Beyond WIMPs at Neutrino Experiments Heavy & Light Dark Matter

Filippo Sala

DESY Hamburg

DARK GHOSTS, BRUSSELS

13 Nov 2018

What is Dark Matter?

"THE WAY"	WIMPS Weakly Interacting Massive Par	Natura ticles connec	Ily at the TeV scale		
	Motivated plenty of experimental activity!				
NAMA AN	Cosmic rays	Colliders	Recoils vs nuclei on Earth		

What is Dark Matter?

What is Dark Matter?

New Directions in Dark Matter

New Directions in Dark Matter

Attitude: take "more" Risk, but Diversify it

Ema FS Sato 1811.00520

Cirelli Gouttenoire Petraki FS 1811.03608

Why sub-GeV Dark Matter?

Why sub-GeV Dark Matter?

Connection with **observed anomalies**

e.g. in B decays and/or in muon g-2 FS Straub 1704.06188, 1809.11061

Why sub-GeV Dark Matter?

Connection with **observed anomalies**

e.g. in B decays and/or in muon g-2 FS Straub 1704.06188, 1809.11061

Lots of proposals for DM abundance, e.g. <u>SIMPs</u> Hochberg+ 1402.5143,...

Connection with <u>Hierarchy Problem</u> (Relaxion DM) Fonseca Morgante 1809.04534 Banerjee Kim Perez 1810.01889

Leptogenesis Falkowski+ 1712.07652

heory.

A New Idea for Direct Detection

4

"Standard" Direct Detection challenged by low DM masses

$$v_{\rm DM}^{\rm halo} \simeq 10^{-3} c$$
 $E_{\rm NR} = \frac{q^2}{2m_N} \le \frac{2\mu_{\chi N}^2 v_{\chi}^2}{m_N} \lesssim 190 \text{ eV} \times \left(\frac{m_{\chi}}{500 \text{ MeV}}\right)^2 \left(\frac{16 \text{ GeV}}{m_N}\right)$

"Standard" way-out: go to materials and concepts sensitive to smaller recoils US cosmic visions 1707.04591

A New Idea for Direct Detection

Light DM at Neutrino Experiments

Ema FS Sato 1811.00520

Light DM at Neutrino Experiments

Ema FS Sato 1811.00520

We repurposed data in Super-K 1711.05278 search for boosted Dark Matter

Light DM at Neutrino Experiments

FILIPPO SALA (DESY)

Ema FS Sato 1811.00520

We repurposed data in Super-K 1711.05278 search for boosted Dark Matter

New Directions in Dark Matter

Attitude: take "more" Risk, but Diversify it

Ema FS Sato 1811.00520

Cirelli Gouttenoire Petraki FS 1811.03608

FILIPPO SALA (DESY)

HEAVY & LIGHT DM AT NEUTRINO EXPERIMENTS

New Directions in Dark Matter

Attitude: take "more" **Risk**, but **Diversify it**

_ight DM

Ema FS Sato 1811.00520

Cirelli Gouttenoire Petraki FS 1811.03608

Why DM beyond 10-100 TeV?

Almost virgin territory

Most studies of heavy DM so far followed IceCube "anomalies"

Bhattacharya+ 1706.05746,....

Why DM beyond 10-100 TeV?

Almost virgin territory

Most studies of heavy DM so far followed IceCube "anomalies"

Bhattacharya+ 1706.05746,....

LHC is pushing solutions to SM problems (hierarchy, flavour, ...) to >> TeV

Richer sectors could exist there

e.g. new confining sector w/DM Antipin Redi Strumia 1410.1817,...+Mitridate Smirnov 1707.05380

Pheno

Why DM beyond 10-100 TeV?

Almost virgin territory

Pheno

Most studies of heavy DM so far followed IceCube "anomalies"

Bhattacharya+ 1706.05746,....

LHC is pushing solutions to SM problems (hierarchy, flavour, ...) to >> TeV

Richer sectors could exist there

e.g. new confining sector w/DM Antipin Redi Strumia 1410.1817,...+Mitridate Smirnov 1707.05380

Telescopes have Unique Opportunity!

Gamma-ray constraints, DM DM $\rightarrow b\overline{b}$

Why not beyond 10-100 TeV?

