Search for Solar Atmospheric Neutrinos and the Neutrino Floor

Carsten Rott (for the leeCube Collaboration) Sungkyunkwan University, Korea Pott@skku.edu DarkGhosts Nov 13-14, 2018

Motivation

Observations of the Sun

GeV ??? ----> The Sun is not hot enough!

Fundamental Physics from the Sun

MeV Neutrinos

<section-header>

Helium Discovery

DarkGhosts 2018

Cosmic ray interactions with the Sun

- Cosmic ray interactions in the Solar atmosphere produce gamma-rays and neutrinos
- Background to dark matter searches from the Sun, that soon will be relevant

- Moskalenko, Porter, Digel (2006)
- Orlando, Strong (2007)

Hadronic

- Seckel, Stanev, Gaisser (1991)
- Moskalenko, Karakula (1993)
- Ingelman & Thunman (1996)

Cosmic ray interactions with the Sun

- Gamma-ray flux extends to 100GeV and beyond
- Gamma-rays below 10GeV anti-correlations with solar activity
- Observed flux factor 5 larger compared to central prediction of SSG1991
- Spectrum could be fit by single power law ($\gamma \sim 2.3$)

next 7.8 year

two separate mechanisms

• To understand the underlying physics, gamma-ray (HAWC, Fermi, ...) and neutrino (IceCube) observation of the imminent Cycle 25 solar minimum are crucial

• From morphology: Evidence that emission is produced by

Neutrino Flux from the Sun

- Solar atmosphere significantly more extended and less dense compared to terrestrial counterpart
 - High energy hadrons more likely to decay rather than reinteract
 - Reduced suppression of high-energy neutrino flux (compared to Earth)
 - High-energy muons decay
- High-energy neutrino absorption for neutrinos propagating through central region of the Sun

Solar Atmospheric Neutrino Flux

 The solar atmospheric neutrino spectrum is predicted to be harder compared to the Earth atmospheric background.

- Flux predictions vary by <30%, based on
 - primary models

Carsten Rott

- hadronic and composition models
- extremal solar density and composition models

Figure 3. Effects of different models on our flux prediction, for impact parameter b=0. The top row shows various primary models; the second row, hadronic and composition models; the third row, extremal solar density and composition models. See text for more information and references.

The IceCube Neutrino Telescope

Solar Dark Matter

Solar Dark Matter Summary

Carsten Rott 🧖

Spin-dependent scattering

Spin-independent scattering

Rois

Solar Atmospheric Neutrino Floor

Cosmic background from the Sun

- Solar Atmospheric neutrinos give a new background to solar dark matter searches
 - However, energy spectrum expected to be different
 - In DM annihilation neutrinos significantly attenuated above a few 100GeV

Recent works on the Solar Atmospheric Neutrinos / Atmospheric Neutrino Floor

- C. Argüelles, G. de Wasseige, A. Fedynitch, B. Jones JCAP 1707 (2017) no.07, 024 [arXiv:1703.07798]
- K. Ng, J. Beacom, A. Peter, <u>C. Rott</u> Phys.Rev. D96 (2017) no. 10, 103006 [arXiv:1703.10280]
- J. Edsjö, J. Elevant, R. Enberg, and C. Niblaeus, JCAP 2017.
 06 (2017), p. 033, arXiv: 1704.02892 [astro-ph.HE]
- M. Masip Astropart.Phys. 97 (2018) 63-68 [arXiv: 1706.01290]

DarkGhosts 2018

Solar Atmospheric Neutrino Search

Data sample

- The analysis utilizes data collected over a 7 year period (May 31, 2010 - May 18, 2017)
 - Up-going muon neutrino candidate events are selected using the well established IceCube point source analysis selection procedure
 - We only consider events from the winter season when the Sun is below the horizon (δ=[-5°,23°]). This results in a total analysis livetime of 1420.73 days.

Carsten Rott

Likelihood

- Maximum log likelihood method is used to calculate significant with a test statistic (TS) distribution
 - The likelihood function is defined by

$$L(E,\Theta) = \Pi\left(\frac{\mu}{N} \times p_{sig}(E,\Psi | \mu) + (1 - \frac{\mu}{N}) \times p_{bkg}(E,\Psi)\right)$$

N = total number of events, μ = number of signal events E = neutrino energy proxy Ψ = angular distance to the Sun's center

Signal and background pdfs

Test Statistics

• Test statistics (TS) is defined as a ratio of likelihood function

$$TS = -2\ln(L(0)/L(\hat{\mu})) \qquad \hat{\mu} > 0$$

= $-\left(\frac{d}{d\mu}L(\mu)|_{0}\right)^{2}/\left(2\frac{d^{2}}{d\mu^{2}}L(\mu)\right) \qquad \hat{\mu} = 0$

• The p-value calculate based on a background only assumption is 0.57. Hence, no excess of solar atmospheric neutrinos is seen.

Carsten Rott

Test Statistics

Test statistics (TS) is defined as a ratio of likelihood function

$$TS = -2\ln(L(0)/L(\hat{\mu})) \qquad \hat{\mu} > 0$$

= $-\left(\frac{d}{d\mu}L(\mu)|_{0}\right)^{2}/\left(2\frac{d^{2}}{d\mu^{2}}L(\mu)\right) \qquad \hat{\mu} = 0$

• The p-value calculate based on a background only assumption is 0.57. Hence, no excess of solar atmospheric neutrinos is seen.

Systematic uncertainties

Cosmic ray Sun shadow IC86 II, MPEFit Cosmic rays are absorbed by the Sun, resulting on - N_{bkg})/N in a deficit in muon and neutrino flux. Two extreme cases were compared: -0.02 no absorption Z neutrino flux deficit as measured for muon flux -0.04 Sun IC86-II MPEFi -0.06 **IceCube Preliminary** -0.08 Systematic effect~ 2% -0.1 2 3 4 Ω $\Delta \Psi$ [deg]

Source distribution

Three extreme cases are considered to derive a sys. uncertainty

Systematic	Size
DOM efficiency	12%
Ice properties	4%
Source distribution	4%
Cosmic ray shadow	2%
Total	13%

Preliminary systematic study completed Full study on-going

Upper limit

Feldman-Cousins Upper limit at 90% C.L.

- preliminary systematic uncertainties are included by worsening the limit by 13%

Future Plans

The IceCube Upgrade

Array	String Spacing	Module Spacing	Modules / String
IceCube	125 m	17 m	60
DeepCore	75 m	7 m	60
Upgrade	20 m	2 m	125

First step to restart South Pole activities

- Tau neutrino appearance Test unitarity of the PMNS matrix
- Calibration devices
- Platform to test new technologies

Carsten Rott

DarkGhosts 2018

- Cosmic-rays interacting in the solar atmosphere generate particle showers
 - Recently Fermi-LAT observed this solar disk emission. The observed flux is significantly above theoretical predictions
- First search for solar atmospheric neutrinos was able to place a stringent limit on the neutrino flux from the Sun
 - The analysis did not cover the solar minimum. Recent studies claim that the high-energy gammaray emission only occurred during the solar minimum. Opportunity for the next solar minimum ?