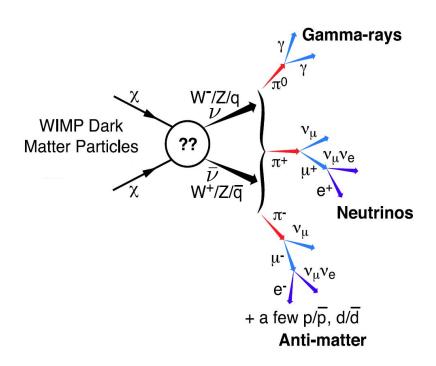
ν -lines produced by DM: a phenomenological perspective for neutrino telescopes

Thomas Hambye Univ. of Brussels (ULB), Belgium

Based on: C. El Aisati, C. Garcia-Cely, TH, L. Vanderheyden, arXiv: 1706.06600

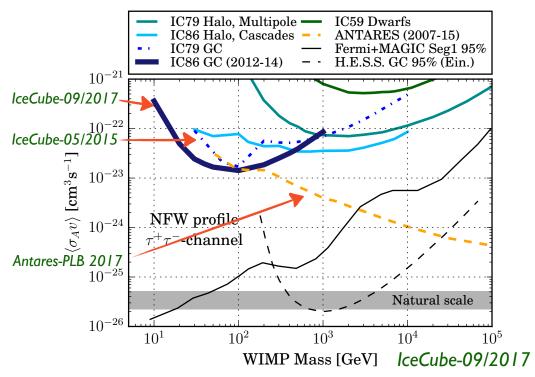

C. El Aisati, M. Gustafsson, TH, arXiv: I 506.02657

C. El Aisati, M. Gustafsson, TH, T. Scarna, arXiv: 1510.05008

C. El Aisati, TH, T. Scarna, arXiv: 1403.1280

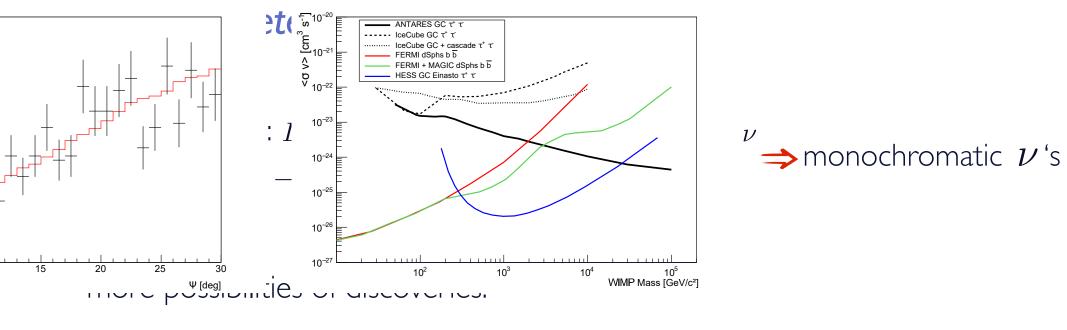
DM indirect detection with neutrinos

DM annihilation or decay in the galactic center and halo

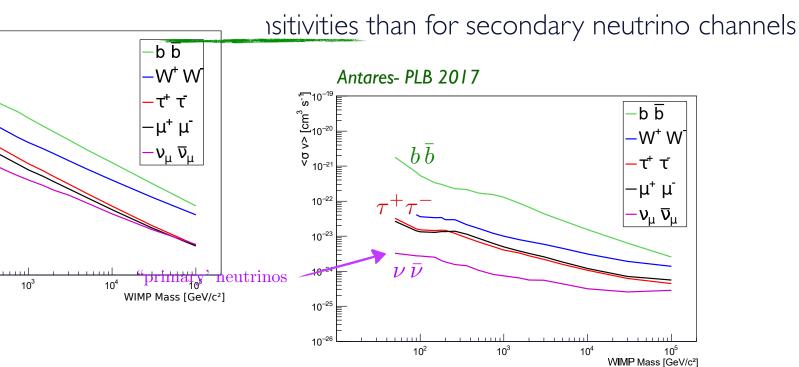


⇒ sets upper limits on a DM annihilation cross sections and lower limits on DM decay lifetime

DM indirect detection with neutrinos: charged particle channels


Most neutrino telescope analysis so far study annihilation channels where neutrinos are secondary particles: $DM DM \rightarrow \tau^+\tau^-, b\bar{b}, W^+W^-,...$

$$DM DM \rightarrow \tau^+ \tau^-$$
 example:


- ⇒ limited discovery expectations in most straightforward frameworks:
 - better limits on same channels from γ -ray telescopes except for $m_{DM} \gtrsim 10-20\,{\rm TeV}$
 - thermal DM freeze-out typically requires $m_{DM} \lesssim 10-20\,\mathrm{TeV}$
 - cross section sensitivity far from reaching the value required by thermal freeze-out

$$\langle \sigma_{annih.} v \rangle \simeq 3 \cdot 10^{-26} \text{ cm}^3/\text{s}$$

- I) monochromatic signal: much cleaner: no astrophysical background expected!

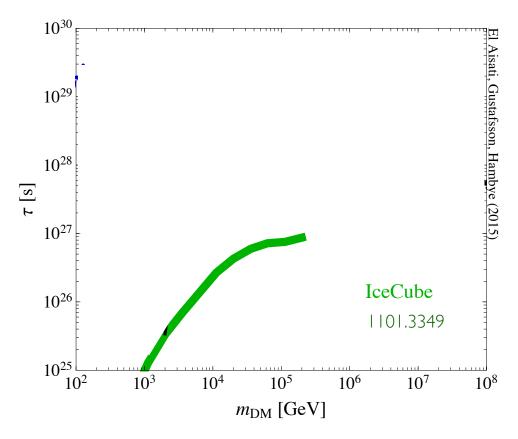
DM smoking gun!

DM indirect detection with neutrinos: ν -lines

- 3) limits on $\underline{\nu}$ channel from γ telescopes weaker than from ν telescopes!

the ν channel is competitive!

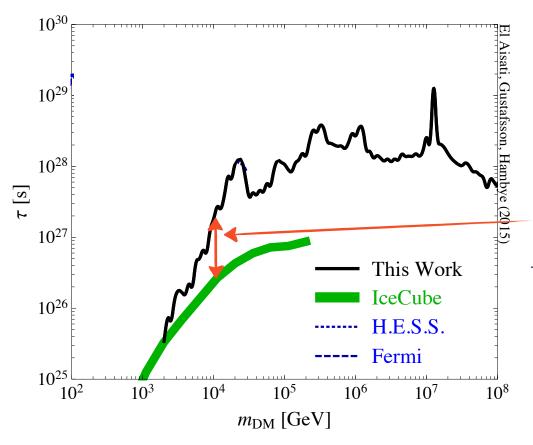
- 4) to produce a γ -line out of neutral DM one needs a loop suppressed process, unlike for producing a pair of neutrinos: boosts the ν -line % γ -line (model dependent)
- 5) further possibilities of improvements: so far the sharp spectral feature property was not exploited: a line in the ν energy spectrum



from γ telescopes the limit on γ -line channel is 2-3 orders of magnitude better than on channels with secondary photons

- 6) the decay scenario presents the further advantage that decay width not bounded from above by thermal cross section value, unlike annihilation process

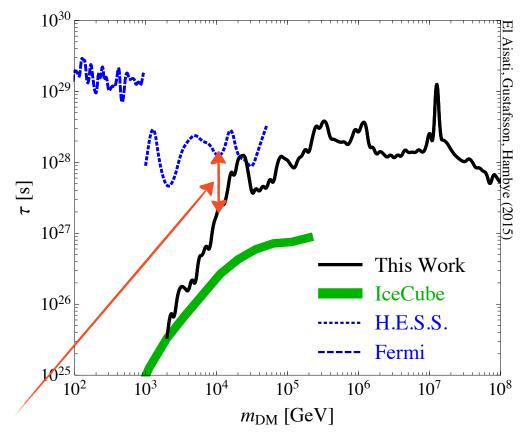
Observational situation for a decay: $\Gamma_{DM \to \nu + X}$


Long standing lower limit on DM lifetime:

clear possibilities of improvements were to be expected: bigger detector, more statistic, better identification of events, ..., and also from exploiting the sharp spectral feature property

 \hookrightarrow Observational situation for a decay: $\Gamma_{DM \to \nu + X}$

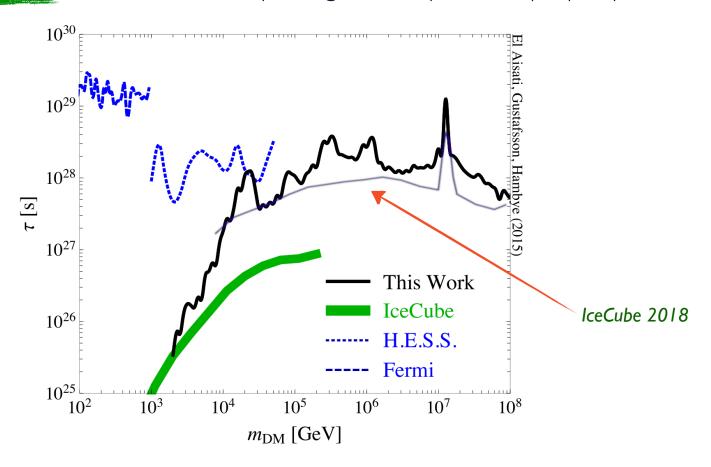
Exploiting the sharp spectral feature property from one year Icecube public data sample:



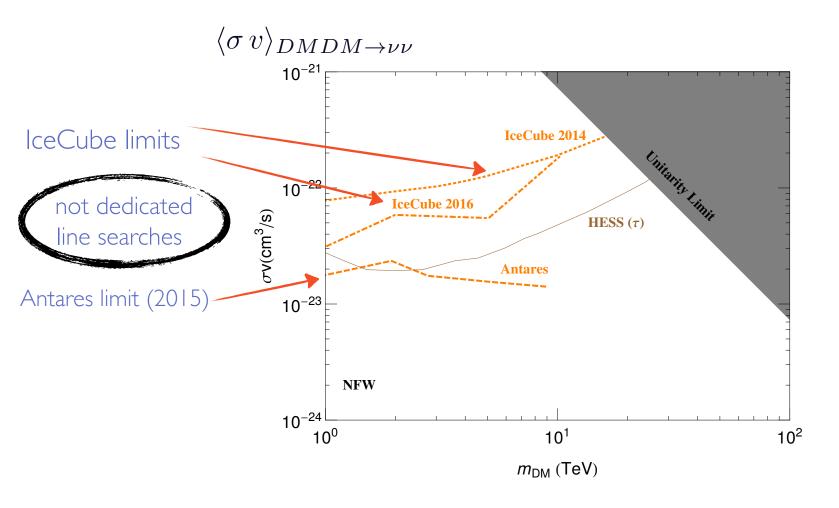
~ an order of magnitude improvement from few TeV to 100 TeV

even if one year only data sample and with no directional information in this sample!

