Searches for Dark Matter with the ANTARES and KM3Net neutrino telescopes

S.R. Gozzini for the ANTARES and KM3NeT Collaborations

Dark Ghosts 2018 Bruxelles Belgium

November 13, 2018

Overview

Neutrino telescopes have a wide scientific target in one data set

neutrino astronomy

multi-messengers

dark matter

particle physics

 $\nu {\rm s}$ travel indisturbed but need large instrumented volume

Water with respect to ice

- ▶ more noise: radioactive ${}^{40}K$ decays, luminescence in sea
- larger scattering length: better angular resolution
- maintainable (but moving)

Field of view of ANTARES/KM3NeT complementary to IceCube

Atlas of neutrino telescopes

ANTARES

- ▶ 12 lines, 885 PMTs, 25 storeys per line, 3 PMT per storey
- ▶ 10 years of operation at 2500 m depth 40 km offshore Toulon

ANTARES

- ▶ 12 lines, 885 PMTs, 25 storeys per line, 3 PMT per storey
- ▶ 10 years of operation at 2500 m depth 40 km offshore Toulon

KM3NeT ARCA and ORCA

115 strings, 64000 PMTs (31 PMTs/DOM and 18 DOMs/string)

ARCA (2 building blocks)

string spacing: 90 m DOM spacing: 36 m

Large sparse unit, high energies

ORCA (1 building block)

string spacing: 20 m DOM spacing: 9 m

Small dense unit, low energies

Performances

ANTARES tracks ($\nu_{\mu}CC$)

KM3NeT ARCA tracks ($\nu_{\mu}CC$)

(red line is median angle between μ and ν direction)

Dark matter: indirect searches with neutrinos Candidate: WIMPs, for example SUSY neutralino

- thermally produced in the early Universe
- relic density is blocked at freeze-out
- $\blacktriangleright\,$ mass $\sim\,$ electroweak scale: $\sim\,$ GeV $< M_{WIMP} < \sim\,$ 100 TeV

Neutrino source in this case is a WIMP pair annihilation process

 \blacktriangleright can yield significant fluxes of high-energy ν

with $SM = f\bar{f}, W^{\pm}, q\bar{q}$

Relic WIMPs accumulate in massive celestial bodies like The galactic center

- highest signal expectation
- below horizon for detectors in Northern hemisphere

The sun

- sensitive to WIMP-nucleon cross-section (spin-dependent and spin-independent)
- clean signal, background well known
- less affected by halo uncertainties

The Earth

Galaxy clusters

Signal: a cluster on the source

Reproduced with pseudoexperiments: variable number of signal events from MC simulations weighted according to DM model, over a number of background events taken from RA-shuffled data

Analysis Method

Unbinned likelihood analysis

$$\log \mathcal{L}(n_s) = \sum_{i=1}^{N} \log \left[n_s \mathcal{S}(\psi_i, E_i, q_i) + n_{bg} \mathcal{B}(\delta_i, E_i, q_i) \right] - n_{bg} - n_s$$

with S, B describing the signal and background distribution of discriminating variables (angular information ψ , δ , energy estimate E, track reconstruction quality q).

Significance is computed comparing test statistics of data with distribution of pseudo-experiments with injected variable signal

Searches towards the Galactic Centre with ANTARES

$$\frac{d\Phi_{\nu}}{dE_{\nu}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2M_{\chi}^2} \frac{dN_{\nu}}{dE_{\nu}} \int_0^{\Delta\Omega} d\Omega \int_{los} \rho^2 \left(r(s, \theta, \psi) \right) ds$$

Energy distribution from the PPPC tables [arXiv:1012.4515] by Cirelli et al. based on PYTHIA + oscillations

Morphology: J-Factor

- NFW, Einasto: cuspy, result from simulations
- Isothermal, Burkert: galactic rotation curves

13/26

Ingredients - Signal / Background

Spatial: angular offset from GC drawing from J-Factor profile, in equal solid angle bins. For background: $\sin \delta$ (declination)

Analysis procedure and results

Data set: 2007-16 tracks (ν_{μ} CC events)

Physical background (atmospheric ν , mis-reconstructed atmospheric μ) are included in the likelihood

- spatial distribution: angular offset from source
- distribution of estimated energy
- reconstruction quality

Likelihood ratio as a test statistics

$$\log TS = \log \mathcal{L}(n_s)^{max} - \log \mathcal{L}(n_s = 0)$$

Blind analysis: RA of real data is randomly shuffled until end.

