Recent Results of the Antares neutrino telescope and status of its successor KM3Net

. . . .

Paul de Jong Nikhef/Universiteit van Amsterdam

السناي

Alting 1

KM3Ne1

In order for particle physics to advance, we need to identify the cracks in the Standard Model

Many complementary approaches:

- Energy frontier: LHC and beyond
- Intensity frontier: rare decays, EDMs, etc.
- Cosmic frontier: dark matter, ACDM, etc.
- Neutrinos

Neutrinos:

- Only left-handed, v_R absent or sterile: P violation
- Masses remarkably small
- Possibly Majorana: new mass generation mechanism
- Flavor mixing: pattern unlike quarks
- Evidence for CP-violation: leptogenesis?
- Sterile: dark matter candidate

Neutrino telescopes

Astrophysical neutrinos

Galactic: Supernova Remnants (SNRs), Microquasars,...

Extragalactic: Active Galactic Nuclei (AGNs), Gamma Ray Bursts (GRBs), ...

Messengers of the most violent processes in the Universe, in which fundamental physics is put to stress

Astrophysical neutrinos

including neutrinos!

Neutrino telescopes

GNN Running since 2007 The Global Neutrino Network Baikal 0.01 km³ Antares KM3Ne^T 115 strings + 18 DOMs / string · 31 PMTs / DOM Total: 64k*3" PMTs 1 + 0.008 km³ IceCube

GVD (Baikal) GVD (Baikal) 1 km³ 3 of 8 clusters installed 2015-2018 (to be finished 2021) Running since 2009

Deep sea or ice

Antares

40 km south of Toulon, 2475 m depth

Run 87649 Mon Oct 7 15:35:06 2019 Line 1-12 Physics Trigger 3N+2T3+K40+GC+TQ+TS0 SNbuffer Feb2019

configuration

Antares

Photon detection efficiency

Diffuse cosmic neutrino flux

Data corresponding to 3330 days, 2007-2018

Diffuse cosmic neutrino flux

 $\Phi_0(100 \text{ TeV}) = (1.5 \pm 1.0) \times 10^{-18} \text{ [GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}\text{]}$ $\Gamma = 2.3^{+0.4}_{-0.4}$

Summary of source searches:

Analysis	Source	α [°]	δ [°]	pre-trial (σ)	post-trial (σ)
full sky		343.5	+23.6	1.5 10 ⁻⁶ (4.8)	0.23 (1.2)
candidate list	HESSJ0632+057	98.24	+5.81	1.5 10 ⁻² (2.4)	0.16 (1.4)
IceCube tracks	EHE ID3	343.5	+23.6	1.5 10 ⁻⁶ (4.8)	0.015 (2.4)
TXS0506+056		77.36	+5.69	3.4 10 ⁻² (2.1)	0.87 (0.16)
ANT-IceCube Southern sky		213.2	-40.8	1.3 10 ⁻⁵ (4.3)	0.18 (1.3)
ANT-IceCube RXJ1713		258.25	-39.75	4.0 10 ⁻¹ (0.84)	
stacking Radio-galaxies		-	-	4.8 10 ⁻³ (2.8)	0.10 (1.6)
stacking Radio-galaxies	3C403	298.06	+2.5	2.3 10 ⁻⁴ (3.7)	0.013* (2.5)
stacking 3LAC BL Lacs		-	-	8.8 10 ⁻² (1.7)	0.64 (0.5)
stacking 3LAC BL Lacs	MG3J225517+2409	343.78	+24.19	1.4 10 ⁻⁴ (3.8)	0.16* (1.4)
Time Analysis	MG3J225517+2409	343.78	+24.19	1.4 10 ⁻⁴ (3.7)	0.16* (1.4)
Time Analysis ANT-IceCube	MG3J225517+2409	343.78	+24.19	2.2 10 ⁻⁷ (5.2)	-

ANTARES sample	Livetime [days]	# of events	
Tracks	2415	5807	
Showers	2415	102	
IceCube sample	Livetime [days]	# of events	
IC40	376	22779	
IC59	348	64257	
IC79	316	44771	
IC86	333	74931	
2012-2015	1058	119231	

Complementarity Antares – IceCube in southern sky

90% C.L. Sensitivity and Limits for $\gamma = 2.0$

90% C.L. Sensitivity and Limits for $\gamma = 2.5$

Multimessenger network

311 alerts 2009-2019

A selection of multimessenger results

Upper limits on neutrino flux from LIGO/VIRGO alerts

Neutrino oscillations

Oscillations ~ $\sin^2 \Delta m^2 \frac{L}{E}$ $\cos \theta_z$ is a measure of L

Full earth is baseline.