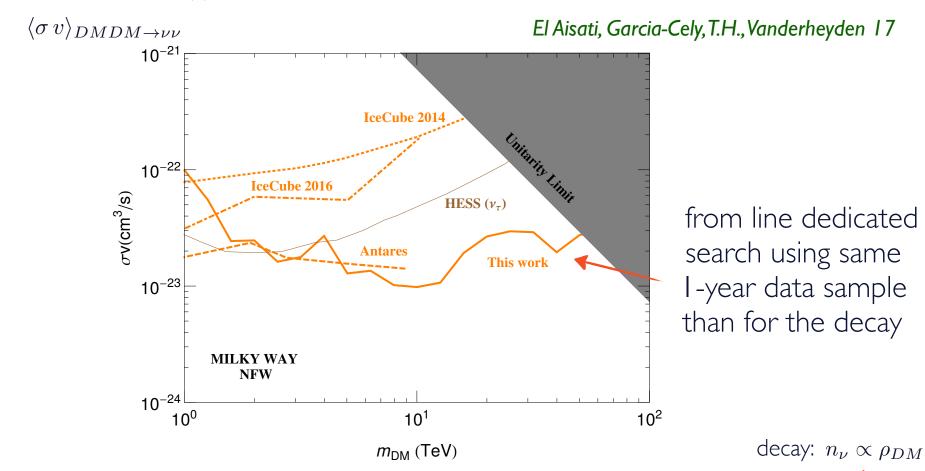
Observational situation for a decay: $\Gamma_{DM \to \nu + X}$


Exploiting the sharp spectral feature property from one year Icecube public data sample:

between few TeV and 50 TeV, γ and ν line sensitivities are similar! \leftarrow within a factor 1 to 20


Observational situation for a decay: $\Gamma_{DM \to \nu + X}$

With more statistics but still without exploiting the sharp feature property: Icecube 2018

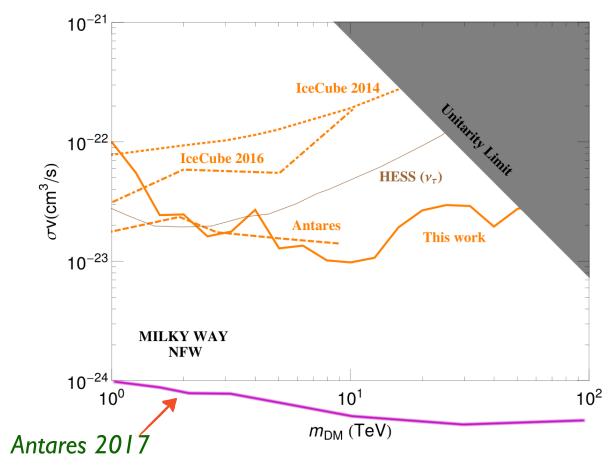

Observational situation for an annihilation: $\langle \sigma v \rangle_{DMDM \to \nu\nu}$

Annihilation cross section upper limits:

Observational situation for an annihilation: $\langle \sigma v \rangle_{DMDM \to \nu\nu}$

Annihilation cross section upper limit:

 \Rightarrow only illustrative: based on sample of only one year and with no angular information: \uparrow crucial for annihilation: $n_
u \propto
ho_{DM}^2$

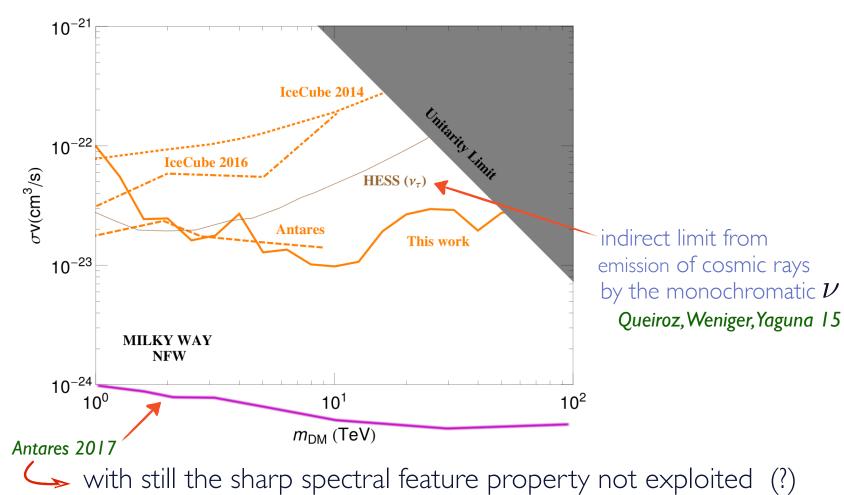

>> annihilation signal largely peaked on galactic center unlike for a decay

⇒ need also to see the galactic center with good angular resolut.

Observational situation for an annihilation: $\langle \sigma v \rangle_{DMDM \to \nu\nu}$

Annihilation cross section upper limit:

$$\langle \sigma \, v \rangle_{DMDM \to \nu\nu}$$


with still the sharp spectral feature property not exploited possibilities of further improvements!

⇒ possibilities of further improvements??

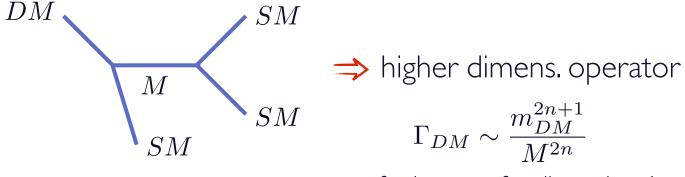
Observational situation for an annihilation: $\langle \sigma v \rangle_{DMDM \to \nu\nu}$

Annihilation cross section upper limit:

$$\langle \sigma \, v \rangle_{DMDM \to \nu\nu}$$

Antares energy resolution??

Given this exciting experimental situation:


could we expect on the theoretical side signals at the level of present and future sensitivities??

DM decay: experimental sensitivity reachable??

for the decay case: easy to have an observable flux!

models based on accidental DM stability:

low energy accidental symmetry broken at high energy as for proton decay:

for instance for dimension 6 operator (n=2) and $m_{DM} \sim {\rm TeV}$: $\tau_{DM} \sim 10^{28} \, {\rm sec} \ \ {\rm for} \ M \sim M_{GUT}$

the decay case can be fully scanned and parametrized by writing down the full list of higher dimens, operators linear in the DM field

Decay mode example: $DM \rightarrow \nu + \gamma$

El Aisati, Gustafsson, TH, Scarna '16

u-line + γ -line: double monochromatic smoking gun!!

very few possible effective operator structures up to dim-6:

one dim-5 structure:
$$\mathcal{O}^{(5)Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu},$$
 $\mathcal{O}^{(5)L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu},$

3 dim-6 structure: $\mathcal{O}^{1Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\phi$,

$$\mathcal{O}^{1L} \equiv \bar{L} \sigma_{\mu\nu} \psi_{DM} F_L^{\mu\nu} \phi,$$

$$\mathcal{O}^{2Y} \equiv D_{\mu} \bar{L} \gamma_{\nu} \psi_{DM} F_{Y}^{\mu\nu},$$

$$\mathcal{O}^{2L} \equiv D_{\mu} \bar{L} \gamma_{\nu} \psi_{DM} F_L^{\mu\nu},$$

$$\mathcal{O}^{3Y} \equiv \bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{Y}^{\mu\nu},$$

$$\mathcal{O}^{3L} \equiv \bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{L}^{\mu\nu},$$