The Usual Objections

ElectroWeak radiation

Controlled by

$$\frac{\alpha_2}{\pi} \log^2 \frac{M_{\rm DM}}{m_W} \approx 1 \text{ for } M_{\rm DM} \simeq 100 \text{ TeV}$$

 \Rightarrow it should be resummed, ~ like QCD at the LHC

PPPC [Cirelli+ 1012.4515] only 1st order, & stops at 100 TeV

Pythia not entirely reliable, lacks vector splittings [Christiansen Sjostrand 1401.5238]

The Usual Objections

ElectroWeak radiation

Controlled by

$$\frac{\alpha_2}{\pi} \log^2 \frac{M_{\rm DM}}{m_W} \approx 1 \text{ for } M_{\rm DM} \simeq 100 \text{ TeV}$$

 \Rightarrow it should be resummed, ~ like QCD at the LHC

PPPC [Cirelli+ 1012.4515] only 1st order, & stops at 100 TeVPythia not entirely reliable, lacks vector splittings [Christiansen Sjostrand 1401.5238]

Secluded DM & Electroweak Radiation

Secluded DM $\mathcal{L} \sim (g_D V_D (\overline{DM} DM + \epsilon \overline{SM} SM))$

Thermal production possible with tiny interactions with SM Pospelov+ 0711.4866,...

~ avoid bounds from direct detection & LHC

Secluded DM & Electroweak Radiation

Center of mass energy = $m_V \ll 100 \text{ TeV} \Rightarrow$ **EW radiation @ first order is OK!** [can use PPPC even for $M_{\text{DM}} > 10 - 100 \text{ TeV}$]

Secluded DM & Electroweak Radiation

Center of mass energy = $m_V \ll 100 \text{ TeV} \Rightarrow$ **EW radiation @ first order is OK!** [can use PPPC even for $M_{\text{DM}} > 10 - 100 \text{ TeV}$]

Explicit Example:
$$\mathcal{L} = \bar{X}(i\hat{D} - M_{\rm DM})X - \frac{1}{4}F_{D\mu\nu}F_D^{\mu\nu} - \frac{\epsilon}{2c_w}F_{D\mu\nu}B^{\mu\nu}$$

X = DM charged under a dark U(1)

E.g. from heavy new particles charged under both U(1)'s

Berlin+1602.08490

Cirelli+1612.07295

Berlin+1602.08490 Cirelli+1612.07295

 $M_{\rm uni} \propto \sqrt{\rm Dilution}$

Cirelli + 1612.07295, Baldes+ 1712.07489 Cirelli Gouttenoire Petraki FS 1811.03608

Tiny portal with the SM + Heavy

Direct Detection & Collider put no constraints

Cirelli + 1612.07295, Baldes+ 1712.07489 Cirelli Gouttenoire Petraki FS 1811.03608

Tiny portal with the SM + Heavy

Direct Detection & Collider put no constraints

Cirelli + 1612.07295, Baldes+ 1712.07489 Cirelli Gouttenoire Petraki FS 1811.03608

Tiny portal with the SM + Heavy

Direct Detection & Collider put no constraints

1. Sommerfeld and Bound State formation Petraki+ 1611.01394

Cirelli + 1612.07295, Baldes+ 1712.07489 Cirelli Gouttenoire Petraki FS 1811.03608

Tiny portal with the SM + Heavy

Direct Detection & Collider put no constraints

- 1. Sommerfeld and Bound State formation Petraki+ 1611.01394
- 2. Cascade decays: one step softens the spectra Elor Rodd Slatyer 1511.08787

Cirelli + 1612.07295, Baldes+ 1712.07489 Cirelli Gouttenoire Petraki FS 1811.03608

Tiny portal with the SM + Heavy

Direct Detection & Collider put no constraints

- 2. Cascade decays: one step softens the spectra Elor Rodd Slatyer 1511.08787
- **3.** Dark Photon decays $\mathcal{L} \supset g_f V_D^{\mu}(\bar{f}\gamma_{\mu}f)$

$$g_f = \epsilon \, e \left(Q_f \frac{1}{1 - \delta^2} + \frac{Y_f}{c_w^2} \frac{\delta^2}{\delta^2 - 1} \right) + O(\epsilon^2) \quad \delta = \frac{m_V}{m_Z}$$

 $\frac{X}{V_D \xi} \cdots \xi \xi V_D \\ \overline{X} \\ \overline{X}$

FILIPPO SALA (DESY)

Cirelli Gouttenoire Petraki FS 1811.03608

Cirelli Gouttenoire Petraki FS 1811.03608

Dilution inhibits signals, but **BBN** closes quickly available space

$M_{\rm DM}$ [TeV]

A Partial Recap

Results

- ✓ Heavy Dark Matter is testable!
- Secluded DM Models as ideal playground for Early Matter domination