Antares oscillation results

10 years of data

3-generation fit

Location, location, location

KM3NeT/ORCA

Oscillation research, France

	ORCA	ARCA
String spacing	21 m	90 m
OM spacing	9 m	36 m
Depth	2470 m	3400 m
Instrumented mass	8 Mton	500*2 Mton

8 DOM production sites

KM3NeT-Phase1 DOMs								
Site	n. of DOMs Integrated	On bench	To be done	Total				
Amsterdam	218	0	0	218				
Naples	73	0	0	73				
Catania	75	15	18	108				
Erlangen	36	0	18	54				
Athens	38	0	18	56				
Strasbourg	9	0	6*	15				
Nantes	9	0	6	15				
Rabat	0	0	1	1				
TOTAL	458	15	67	540				

Sufficient DOMs for 25 DUs (strings) at the moment, 30 soon (= phase 1)

Detection Unit (DU) integration

5 sites: Amsterdam, Catania, Genova, Marseille, Napoli

https://www.youtube.com/watch?v=omlFkdCkbYk

Status at ORCA site (F)

- First DU deployed Sept 2016
- Dec. 2016: short in power cable to shore
- Cable replaced 2018, DU had to be retrieved
- 5 DUs deployed since, but 1 retrieved (VEOC cable cut when deploying other DU)
- Now operational with 4 DUs
- 2 DUs ready for deployment Nov 2019

Currently procuring for phase 2 Restart production and deployment in 2020 End of 2020: 13 DUs End of 2021: ~40 DUs Completion 2024

Status at **ARCA** site (I)

- 1 DU operational
- Work on seafloor network in progress
- Spring 2020: temporary Junction Box (6 DUs)
- Fall 2020-Summer 2021: final JBs for 24 DUs

Procurement for phase 2 in progress More advanced optical network DOM and DU construction to start during 2020 Completion block 1 in 2024 Completion block 2 in 2026

Calibration with ⁴⁰K decays in seawater

Single PMT rate ~ 6 kHz, two-fold coincidence on a DOM ~ 500 Hz

Stability monitoring

LED flashers: timing between different DOMs

Timing check with LED flashers

Positioning: acoustic triangulation, and compass

Acoustic emitters on sea-floor Hydrophones in DOMs, triangulation

Correlation between acoustic positioning and compass

Aim for ~10cm accuracy in DOM positions

Future: acoustic detection of neutrinos (with TNO, Delft)

time (c

Commercial hydrophone as reference

Dream: future 100 km³ array Neutrinos above 10¹⁸ eV

Also interest from biologists

Depth dependence of the atmospheric muon flux

42

Atmospheric neutrino candidates selection in ORCA

neutrino likelihood

Atmospheric neutrino candidates selection in ORCA

Resolution for track-like events from muon neutrinos

At low neutrino energies, tracks are short

Resolution for shower-like events from electron neutrinos

Simulated event rates for 3-year full ORCA

Event classification, machine learning

Conventional classifier

Convolutional neutral network

ORCA Oscillation physics

Figure 47. Oscillation probabilities $\nu_{\mu} \rightarrow \nu_{\mu}$ (blue lines) and $\nu_{e} \rightarrow \nu_{\mu}$ (red lines) as a function of the neutrino energy for several values of the zenith angle (corresponding to different baselines). The solid (dashed) lines are for NH (IH). For neutrinos (left) and for antineutrinos (right).

Expectations for oscillation parameter fit

Tau neutrino appearance and normalization

Significance 1 month full ORCA

Normalization capability ORCA 7 DUs

Asymmetry in expectation Normal Ordering / Inverted Ordering: $(N_{IO}-N_{NO})/N_{NO}$

 ν_{μ}

ve

(f) 0 (f) 0

-0.2

-0.3

-0.4

-0.5

-0.6 -0.7

-0.8

-0.9

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1^E

3

-1^E

5 6 7 8 9 1 0

4 5 6 7 8 9 1 0

4 3

20

20

νe

νμ

ντ

Sensitivity mass ordering full ORCA after 3 years

Improvements in pipeline

A neutrino beam from Protvino to ORCA (letter of interest 2019)

CP-violation: 3 years with 450 kW beam

Expectations for ARCA

Angular resolution

Visibility of interesting objects

Sensitivity and discovery flux expectations

For E⁻² spectrum

Time needed for discovery or exclusion of expected fluxes for various objects

Expected time needed for observation of diffuse cosmic flux

Summary and conclusions

Antares has been a pioneer deep-sea neutrino telescope After 12 years, time for retirement

Successor KM3NeT is slowly getting off the ground Data taking ORCA with 4 (soon 6) lines Data/simulation looks good, first neutrinos seen On target for oscillation physics soon ARCA sea-floor network ready for more lines in 2020 DOMs for 25 lines already available, mass-production 2020