- same energy
- ratio of line intensities fixed by operator

Operator	DM field	Fields contract.	Operator
Structure	(n-plet, Y)	$(n ext{-}plet)$	
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}$	(2,-1)		$\mathcal{O}^{(5)Y}_{ ext{2-let}}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}$	(2,-1) $(4,-1)$		$\mathcal{O}^{(5)L}_{2\text{-let}}$ $\mathcal{O}^{(5)L}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_{Y}^{\mu\nu}H$	(1,0)		$\mathcal{O}_{H,1 ext{-let}}^{1Y}$
	(3,0)		$\mathcal{O}_{H,3\text{-let}}^{1Y}$
	(1,0)	(=>	$\mathcal{O}_{H,1\text{-let}}^{1L}$
	(3,0)	a: $(\bar{L}H) = 1$	$\mathcal{O}_{H,3 ext{-let}}^{1L,a}$
=	(3,0)	c: $(\psi_{DM}H)=2$	$\mathcal{O}_{H,3 ext{-let}}^{1L,c}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}H$	(3,0)	$d: (\psi_{DM}H) = 4$	$\mathcal{O}_{H,3 ext{-let}}^{1L,d}$
	(3,0)	e: $(\bar{L}\psi_{DM}) = 2$	$\mathcal{O}_{H,3 ext{-let}}^{1L,e}$
	(3,0)	f: $(\bar{L}\psi_{DM}) = 4$	$\mathcal{O}_{H,3 ext{-let}}^{1L,f}$
	(5,0)		$\mathcal{O}_{H,5 ext{-let})}^{1L}$
$\overline{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\tilde{H}$	(3, -2)		$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1Y}$
	(3, -2)	b: $(\bar{L}\tilde{H}) = 3$	$\mathcal{O}_{\tilde{H},3 ext{-let}}^{1L,b}$
	(3, -2)	c: $(\psi_{DM}\tilde{H}) = 2$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,c}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}\tilde{H}$	(3, -2)	d: $(\psi_{DM}\tilde{H}) = 4$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,d}$
$Lo_{\mu\nu}\phi_{DM}r_L$ 11	(3, -2)	e: $(\bar{L}\psi_{DM})=2$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,e}$
	(3, -2)	f: $(\bar{L}\psi_{DM}) = 4$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,f}$
	(5, -2)		$\mathcal{O}_{ ilde{H},5 ext{-let}}^{1L}$
$D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$	(2,-1)		$\mathcal{O}^{2Y}_{ ext{2-let}}$
$D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{I}^{\mu\nu}$	(2,-1)		$\mathcal{O}^{2L}_{ ext{2-let}}$
$\nu_{\mu}\nu_{\nu}\nu_{\mu}\nu_{\mu}\nu_{\mu}\nu_{\mu}\nu_{\mu}\nu_{\mu}$	(4, -1)		$\mathcal{O}_{ ext{4-let}}^{2L}$
$\overline{L\gamma_{\mu}D_{\nu}\psi_{DM}F_{Y}^{\mu\nu}}$	(2, -1)		$\mathcal{O}^{3Y}_{2 ext{-let}}$
$\bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_{I}^{\mu\nu}$	(2, -1)		$\mathcal{O}_{2 ext{-let}}^{3L}$
$L \gamma_{\mu} D_{\nu} \psi_{DM} r_L$	(4,-1)		$\mathcal{O}_{ ext{4-let}}^{3L}$

full list of operators up to quintuplet

- associated flux of cosmic rays fixed by operator and around the corner

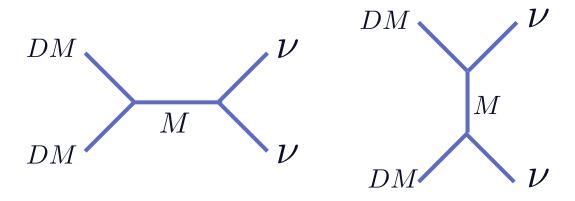
DM annihilation: experimental sensitivity reachable??

for the <u>annihilation case</u>: possibilities to have an observable flux! remember the 2 issues:

- ν -line sensitivity much weaker than γ -line sensitivity not necessarily a problem because ν -line can proceed easily at tree level unlike γ -line
- ν -line sensitivity on $\sigma_{DM\;DM\to\nu\bar{\nu}}$ doesn't reach the thermal freeze out total cross section value $\langle\sigma v\rangle_{Tot}\sim 3\cdot 10^{-26}$
 - this excludes an observable ν -line for many models but not necessarily: need for a boost of the cross section from freeze out epoch to today

astrophysical boost particle physics boost: Sommerfeld effect

non relativistic DM particles today can exchange many lighter mediators before annihilating


Determination of minimal models leading to observable \mathcal{V} -line from DM annihilation

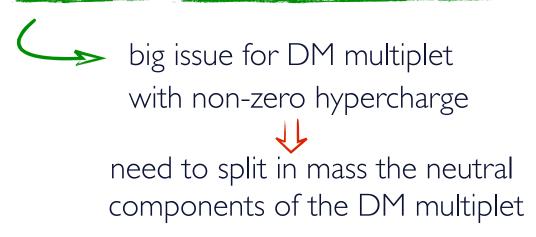
El Aisati, Garcia-Cely, TH, Vanderheyden 17

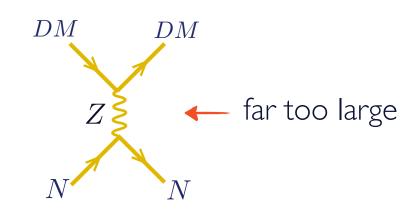
with DM out of single multiplet of $SU(3)_c \times SU(2)_L \times U(1)_Y$

 \blacktriangleright with $DM\ DM o
u
u$ mediated by single mediator multiplet

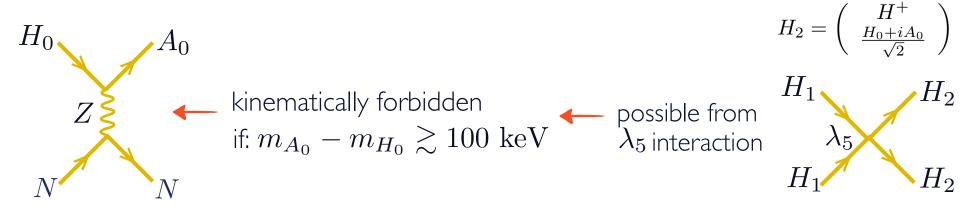
- ⇒ systematic study of these minimal models
- \Rightarrow which ones of these models can lead to an observable u-line from DM annihilation through the Sommerfeld effect????

Determination of minimal models leading to observable *V*-line from DM annihilation many constraints:


• constraint I: annihilation must proceed through s-wave velocity powers today


ightharpoonup for the $DM\ DM
ightarrow
u ar{
u}$ channel this excludes all scalar and Majorana DM models

but leaves open many possibilities in the $DM \ DM \to \nu \nu$ channel


Determination of minimal models leading to observable *V*-line from DM annihilation many constraints:

• constraint 2: direct detection constraint:

example: DM is neutral component of scalar doublet: ``inert'' doublet

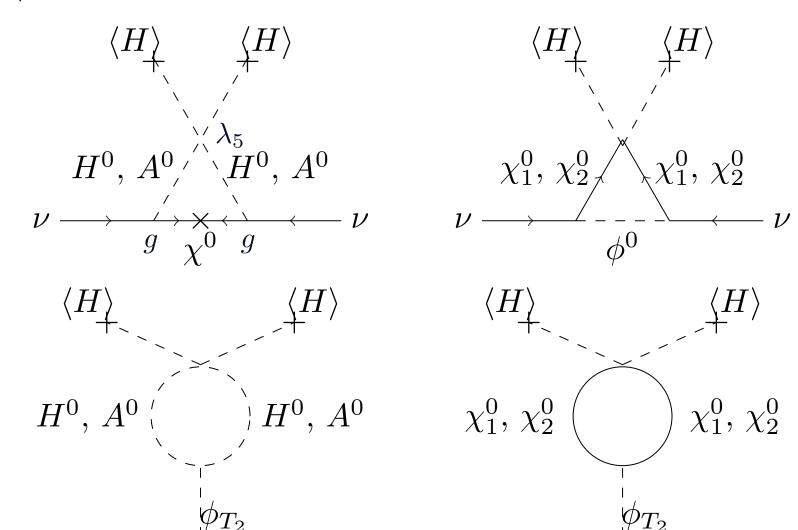
 \Rightarrow similarly $Y \neq 0$ DM Dirac fermion must be split into Majorana fermions

s-wave + direct detection surviving models

20 models:

DM and mediator up to triplets

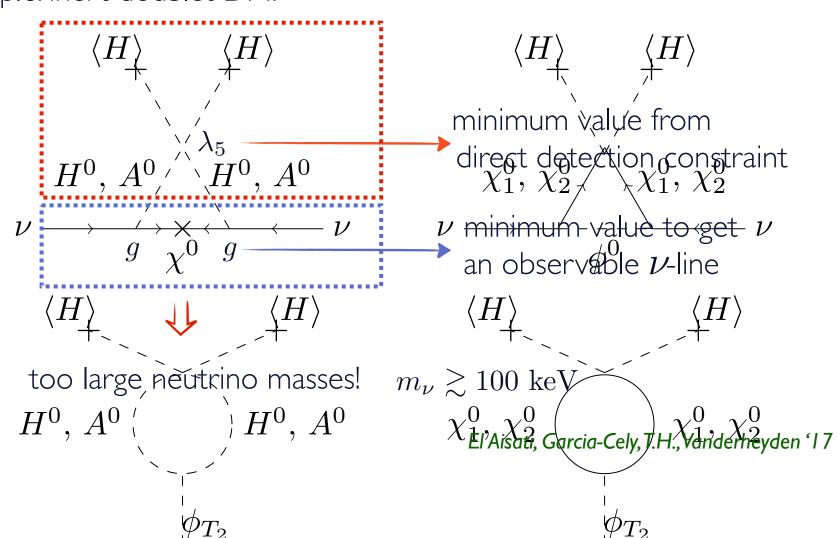
							-		-
	Annihilation Channel	DM		Mediator		m_{ν} OK	Suppressed by $v_{\rm EW}/m_{\rm DM}$?	$\ell^+\ell^-$	Model
	Chamici					at 1-100p.	Dy CEW/HIDM:		
anly Dirac DM	$\overline{\mathrm{DM}}\mathrm{DM} \to \overline{\nu}\nu$	Dirac	$ T_0 $	s-chann. vector	S	Yes	No	= -	F_1
only Dirac DM			$ T_0 $	t-chann. scalar I	D				F_2
for $\nu \bar{\nu}$ channel			S	s-chann. vector	S				F_3
			\overline{S}	t-chann. scalar	D				F_4
			D	s-chann. scalar	T_2		No		S_1^r
	$ ext{DMDM} o u u$		\overline{S}	t-chann. Majorana	D		Yes		
		Real Scalar	D		\overline{S}		No		S_3^r
			D		T_0		No		S_4^r
			\overline{D}		T_2		Yes		S_5^r
			$ T_0 $		D		Yes		S_6^r
			$\overline{T_2}$		D		Yes		S_7^r
		Majorana	D	s-chann. scalar	T_2	±	No		$\begin{array}{c c} S_2^r \\ \hline S_3^r \\ \hline S_4^r \\ \hline S_5^r \\ \hline S_7^r \\ \hline F_1^m \\ \hline F_2^m \\ \hline F_3^m \\ \hline F_4^m \\ \hline F_5^m \\ \end{array}$
			S	t-chann. scalar	D		Yes		F_2^m
$ u u$ channel \longrightarrow			D		S	No	No		F_3^m
			D		T_0		No		F_4^m
			\overline{D}		T_2		Yes		F_5^m
			$\overline{T_0}$		D		Yes		F_6^m
			$\overline{T_2}$		D		Yes		F_7^m
		I lorgania lorga Classica de la colonia	S	t chann Maionana	D	Yes	Yes		S_1
			T_0	t-chann. Majorana	D	res			S_2
		Dirac	S	t chann gealan	D	1 1/00	Yes		F_4
			$ T_0 $		D		les		F_2
							T		


