 (166 p) 



JUNO COLLABORATION 

  

JUNO Collaboration 
•  established in 2014 
•  79 institutions 
•  600 collaborators 



JUNO EXPERIMENTAL SITE 
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650 m underground 
•  Jan 10, 2015: civil constructions start 
•  June 22, 2017: slope tunnel finished 
•  July 1, 2017: vertical shaft finished 
•   Civil Construction of Experimental Hall 

ongoing 
 



ACCESS TUNNEL TO EXPERIMENTAL HALL 
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JUNO OSCILLATED SPECTRUM, MH & OSCIL. PARAM.   
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Mass Hierarchy (MH)  determination: 
First: high resolution measurement of reactor antinu 
Second: fit the (pseudo-) data with both hypothesis 
(normal and inverted hierarchies) 
Third: define Δχ2 as standard statistics 
Finally: use Δχ2 as the discriminator for design and 
optimization, as well as for the final MH discrimination  

fit with NH assumption fit with IH assumption 



JUNO SENSITIVITY TO MASS HIERARCHY 
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False MC 
True MC 



JUNO EXPERIMENTAL CHALLENGES 
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q  Resolving signature wiggles in the L/E spectrum 
•  excellent energy resolution 3% @ 1 MeV 
•  better than 1% understanding of the energy scale 
•  possible micro-structures in the spectrum under control (e.g. PRL 114 (2015) 012502) 

q  Large statistics O(100k) = large mass (20 kton) 
q  Backgrounds: radio-purity and rock overburden of ~650 m 

Stochastic terms 
(photon statistics)
 

•  High light yield (LY) 

•  Good transparency: λatt	> 20 m @ 430 nm 
•  PMT geometrical coverage: 78% 
•  PMT collection efficiency x quantum 

efficiency: ~27% 
•  Effective LY: ~1200 photoelectrons/MeV 

Systematic effects
 

•  Calibration 
ü  α/β/γ sources, light pulses, UV-laser 
ü  5 complementary systems under R&D 

•  Double calorimetry concept 
ü  large 20-inch and small 3-inch PMTs 

•  TAO – Taishan Antineutrino Observatory with 
excellent energy resolution 1.5% @ 1MeV 



JUNO DETECTOR 
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Central Detector 
20 kton LS  
~17000 20’’ PMTs + 
~25000 3’’ PMTs 

43.5 m	

MUON VETO 
Water Cherenkov 
~2000 20’’ PMTs + 



MORE ON JUNO DETECTOR 
20-inch PMTs
 

•  15k MCP-PMTs from NNVT 
•  5k dynode PMTs from Hamamatsu 
•  12k delivered 

20-inch PMTs 

LS Purification Pilot Plant
•  Prototype tested at Daya Bay
•  Low radioactivity < 10-15 g/g U/Th
•   Achieved λatt		=	23	m 
 

OSIRIS
LS monitoring 
during filling
(18 ton, 120 
10’’PMTs)
 

Readout 
electronics
Waveforms 
sampled at 1GHz
 



JUNO-TAO – TAISHAN ANTINEUTRINO OBSERVATORY 
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A ton-level, high-energy resolution LS 
detector at ~30 m from the Taishan-1 
reactor core: 
•  Reference spectrum for JUNO 
•  Benchmark for nuclear DB 

R&D ongoing
 

•  3 tons of Gd-LS 
•  10 m2 SiPM with 50% 

photon detection efficiency 
operated at -50 oC 

•  Cryogenice vessel, HDPE 
shielding, muon veto, 
calibration system 

•  10 m udnerground 
•  Plan to be online in 2020 



OTHER PHYSICS WITH JUNO 
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Geoneutrinos: 400/year! 

Super-novae neutrinos 

Solar neutrinos: 7Be, 8B 

•  Geoneutrinos
•  Solar 

neutrinos
•  SN neutrinos
•  DSNB
•  Proton decay
•  Atmospheric 

neutrino
•  Sterile 

neutrino
•  Indirect DM 

searches
•  Other exotic 

searches



JUNO TIMELINE 



SUMMARY AND OUTLOOK 
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Liquid scintillator detectors are fundamental in low-energy neutrino physics 
 

Borexino 
     Solar neutrinos: 

•  comprehensive spectroscopy of pp-chain neutrinos 
•  quest for  neutrinos from the CNO fusion cycle  
Geoneutrinos: 
•  observed geoneutrinos and provided first geological insights 
•  preparing an update with ~20% precision 

 

JUNO 
•  the first multi-kton detector ever to start DAQ in 2021 
•  reactor antineutrinos with 53 km baseline: mass hierarchy and <1% precision for θ12, Δm2

12, Δm2
ee 

•  large potential in astrophysical neutrinos and exotic searches 
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Thank you!


