Recent results on Dark Matter searches with the IceCube neutrino telescope

Carlos de los Heros Uppsala University for the IceCube Collaboration

DarkGhosts workshop. Brussels, November 13-14, 2018.

the IceCube Neutrino Observatory

neutrino signatures

r	\mathbf{a}	\sim	$\boldsymbol{\nu}$
		L	\mathbf{N}

 \odot CC ν_{μ}

• Angular resolution <1° • Energy resolution dE/E \approx 25%

 $\nu_{\mu} + N \to \mu + X$

- $_{\odot}$ NC or CC $\nu_{_{\rm e}}/\nu_{_{\rm T}}$
- Angular resolution pprox10°
- •Energy resolution dE/E \approx 10%

 $\nu_{\rm e} + N \to {\rm e} + X$ $\nu_{\rm x} + N \to \nu_{\rm x} + X$

amount of light in detector $\propto \nu$ energy

Double-bang

• High energy v_{τ} (>100 TeV) • Not observed yet

 $\nu_\tau + N \to \tau + X$

DM searches: energy range

These are irreducible backgrounds for DM searches

background rejection

<u>Southern Sky</u> dominated by atmospheric muons

use Earth as a filter to reject atmospheric muons from <u>Northern Sky</u>

use outer layers as a veto to select neutrino-induced starting events

detector becomes 4π , sensitive to Galactic Center and Southern sky

evidence for dark matter

dark matter searches with neutrino telescopes

 Analyses based on Likelihood techniques comparing
 Signal: modelled from simulated neutrino events weighted to the desired annihilation/decay spectrum
 Background: Estimated from data (off-source) when possible
 Signal contamination on background estimation is substracted

searches dark matter: what can be measured?

$$\Phi_{v} \rightarrow \Gamma_{A} \rightarrow C_{C} \rightarrow \sigma_{\chi p}$$

probe spin-dependent and spin-independent DM-nucleon cross section, $\sigma^{\rm SD}_{\chi-N} = \sigma^{\rm SI}_{\chi-N}$

- complementary to direct detection
- different astrophysical systematic uncertainties

 $\overline{\Phi_{v}} \rightarrow \overline{\Gamma_{A}} \rightarrow \overline{\sigma_{\chi\chi}}$

probe velocity-averaged DM annihilation cross secton $<\sigma_{ann}v>$

DM lifetime $\,\tau\,$

- complementary to searches with other messengers (γ , CRs...)
- shared astrophysical systematic uncertainties (halo profiles...)
- more background-free

external inputs in the calculations

(Xsections, form factors, branching ratios...)

(DM density, distances, velocities...)

external inputs in the calculations

uncertainties on these "known physics" affect dark matter predictions for any given model, and enter differently in different approaches

effect of using two calculations of the strangeness form factor of the nucleon

searches for dark matter from the Sun

EPJ C77 (2017)3,146

searches for dark matter from the Sun

searches for dark matter from the Sun: secluded sector

- DM annihilates to a mediator that can decay outside the Sun
- Energies of resulting particles not degraded by their passage through the Sun
- Mediator can decay to other channels, γ...
 --> possibility of "multimessenger DM searches" from the Sun

Self interacting DM

If the dark matter has a self-interaction component, $\sigma_{\chi\chi}$, the capture in astrophysical objects should be enhanced

$$\frac{dN_{\chi}}{dt} = \Gamma_{C} - \Gamma_{A} = (\Gamma_{\chi N} + \Gamma_{\chi \chi}) - \Gamma_{A}$$

(Zentner, Phys. Rev. D80, 063501, 2009)

 \rightarrow maximum annihilation rate reached earlier than in collisionless models

 $\sigma_{\chi\chi}$ can naturally avoid cusped halo profiles

can induce a higher neutrino flux from annihilations in the Sun

limits on $\sigma_{\chi\chi}$ can be set by neutrino telescopes

searches for dark matter from the Sun: super heavy DM

Super heavy DM

S+S → t t

Produced non-thermally at the end of inflation

Strong Xsection (simply means non-weak in this context)

mass from $\sim 10^4$ GeV to 10^{18} GeV (no unitarity limit since production non thermal)

l⁺. q

~3x10⁵ \sqrt{m} /10¹² tops per annihilation

$$\rightarrow N_s(m_{\rm x},\sigma_{\rm xn}) = N_t \cdot BR_{\rm w} \cdot \Gamma_A(m_{\rm x},\sigma_{\rm xn}) \cdot T \cdot \int \frac{dN_\nu}{dE} A_{eff} dE$$

searches for dark matter from the Earth

- Each string practically an independent detector
- 327 d lifetime
- Background needs to be very well understood:

Earth has an unique position with respect to the detector

- No equilibrium: assumption on the annihilation cross-section
- Limit driven by resonant capture in Earth's elements (mainly spin 0)

searches dark matter: galactic center and halo

- Several analyses by IceCube using tracks and cascades, and high and low energy samples

 Analysis with large uncertainties due to different halo model assumptions (shown NFW as benchmark)

searches dark matter: galactic center and halo

$$\frac{d\Phi(\Delta\Omega)}{dE} = \frac{\langle \sigma_A v \rangle}{4\pi \cdot 2m_\chi^2} \frac{dN}{dE} J(\Delta\Omega)$$

- High Energy Starting Event (HESE) 7-year sample allows to extend limits beyond $m_x 10^5$ GeV

- Shown $\mu\mu$ channel assuming a Einasto profile

searches dark matter: combining sister experiments

searches dark matter: neutrino-DM scattering

PRL 119, 201801 (2017)

- Scattering of high energy cosmic neutrinos on DM in the halo can lead to a deficit of high energy neutrinos from the GC

- neutrino-DM interactions mediated by a scalar or vector mediator $\boldsymbol{\varphi}.$

- limits on coupling constant, g, possible by measuring the isotropy of the $\ensuremath{\mathsf{HE}}$ neutrino flux

searches dark matter: lifetime

- Two independent analyses:
 - 6 years tracks (northern sky)
 - 2 years cascades (all sky)
- Adding limits > 10 TeV

DM decays in the Halo:

$$\frac{d\Phi^{Galactic}}{dE_{v}} = \frac{1}{4\pi m_{DM} \tau_{DM}} \frac{dN_{v}}{dE_{v}} \int_{0}^{\infty} \rho(r(s,l,b)) ds$$

DM decays in the Universe:

searches dark matter: lifetime

High Energy Starting Events (HESE) analysis 7-year data sample events with > 60 TeV energy

• Dark Matter remains one of the major open questions in physics today

 Indirect detection with neutrino telescopes provides complementarity to other techniques due to different backgrounds and systematics

A positive signal should be understood under the different messengers

- IceCube is awsome! has a lively program of dark matter searches, with competitive limits on dark matter-nucleon spin-dependent cross section and dark matter lifetime...
- ... and the potential to probe many non-standard DM scenarios.