El Aisati, Garcia-Cely, T.H., Vanderheyden '17 See also related table in Lindner, Merle, Niro '10

u mass constraint: kills many $u u^{\phi_{T_2}}$ channel possibilities

constraint 3:

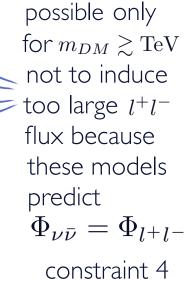
example: inert doublet DM:



ν mass constraint: kills many $\nu^{\varphi_{T_2}}$ channel possibilities

constraint 3:

example: inert doublet DM:



s-wave + direct detection + ν mass surviving models

8 models:

DM and mediator up to triplets

Annihilation Channel	DM		Mediator		m_{ν} OK at 1-loop?	Suppressed by $v_{\rm EW}/m_{\rm DM}$?	$\ell^+\ell^-$	Model	
			s-chann. vector	S				F_1	
DMDM . =	Dirac	T_0	t-chann. scalar	D	Yes	No		F_2	
$\overline{\mathrm{DM}}\mathrm{DM} o \overline{\nu} \nu$		S	s-chann. vector	S	165	NO	=	F_3	
		\overline{S}	t-chann. scalar	D				F_4	
		D	s-chann. scalar	T_2	士	No		S_1^r	
		S		D		Tes		S_2^r	
			Topical interest in the city of the control of	S	- Control Control	was to the second second second	(També pág	and some	
	Dool Cooler	A		70	No	N.		S_4^r	
		D	t de m. Majarana		NO	Y		$-S_5^r$	
		70		D		Too		S_6^r	
		Z.	Translation Andrew State of the	D		and the Laboratory	Commission in	an Ayrian	
	Majorana	D	s-chann. scalar	T_2	土	No		F_1^m	
		C D		D				F_2^m	
$\boxed{\mathrm{DMDM} \to \nu\nu}$		D		G		No		F_3^m	
		9		70	No	N		r_4	
			The Charles Becker	T_2	INU	Tipolitano de la companya della companya della companya de la companya della comp	Constitution	15	
		T_{\downarrow}		D		Ves		F_6^m	
		$\overline{T_2}$		D		res		F_7^m	
	I lorge to lorge the colored	S	t-chann. Majorana	D	Yes	Yes		S_1	
		T_0	t-chami. Wajofana	D	res	les		S_2	
	l Dirac 🗀	S	t-chann. scalar	D	Yes	Yes		F_4	
	Dirac		0 c-chain. Scarai		105	105		F_2	

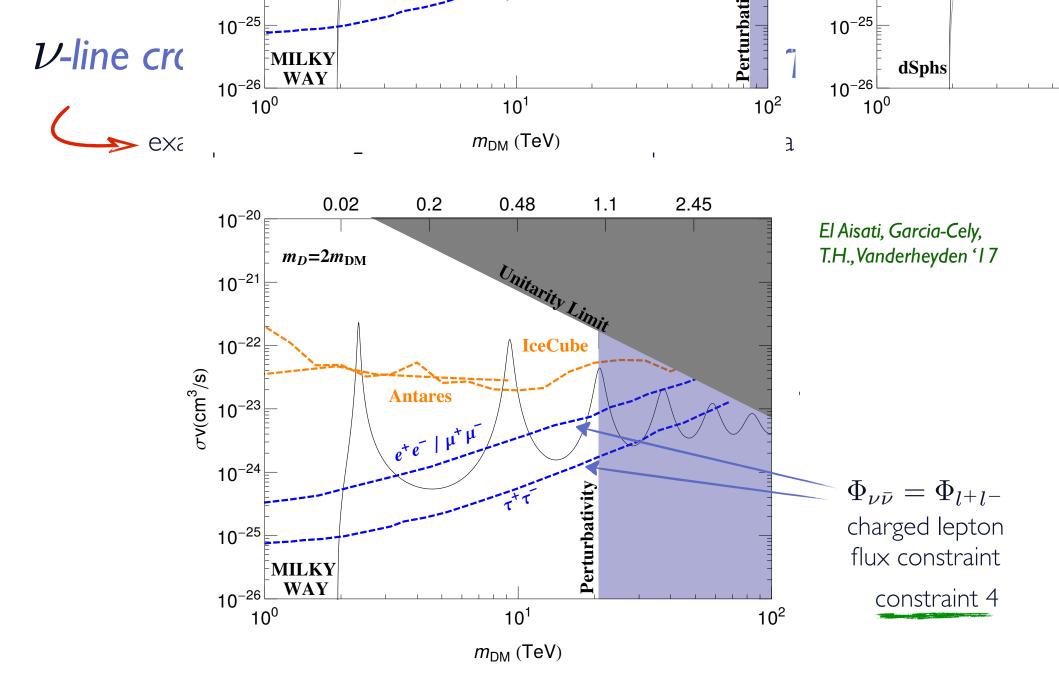
excluded: give too many diffuse W^+W^- or too intense γ -line constraint 5

possible only for $m_{DM} \lesssim {\rm TeV}$ due to perturbativity:

constraint 6

El Aisati, Garcia-Cely, T.H., Vanderheyden '17

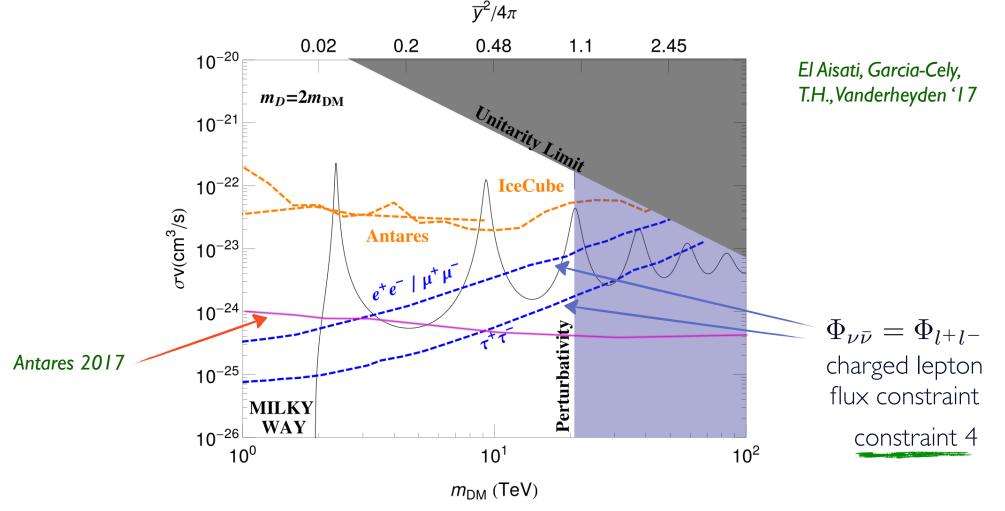
u-line cross section results including Sommerfeld effect


example: model F_2 : a Y=0 fermion DM triplet $\,+\,$ a scalar doublet mediator as models F_1, S_1^r, F_1^m

Sommerfeld for free and known: E-W interactions

DMDMDMDM

u-line is predicted as a function of m_{DM} and $DM-Med-\nu$ coupling g

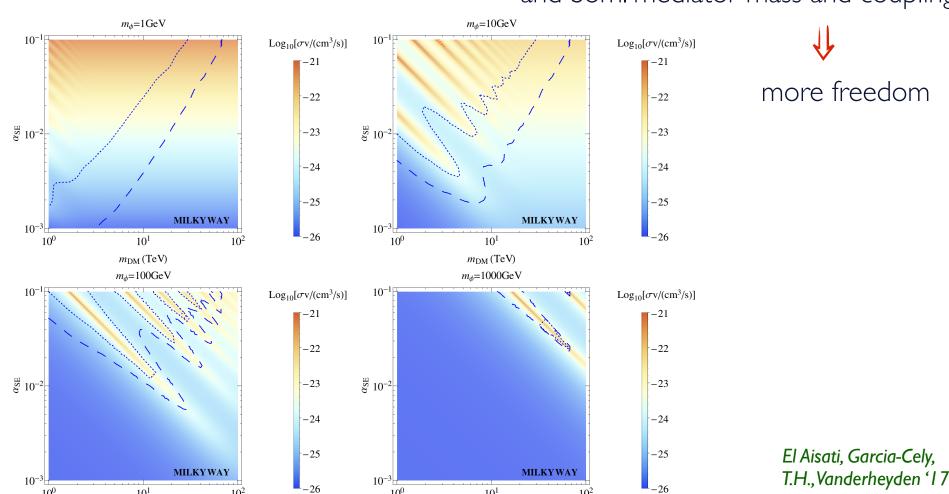

> can be fixed by DM relic density

 \Rightarrow all fluxes predicted: ν -line and associated charged lepton flux around the corner discrimination of the models

u-line cross section results including Sommerfeld effect

example: model F_2 : a Y=0 fermion DM triplet + a scalar doublet mediator

> various multi-TeV models with electroweak interactions are in fact already excluded: give a too large Sommerfeld boost >> neutrino telescopes are already excluding thermal scenarios! but still allowed at lower scale or if annihilation channel to neutrinos subheading in freeze-out


u-line cross section results including Sommerfeld effect

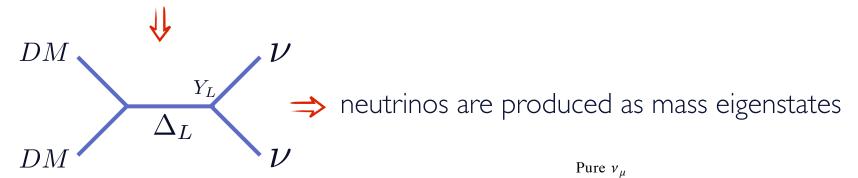
other example: model F_4 : a Y=0 fermion DM singlet + a scalar doublet med.