A Partial Recap

Results

- ✓ Heavy Dark Matter is testable!
- Secluded DM Models as ideal playground for Early Matter domination

Outlook

- Public access to Telescope data would help!
- Sensitivity of Future Experiments? (KM3NeT, CTA, LHAASO, TAIGA,...)
- Other effects of Decay of Mediators? (e.g. on baryon asymmetry)
- Origin of Dark Matter mass? (e.g. SUSY breaking sector)
- Origin of small portal with SM? (e.g. Neutrino Masses)

• • • • •

New Directions in Dark Matter

Heavy DM Cirelli Gouttenoire Petraki FS 1811.03608

HEAVY & LIGHT DM AT NEUTRINO EXPERIMENTS

Back up

More on Heavy DM

FILIPPO SALA (DESY)

NEW BSM SEARCHES AT LHC & TELESCOPES

Sommerfeld Enhancement

Classical analogous

7)

Quantum: like in classical example, to have (Sommerfeld) enhancement requires

- \triangleright slow particles $v \ll c$
- ▶ long-range attractive force $M_{\text{mediator}} < \alpha M_{\text{DM}}$

DM mass for SM weak force? $\alpha_{
m w} \sim 1/30$

$$\bullet \qquad \sigma_0 = \pi R^2$$

Sommerfeld 1931,

If slow, gravity becomes important:

Hisano+ hep-ph0412403 (first time DM),

Arkani-Hamed+ 0810.0713 for nice explanation

$$\sigma = \sigma_0 \left(1 + \frac{v_{\rm esc}^2}{v^2} \right)$$

 $M_{\rm DM} \gtrsim 30 \, M_{W,Z} \simeq 2.5 \, {\rm TeV}$

A bit more technical: quantum field theory computations assume particles are "free" (=plain waves) at $r=+\infty$ BUT: if potential V is important also there (long-range!) you have to solve Schroedinger eq.

Dark U(1) DM & long-range interactions

Summary of indirect detection Cirelli Panci Petraki FS Taoso 1612.07295

Summary of indirect detection Cirelli Panci Petraki FS Taoso 1612.07295

Estimate of ANTARES capabilities

Limits for annihilation $\ \mathrm{DM}\,\overline{\mathrm{DM}} o \mathrm{SM}\,\overline{\mathrm{SM}}$

But we need $\,\rm DM\,\overline{DM}\to V\,V\to 2SM\,2\overline{SM}$

I do not find a way to reinterpret their search from the way they give limits on neutrino fluxes thanks a lot Christoph Toennis for useful discussions!

How to still get a rough idea

1. ANTARES limits are driven by **higher energy** $\nu's$

1.1 stronger for $\nu \bar{\nu}, \ \mu \bar{\mu}, \ \tau \bar{\tau}$ which have ν spectra peaked at higher energies than $b \bar{b}, \ W^+ \ W^-$

Educated guess from the fact limits are \rightarrow 1.2 very similar for $\mu\bar{\mu},\,\tau\bar{\tau}$

whose \mathcal{V} spectra are very different at low energies, similar at higher ones

1.3 stronger at larger $M_{\rm DM}$

Estimate of ANTARES capabilities

How to still get a rough idea

- **1.** ANTARES limits are driven by **higher energy** ν 'S
- 2. 0- and 1- step spectra of quarks and neutrinos are ~ similar at higher energies

Limits for annihilation $\ DM \, \overline{DM} \to SM \, \overline{SM}$

But we need $\,\rm DM\,\overline{DM}\to V\,V\to 2SM\,2\overline{SM}$

I do not find a way to reinterpret their search from the way they give limits on neutrino fluxes thanks a lot Christoph Toennis for useful discussions!

FILIPPO SALA (DESY)

NEW BSM SEARCHES AT LHC & TELESCOPES

Estimate of ANTARES capabilities

How to still get a rough idea

- **1.** ANTARES limits are driven by **higher energy** ν 'S
- 2. 0- and 1- step spectra of quarks and neutrinos are ~ similar at higher energies

 \Rightarrow Apply ANTARES 0-step limit to q,
u final states

Limits for annihilation $\ \mathrm{DM} \, \overline{\mathrm{DM}} \to \mathrm{SM} \, \overline{\mathrm{SM}}$

But we need $\,\rm DM\,\overline{DM}\to V\,V\to 2SM\,2\overline{SM}$

I do not find a way to reinterpret their search from the way they give limits on neutrino fluxes thanks a lot Christoph Toennis for useful discussions!

FILIPPO SALA (DESY)

NEW BSM SEARCHES AT LHC & TELESCOPES