Limits at 90% CL are set after finding no TS compatible with dark matter pseudoexperiment distribution in 10 years ANTARES data

- Sensitvity 90% CL means missing signal *false negative* less than 10% of the times
- Discovery 3σ means excluding *false positive* less than $1-\mathcal{P}(3\sigma)$

TS distribution for hypothesis test

Unblinding results

Observations, limits etc

Most prominent channels yielding ν (assumed 100% B.R.) $\chi \bar{\chi} \rightarrow W^+ W^-, b\bar{b}, \tau^+ \tau^-, \mu^+ \mu^-, \nu \bar{\nu}$

$$\frac{d\Phi_{\nu}}{dE_{\nu}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2M_{\chi}^2} \frac{dN_{\nu}}{dE_{\nu}} \int_0^{\Delta\Omega} d\Omega \int_{los} \rho^2 \left(r(s, \theta, \psi) \right) ds$$

Observation *n* or limit μ_{90} on integrated flux $\Phi = \mu_{90} / (Acc \cdot t)$

$$\mu_{90} = \frac{\langle \sigma v \rangle}{2} \int_0^M \frac{dN}{dE} dE \frac{J}{4\pi} \frac{1}{M_\chi^2} \operatorname{Acc}(M_\chi) t$$

number of events observed = annihilation rate * average number of particles per collision * source geometry * acceptance * time

Sensitivity

Neyman approach: median upper limit at 90% CL = fake negative (signal confused with bg) less than 10% of the times. Poisson (μ , n_s) accounts for fluctuations

Acceptances

Acceptance is effective area weighted with source spectrum

$$\mathcal{A}cc(M) = \langle A_{eff}
angle = rac{\int_0^M A_{eff}(E_
u) rac{dN(E_
u)}{dE_
u} dE_
u}{\int_0^M rac{dN(E_
u)}{dE_
u} dE_
u}$$

WIMP WIMP $\rightarrow \nu \bar{\nu}$

 $\mu_{\rm 90}:$ median upper limit on number of ν

$$\int_{0}^{M} \frac{d\Phi_{\nu+\bar{\nu}}}{dE_{\nu}} = \frac{\mu_{90}}{Acc t} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2M_{\chi}^{2}} \int_{0}^{M} \frac{dN_{\nu+\bar{\nu}}}{dE_{\nu}} dE_{\nu} J_{NFW}$$
$$\frac{\#}{m^{2}s} = m^{3}s^{-1} GeV^{-2} \# GeV^{2}m^{-5}$$

Flux at detector Nr. of particles per collision

Limits on thermally-averaged annihilation cross-section

$$\frac{d\Phi_{\nu}}{dE_{\nu}} = \frac{1}{4\pi} \frac{\langle \sigma \mathbf{v} \rangle}{2M_{\chi}^2} \frac{dN_{\nu}}{dE_{\nu}} J$$

Best limits for high WIMP masses: better angular resolution and higher effective volume (GC is in Southern hemisphere \rightarrow good visibility without veto)

Sensitivity estimated for KM3NeT

Promising chances - KM3NeT ARCA phase I (24 lines) 1 year

Differential neutrino flux is related with the annihilation rate

$$\frac{d\Phi}{dE_{\nu}} = \frac{\Gamma}{4\pi d^2} \frac{dN_{\nu}}{dE_{\nu}}$$

- In equilibrium between capture and annihilation Γ = C/2 with C capture rate
- ► Flux only depends on WIMP-nucleon scattering cross section
- Very clean (BG well known); if signal \rightarrow direct interpretation
- Signal from moving source: bias-free
- Searches with neutrino telescopes crucial because sensitive at low velocities (= easier capture)

Searches towards the Sun

Sensitivities and limits on spin-dependent WIMP-nucleon cross section comparable with those from direct searches

Searches towards the Earth

WIMP capture and subsequent decay, but no equilibrium can be assumed due to low escape velocity

- \blacktriangleright WIMP scattering on Fe, Ni \rightarrow spin-independent cross section
- Easier capture for WIMPs with mass \sim nucleus
- No easy background; non competitive with direct searches

24 / 26

Searches towards the Sun with secluded DM models

DM particle *secluded* from SM matter by a mediator (GUT new gauge boson for instance). Possible signatures: double μ , direct annihilation into ν

25 / 26

Summary

- Search for dark matter profits from complementary methods: indirect searches crucial
- Limits on cross-section for WIMP pair annihilation with 10 years ANTARES data. Best limits at high WIMP masses
- Limits for spin-dependent cross-section for WIMP-nucleon interaction, complementing with those from direct searches
- New scenarios can be tested: for instance secluded DM models. Wide range of possibilities in reach for KM3NeT.
- Activities ongoing in DM group
 - searches towards the Sun with ANTARES (update on existing analysis) and ORCA
 - searches towards the galactic centre with ORCA
 - searches for secluded DM

イロト 不得 トイヨト イヨト 一日 うらの