Sommerfeld requires extra light BSM mediator

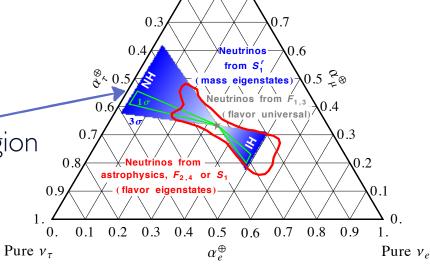
 $m_{\rm DM}$ (TeV)

u-line is predicted as a function of of m_{DM} and $DM-Med-\nu$ coupling g and Som. mediator mass and coupling

 $m_{\rm DM}$ (TeV)


u-line flavor composition

a type-II seesaw state Δ_L



example: model S_1^r : real scalar DM from doublet + scalar Y=2 triplet mediator

flavour flux composition outside oscillation region

Garcia-Cely, Heeck 'I 6
El Aisati, Garcia-Cely, TH, Vanderheyden 'I 7

DM annihilation: experimental sensitivity reachable??

longer term perspective:

it is not excluded anymore that in a not too long term the sensitivity reaches the thermal annihilation cross section value, in case no need for a Sommerfeld boost anymore \Rightarrow more models could give an observable ν -line

Summary

u-telescope search for a line: many advantages with respect to other channels

recent large improvement of sensitivity, expected to be still improved further soon!!

 \longrightarrow DM decay case: $-\nu$ and γ line sensitivities of same order in multiTeV range

- many models could lead to observable ν -line including for interesting $DM \to \gamma + \nu$ scenario

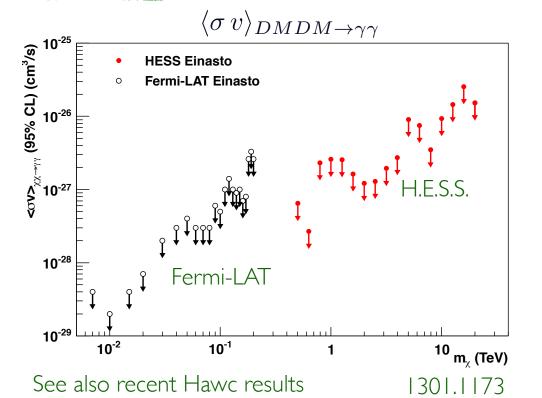
DM annihilation case: - ν -line sensitivity << γ -line sensitivity - ν -line sensitivity doesn't reach freeze out value

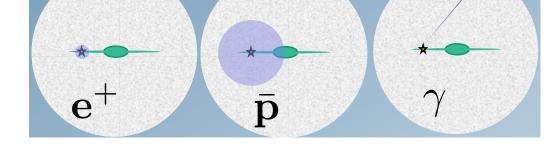
simple specific models leading to observable ν -line do exist thanks to Sommerfeld effect and can be studied in in a systematic way

possibilities of model discrimination from ν -line energy, intensity and flavor composition and associated diffuse cosmic ray emission

Monochromatic flux of γ : DM smoking gun

from DM annihilation or decay

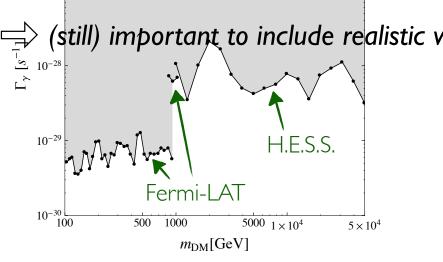

from Bergström, NJP 09


no astrophysical background

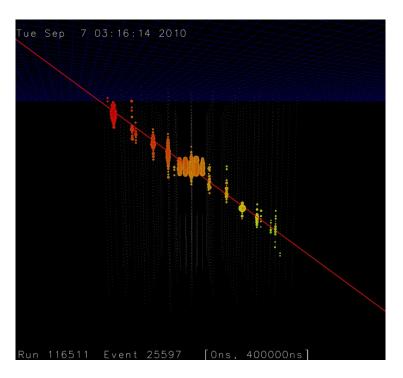
flux and direction basically unaffected during propagation

very active experimental field: Fermi-LAT, HESS, CTA, Gamma400, Dampe, ...

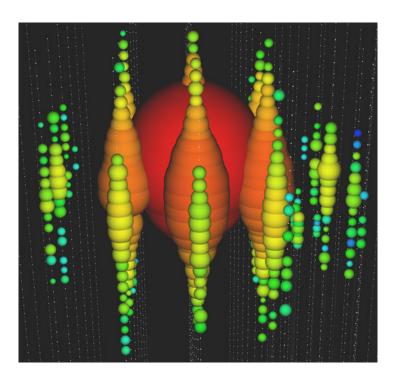
Annihilation cross section upper limit:



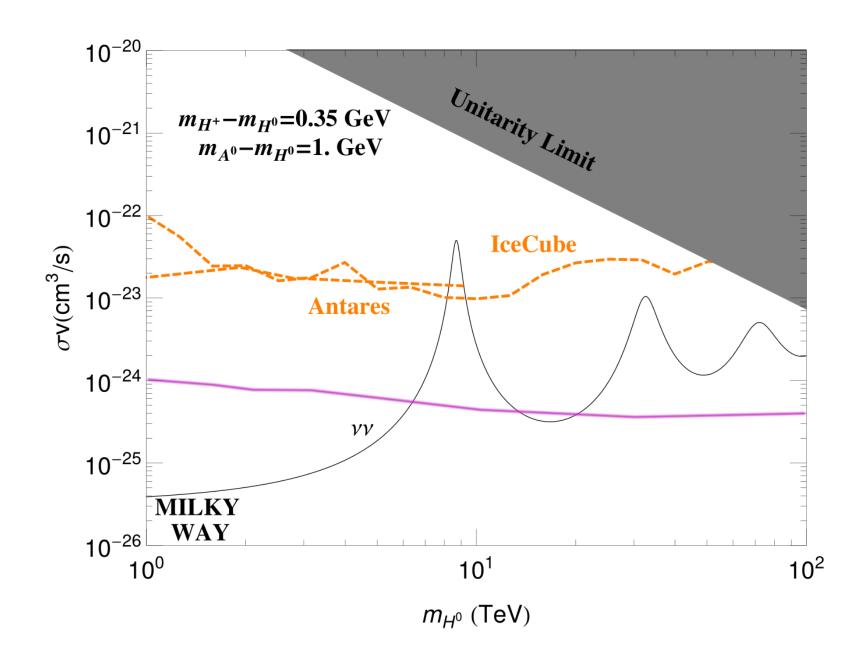
"Boostdfactorimit:


each decade In Msubhat Contributes ro

depends on uncertain form of microh (large extrapolations necessary!)


V-line search from DM annihilation: need good energy resolution and good angular resolution towards galactic center

muon track:


good angular resolut.: $\sim 0.2^{\circ}-1^{\circ}$ poor energy resolut. unless fully contained OK to see the galactic center for starting inside events

cascade events:

good energy resolut.: $\sim 15\%$ not so good ang. resol.: $\sim 10^{\circ}-15^{\circ}$ good for galactic center events

 \Rightarrow very promising even if not as easy as for a decay and as for a γ -line

Decay bound from Icecube details

$DM \rightarrow \nu + X$: V flux expected in detector for a given lifetime

Galactic component:

$$\frac{d\phi_h}{dE_{\nu}d\Omega}(b,l) = \frac{1}{4\pi m_{DM} \tau_{DM}} \frac{dN}{dE_{\nu}} \int_{l.o.s.} ds \, \rho_h[r(s,b,l)]$$

particle physics factor galactic DM factor

NFW profile

Extragalactic component:

$$\frac{d\phi_{eg}}{dE_{\nu}d\Omega} = \frac{\Omega_{DM}\rho_c}{4\pi} \int dz \, \frac{c}{H(z)} \frac{1}{m_{DM}\tau_{DM}} \frac{dN}{dE} \Big|_{E=E_{\nu}(1+z)}$$

cosmological factor particle physics factor

Flux in detector issues: flavor, ν vs $\bar{\nu}$, earth absorption, ...

ullet u-oscillations: average u flavor:

$$P(\nu_e \leftrightarrow \nu_e) = 0.573, \quad P(\nu_e \leftrightarrow \nu_\mu) = 0.277$$

 $P(\nu_e \leftrightarrow \nu_\tau) = 0.150, \quad P(\nu_\mu \leftrightarrow \nu_\mu) = 0.348$
 $P(\nu_\mu \leftrightarrow \nu_\tau) = 0.375, \quad P(\nu_\tau \leftrightarrow \nu_\tau) = 0.475$

→ relatively small effect

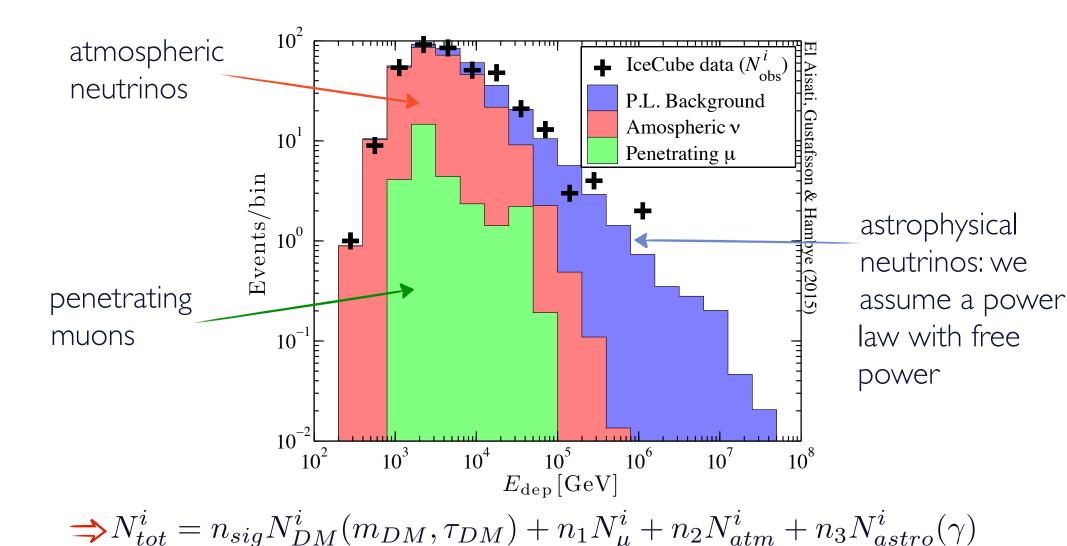
ullet u vs ar
u: relatively small effect too

results presented here are for democratic 1/3, 1/3, 1/3, $u + \bar{\nu}$ flux

earth absorption effects.... taken into account

Number of events expected in detector for a given lifetime

depends on instrument response for a given data sample

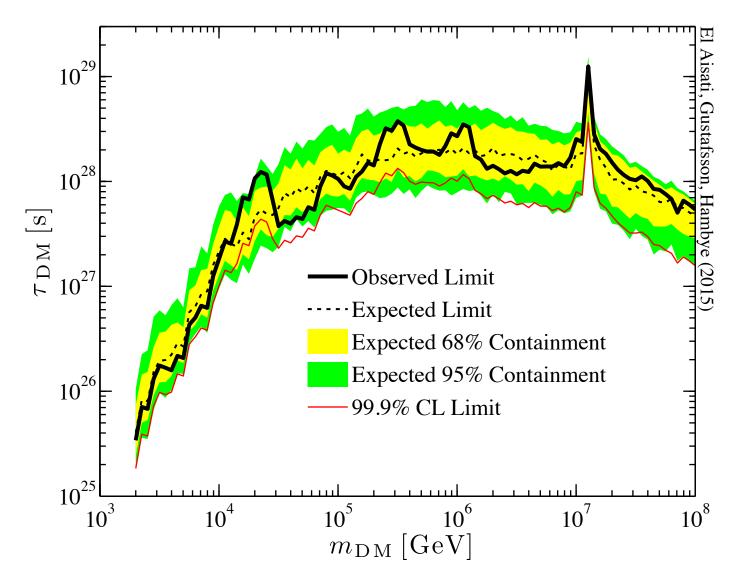

 $\alpha = flavorindex$

$$\frac{dN_{\alpha}}{dE_{\nu}d\Omega dE'd\cos\theta'd\phi'} = \frac{d(\phi_h + \phi_{eg})_{\alpha}}{dE_{\nu}d\Omega} \mathcal{E}_{\alpha} D_{eff,\alpha}$$
 instrument response:
$$\mathcal{E}_{\alpha} = A_{eff,\alpha}(E_{\nu},\theta) \times \Delta t$$

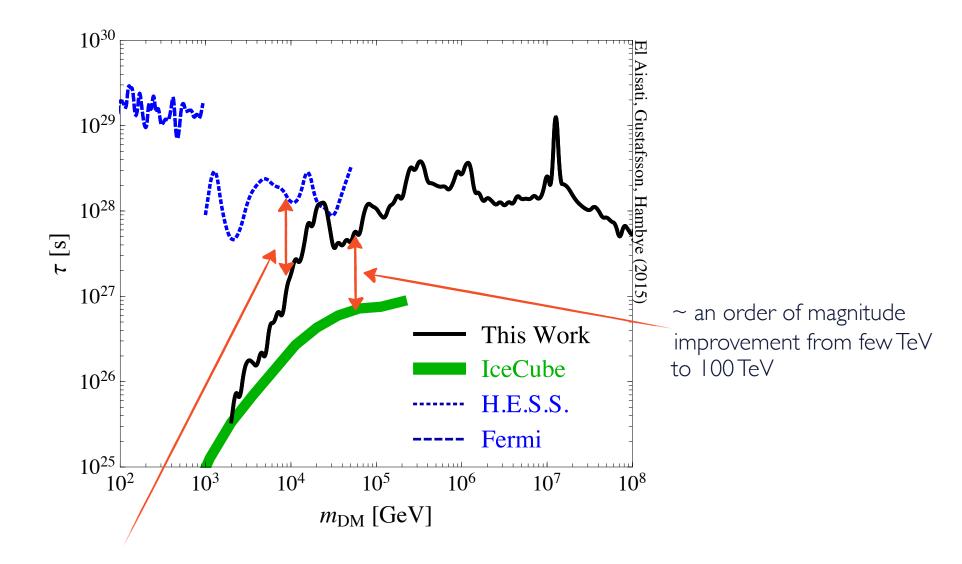
$$\mathcal{E}_{\alpha} = A_{eff,\alpha}(E_{\nu},\theta) \times \Delta t$$
 dispersion function:
$$D_{eff}^{\alpha}(E',\theta',\phi';E_{\nu},\theta,\phi)$$

$$\Rightarrow N_{DM}^{i} = \int dE' \int d\cos\theta' \int d\phi' \int dE \int d\Omega \sum_{\alpha=e,\mu,\tau,\bar{e},\bar{\mu},\bar{\tau}} P_{\alpha} \frac{dN_{\alpha}}{dE_{\nu}d\Omega dE' d\cos\theta' d\phi'}$$

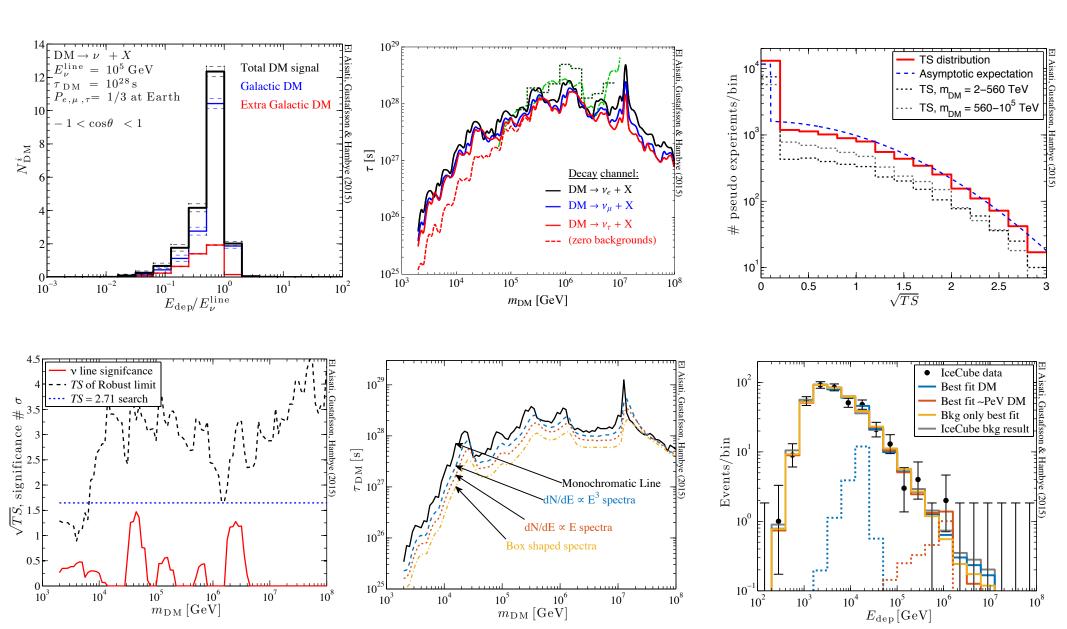
for a public 2010-2012 IceCube data sample (78+8 strings, $100\,\mathrm{GeV}-10^8\,\mathrm{GeV}$, 383 detected events)

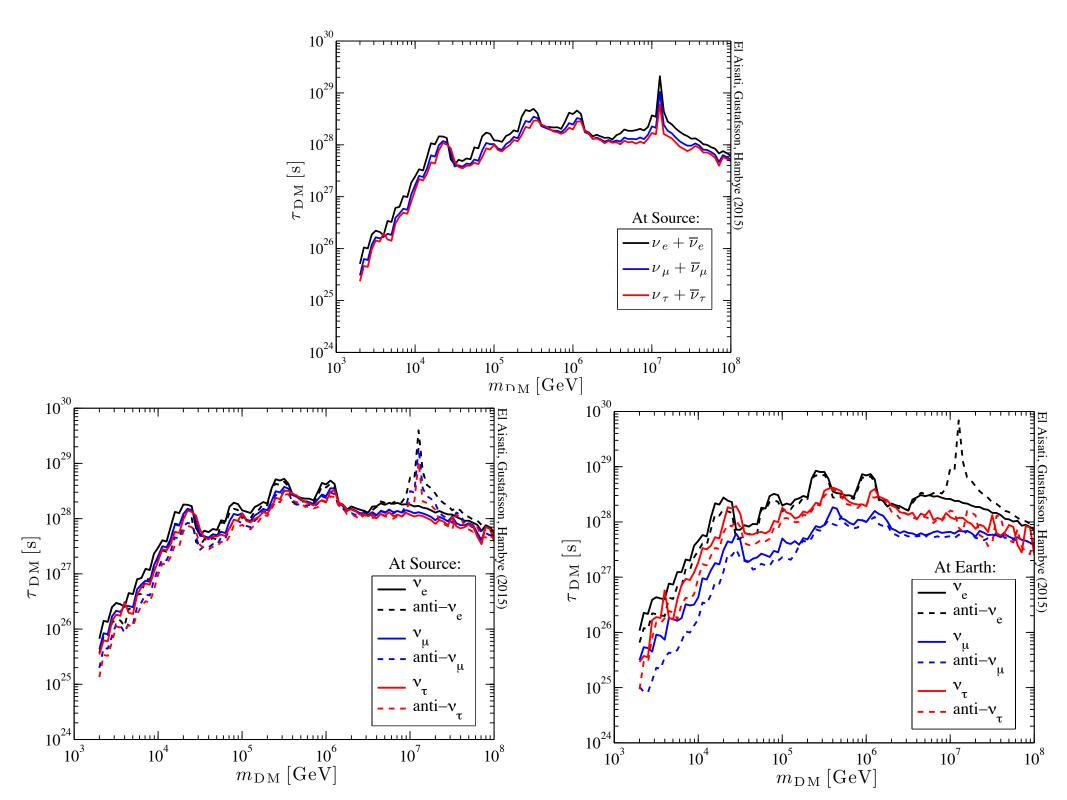

Background

free normalizations $n_{sig,1,2,3}$ and free power γ


 \Rightarrow statistical method: test statistic of profile likelihood ratio (as for Fermi γ -line)

Result: lower limit on lifetime




 \Rightarrow no evidence for a $\,\nu$ -line $\,\leftarrow\,$ at most $1.5\,\sigma$ at $E\sim40\,{\rm TeV}$

Comparison with previous limits and with γ -line limits

between few TeV and 50 TeV, γ and ν line sensitivities are similar! \leftarrow within a factor 1 to 20

Double smoking gun scenario: details

Systematic study of $DM ightarrow u + \gamma$ double smoking gun scenario: EFT

a 2-body radiative decay of a neutral particle is anyway given by non-renormalizable interactions

very slow decay: could be natural if the mediator inducing it is heavy, similar to proton case

stability due to accidental symmetry

a dim-6 operator mediated by GUT scale gives: $\tau_{DM} \sim 10^{28} \, \mathrm{sec}$

$$\mathcal{L}_{eff} = \sum_{i} \frac{c_i^{dim-5}}{\Lambda_{UV}} \, \mathcal{O}_i^{dim-5} + \sum_{i} \frac{c_i^{dim-6}}{\Lambda_{UV}^2} \, \mathcal{O}_i^{dim-6} + \dots$$

very few operators: one dim-5 structure: $\mathcal{O}^{(5)Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}$, $\mathcal{O}^{(5)L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}$,

3 dim-6 structure:
$$\mathcal{O}^{1Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\phi$$
, $\mathcal{O}^{1L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}\phi$, $\mathcal{O}^{2Y} \equiv D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_Y^{\mu\nu}$, $\mathcal{O}^{2L} \equiv D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_L^{\mu\nu}$, $\mathcal{O}^{3Y} \equiv \bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_Y^{\mu\nu}$, $\mathcal{O}^{3L} \equiv \bar{L}\gamma_{\mu}D_{\nu}\psi_{DM}F_L^{\mu\nu}$,

Systematic study of $DM ightarrow u + \gamma$ double smoking gun scenario: EFT

taking into account possible DM quantum numbers DM can

be a singlet, doublet, triplet, quadruplet or quintuplet $(\text{with }\phi=H \text{ or } \bar{H})$

Operator	DM field	Fields contract.	Operator
Structure	(n-plet, Y)	$(n ext{-}plet)$	
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}$	(2,-1)		$\mathcal{O}^{(5)Y}_{ ext{2-let}}$
$\overline{\bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}}$	(2,-1)		$\mathcal{O}^{(5)L}_{ ext{2-let}}$ $\mathcal{O}^{(5)L}_{ ext{4-let}}$
$\frac{1}{\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}H}$	(4,-1) $(1,0)$		$\mathcal{O}_{ ext{4-let}}^{ ext{1Y}}$ $\mathcal{O}_{H, ext{1-let}}^{ ext{1Y}}$
	(3,0)		$\mathcal{O}_{H,3 ext{-let}}^{1Y}$
$ar{L}\sigma_{\mu u}\psi_{DM}F_L^{\mu u}H$	(1,0)		$\mathcal{O}_{H,1 ext{-let}}^{1L}$
	(3,0)	a: $(\bar{L}H) = 1$	$\mathcal{O}_{H,3 ext{-let}}^{1L,a}$
	(3,0)	c: $(\psi_{DM}H)=2$	$\mathcal{O}_{H,3 ext{-let}}^{1L,c}$
	(3,0)	$d: (\psi_{DM}H) = 4$	$\mathcal{O}_{H,3 ext{-let}}^{1L,d}$
	(3,0)	e: $(\bar{L}\psi_{DM})=2$	$\mathcal{O}_{H,3 ext{-let}}^{1L,e}$
	(3,0)	f: $(\bar{L}\psi_{DM}) = 4$	$\mathcal{O}_{H,3 ext{-let}}^{1L,f}$
	(5,0)		$\mathcal{O}_{H,5 ext{-let})}^{1L}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\tilde{H}$	(3, -2)		$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1Y}$
$\bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}\tilde{H}$	(3, -2)	b: $(\bar{L}\tilde{H}) = 3$	$\mathcal{O}_{ ilde{H},3 ext{-let}}^{1L,b}$
	(3, -2)	c: $(\psi_{DM}\tilde{H}) = 2$	$\mathcal{O}^{1L,c}_{ ilde{H}.3 ext{-let}}$
	(3, -2)	d: $(\psi_{DM}\tilde{H}) = 4$	${\cal O}_{ ilde{H},3 ext{-let}}^{1L,d}$
	(3, -2)	e: $(\bar{L}\psi_{DM}) = 2$	${\cal O}^{1L,e}_{ ilde{H},3 ext{-let}}$
	(3, -2)	f: $(\bar{L}\psi_{DM}) = 4$	${\cal O}^{1L,f}_{ ilde{H},3 ext{-let}}$
	(5, -2)		$\mathcal{O}^{1L}_{ ilde{H},5 ext{-let}}$
$D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$	(2,-1)		$\mathcal{O}^{2Y}_{ ext{2-let}}$
$D_{\mu}\bar{L}\gamma_{\nu}\psi_{DM}F_{L}^{\mu\nu}$	(2, -1)		$\mathcal{O}^{2L}_{ ext{2-let}}$
	(4, -1)		$\mathcal{O}_{ ext{4-let}}^{2L}$
$L\gamma_{\mu}D_{\nu}\psi_{DM}F_{Y}^{\mu\nu}$	(2, -1)		$\mathcal{O}^{3Y}_{ ext{2-let}}$
$\bar{L}\gamma_{\mu}D_{ u}\psi_{DM}F_{L}^{\mu u}$	(2,-1)		$\mathcal{O}_{ ext{2-let}}^{3L}$
ib of Diff. E	(4, -1)		$\mathcal{O}_{ ext{4-let}}^{3L}$

Operator predictions: line energies and intensities

- 1) same line energies
- II) correlated line intensities: more u than γ

gauge invariance:
$$F_{\mu\nu}^{Y}$$
 or $F_{\mu\nu}^{L}$ $\Rightarrow DM \rightarrow \nu\gamma, \ \nu Z, \ lW$

if operator has a
$$F_{\mu\nu}^Y$$
 and $m_{DM}>>m_Z$: $\frac{n_\nu}{n_\gamma}=\frac{1}{\cos^2\theta_W}=1.3$ if operator has a $F_{\mu\nu}^L$ and $m_{DM}>>m_Z$: $\frac{n_\nu}{n_\gamma}=\frac{1}{\sin^2\theta_W}=4.3$

if combination of operators: $\frac{n_{\nu}}{n_{\gamma}} \geq 1$ and of order I unless tuning

Operator predictions: additional continuum fluxes of cosmic rays

Z, W, l produce \bar{p} , γ_D , e^{\pm} , ...

It turns out that all operators can give only 5 possible line intensity to CR number ratios

operators with a $F_{\mu\nu}^{Y}$:

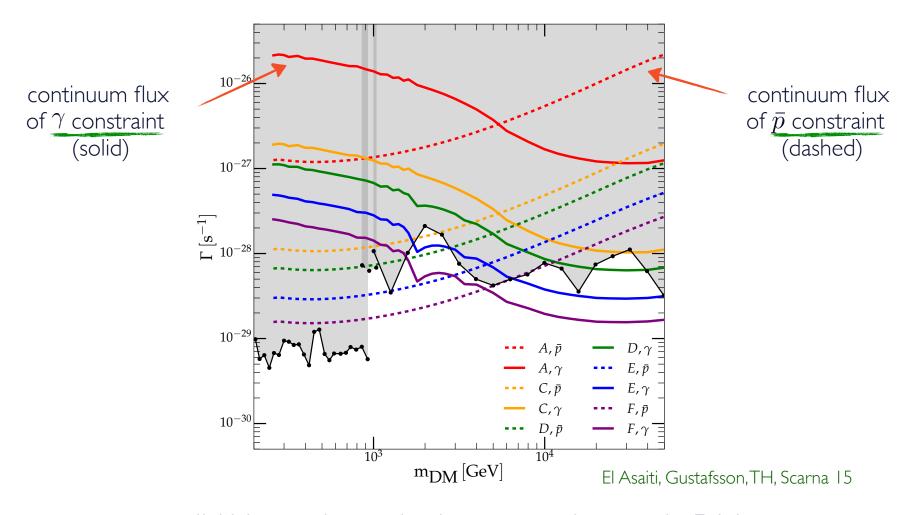
$$A: R_{\gamma/CR} = \cos^2 \theta_W / (\sin^2 \theta_W \cdot n_{CR/Z}),$$

only $DM \to \gamma \nu, Z\nu$ channels

operators with a $F_{\mu\nu}^L$:

$$C: R_{\gamma/CR} = \sin^2 \theta_W / (\cos^2 \theta_W \cdot n_{CR/Z}),$$

$$D, E, F: \quad R_{\gamma/CR} = \frac{\sin^2 \theta_W}{\cos^2 \theta_W \cdot n_{CR/Z} + c_W \cdot (n_{CR/W^+l^-} + n_{CR/W^-l^+})}$$


$$c_W = \frac{1}{4}, 1, \frac{9}{4}$$

 $DM \to \gamma \nu, Z\nu, Wl$ channels

DM field		Operator	Prediction	
$n ext{-}plet,$	Y		$R_{ u/\gamma}$	$R_{\gamma/CR}$
1 0	\mathcal{O}_H^{1Y}	1.3	A	
	\mathcal{O}_H^{1L}	4.3	E	
2 -1	$\mathcal{O}^{(5)Y},\mathcal{O}^{2Y},\mathcal{O}^{3Y}$	1.3	A	
	$\mathcal{O}^{(5)L},\mathcal{O}^{2L},\mathcal{O}^{3L}$	4.3	E	
3 0	\mathcal{O}_H^{1Y}	1.3	A	
	$\mathcal{O}_{H}^{1L,a}$	4.3	C	
	$\mathcal{O}_{H}^{1L,d},\mathcal{O}_{H}^{1L,f}$	4.3	D	
	$\mid \mathcal{O}_{H}^{1L,c}, \mathcal{O}_{H}^{1L,e} \mid$	4.3	E	
3 -2	$\mathcal{O}_{ ilde{H}}^{1Y}$	1.3	A	
	$\mathcal{O}_{ ilde{H}}^{^{1L},e}$	4.3	C	
	$\left egin{array}{c} \mathcal{O}_{ ilde{H}}^{1L,b}, \mathcal{O}_{ ilde{H}}^{1L,d} \end{array} ight $	4.3	D	
	$\mathcal{O}^{1L,c}_{ ilde{H}}$	4.3	E	
	$\mathcal{O}_{ ilde{H}}^{1L,f}$	4.3	\mathbf{F}	
4	-1	$\mathcal{O}^{(5)L},\mathcal{O}^{2L},\mathcal{O}^{3L}$	4.3	D
5	0	$\mid \mathcal{O}_H^{1L}$	4.3	D
5	-2	$\mid \mathcal{O}_{ ilde{H}}^{1L}$	4.3	D

Operator predictions: additional continuum fluxes of cosmic rays

 \longrightarrow upper bound on γ -line intensity from imposing that associated CR flux doesn't exceed observed ones

clear possibilities to have double monochromatic DM evidence + observation of associated CR excess!

Importance of 3-body decays for operators involving a scalar field

$$\mathcal{O}^{1Y} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_Y^{\mu\nu}\phi,$$
$$\mathcal{O}^{1L} \equiv \bar{L}\sigma_{\mu\nu}\psi_{DM}F_L^{\mu\nu}\phi,$$

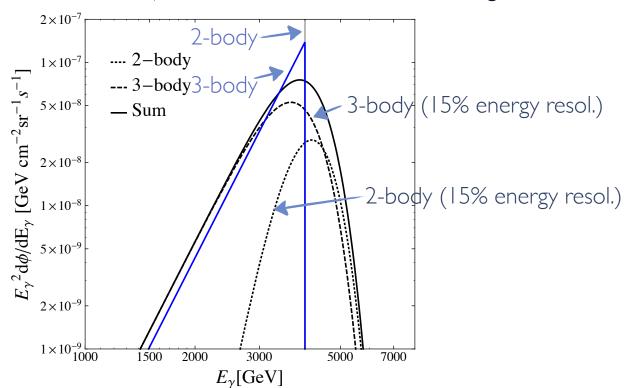
$$\Gamma_{2-body} \propto \frac{1}{8\pi} \frac{v_{\phi}^2}{m_{DM}}$$

$$\Gamma_{3-body} \propto \frac{1}{128\pi^3} \, m_{DM}$$

$$\frac{\Gamma_{3-body}}{\Gamma_{2-body}} \sim \frac{1}{16\pi^2} \frac{m_{DM}^2}{v_{\phi}^2} \Rightarrow \begin{array}{l} \text{3-body channels dominate 2-body} \\ \text{channels for } m_{DM} \gtrsim 4 \, \text{TeV} \end{array}$$

$$(\text{with } \phi = H \, \text{or } \bar{H})$$

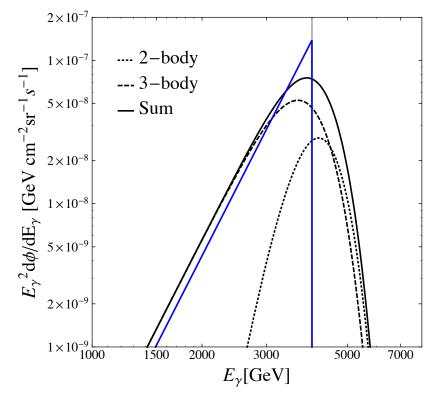
3-body channel consequences

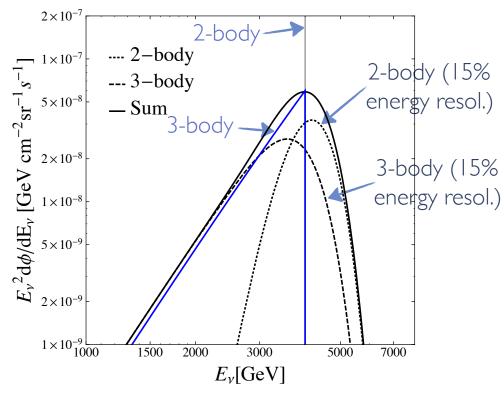

$$\psi_{DM} \rightarrow \nu \gamma h, \, \nu \gamma Z_L, \, l \gamma W_L, \, \nu Z h, \, \nu Z Z_L, \, l Z W_L, \, l W h, \, l W Z_L, \, \nu W W_L$$

additional cosmic rays

3-body channel consequences

 $\psi_{DM} \rightarrow \nu \gamma h, \ \nu \gamma Z_L, \ l \gamma W_L, \ \nu Z h, \ \nu Z Z_L, \ l Z W_L, \ l W h, \ l W Z_L, \ \nu W W_L$

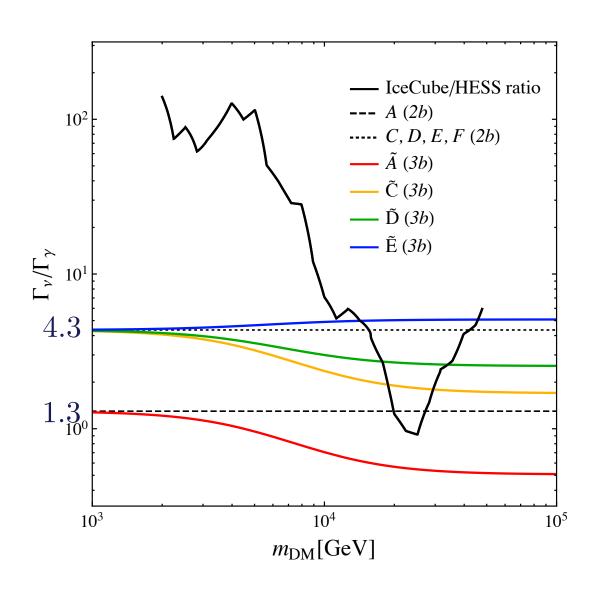

- additional cosmic rays
- additional γ sharp spectral features $DM \rightarrow \nu \gamma h$: similar to internal bremsstralung



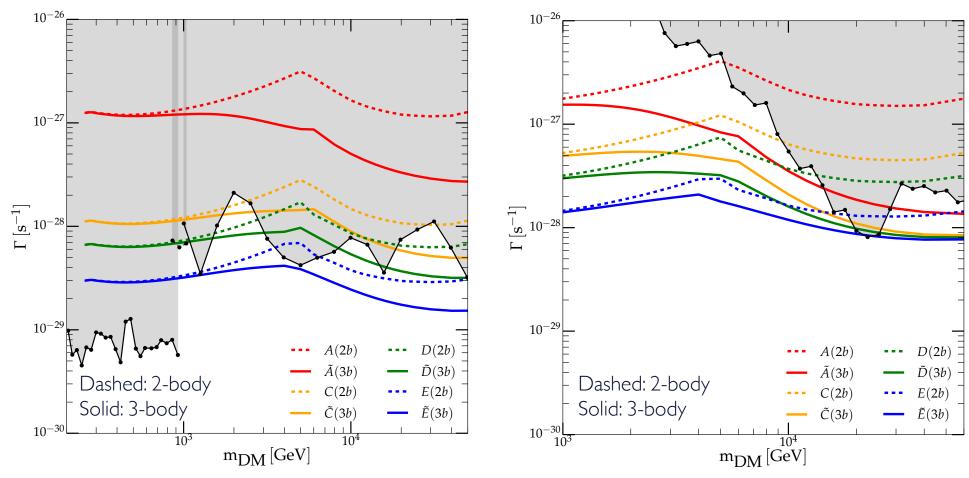
3-body channel consequences

$$\psi_{DM} \rightarrow \nu \gamma h, \ \nu \gamma Z_L, \ l \gamma W_L, \ \nu Z h, \ \nu Z Z_L, \ l Z W_L, \ l W h, \ l W Z_L, \ \nu W W_L$$

- additional cosmic rays
- additional γ sharp spectral features additional ν sharp spectral features! $DM \to \nu \gamma h$: similar to internal bremsstrahlung $DM \to \nu \gamma h$: "neutrino internal bremsstrahlung"



must be looked for by Icecube too!


Summing 2 and 3 body sharp feature γ and ν

ratios of ν sharp feature intensity to γ sharp feature intensity

Summing 2 and 3 body sharp feature γ and ν : upper limits

Upper limits on γ spectral sharp feature intensity: Upper limits on ${\cal V}$ spectral sharp feature intensity:

clear possibilities to have double monochromatic DM
 evidence + observation of associated CR excess!
 and to distinguish classes of operators and scenarios